Abstract

A monolithically integrated photonic source for tuneable mm-wave signal generation has been fabricated. The source consists of 14 active components, i.e. semiconductor lasers, amplifiers and photodetectors, all integrated on a 3 mm2 InP chip. Heterodyne signals in the range between 85 GHz and 120 GHz with up to −10 dBm output power have been successfully generated. By optically injection locking the integrated lasers to an external optical comb source, high-spectral-purity signals at frequencies >100 GHz have been generated, with phase noise spectral density below −90 dBc/Hz being achieved at offsets from the carrier greater than 10 kHz.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation

Li Fan, Guangqiong Xia, Jianjun Chen, Xi Tang, Qing Liang, and Zhengmao Wu
Opt. Express 24(16) 18252-18265 (2016)

Y-branch integrated dual wavelength laser diode for microwave generation by sideband injection locking

Jin Huang, Changzheng Sun, Bing Xiong, and Yi Luo
Opt. Express 17(23) 20727-20734 (2009)

Flexible generation of 28 Gbps PAM4 60 GHz/80 GHz radio over fiber signal by injection locking of direct multilevel modulated laser to spacing-tunable two-tone light

Guo-Wei Lu, Ruben S. Luís, Hiroyuki Toda, Jiabin Cui, Takahide Sakamoto, Hongxiang Wang, Yuefeng Ji, and Naokatsu Yamamoto
Opt. Express 26(16) 20603-20613 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [Crossref]
  2. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Company, “Integrated microwave photonics,” Laser Photonics Rev. (2012).
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  4. R. DiFazio and P. Pietraski, “The bandwidth crunch: Can wireless technology meet the skyrocketing demand for mobile data?” IEEE Long Island Systems, Applications and Technology Conference (LISAT), (2011).
    [Crossref]
  5. T. Nagatsuma, N. Kukutsu, and Y. Kado, “Photonic generation of millimeter and terahertz waves and its applications,” International Conference on Applied Electromagnetics and Communications 49, (2007).
  6. A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
    [Crossref]
  7. L. A. Coldren, “Photonic integrated circuits for microwave photonics,” IEEE International Topical Meeting on Microwave Photonics 1–4 (2010).
    [Crossref]
  8. G. Carpintero, K. Balakier, Z. Yang, R. Guzman, A. Corradi, A. Jimenez, G. Kervella, M. Fice, M. Lamponi, M. Chtioui, F. van Dijk, C. C. Renaud, A. Wonfor, E. Bente, R. Penty, I. White, and A. J. Seeds, “Microwave photonic integrated circuits for millimeter-wave wireless communications,” J. Lightwave Technol. 32, 3495 (2014).
  9. A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Dual-mode lasing in a 1310-nm quantum dot distributed feedback laser induced by single-beam optical injection,” Appl. Phys. Lett. 102(20), 201117 (2013).
    [Crossref]
  10. F. van Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, “Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation,” International Topical Meeting on Microwave Photonics & Asia-Pacific Microwave Photonics Conference (2011).
    [Crossref]
  11. X. S. Yao, “High-quality microwave signal generation by use of Brillouin scattering in optical fibers,” Opt. Lett. 22(17), 1329–1331 (1997).
    [Crossref] [PubMed]
  12. W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion using stimulated Brillouin scattering,” Opt. Commun. 284(13), 3437–3439 (2011).
    [Crossref]
  13. F. van Dijk, B. Charbonnier, S. Constant, A. Enard, S. Fedderwitz, S. Formont, I. F. Lealman, F. Lecoche, F. Lelarge, D. Moodie, L. Ponnampalam, C. C. Renaud, M. J. Robertson, A. J. Seeds, A. Stohr, and M. Weiss, “Quantum dash mode-locked lasers for millimeter wave signal generation and transmission,” 2010 IEEE Photinic Society’s 23rd Annual Meeting 187–188 (2010).
    [Crossref]
  14. U. Gliese, T. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonic. Tech. L. 4(8), 936–938 (1992).
    [Crossref]
  15. S. Fukushima, C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightwave Technol. 21(12), 3043–3051 (2003).
    [Crossref]
  16. S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron 17(15), 681–689 (1981).
  17. A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop,” J. Lightwave Technol. 17(2), 328–342 (1999).
    [Crossref]
  18. M. J. Fice, A. Chiuchiarelli, E. Ciaramella, and A. J. Seeds, “Homodyne coherent optical receiver using an optical injection phase-lock loop,” J. Lightwave Technol. 29(8), 1152–1164 (2011).
    [Crossref]
  19. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
    [Crossref]
  20. E. Rouvalis, M. Chtioui, F. van Dijk, F. Lelarge, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds, “170 GHz Uni-Traveling Carrier Photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(18), 20090–20095 (2012).
    [Crossref] [PubMed]
  21. B. Cai, D. Wake, and A. J. Seeds, “Microwave frequency synthesis using injection locked laser comb line selection,” LEOS Summer Topical Meeting. 3–4 (1995).
    [Crossref]
  22. J. Esterline, “Oscillator phase noise: theory vs. practicality,” Microwave J.72–86 (2008).
  23. R. T. Ramos, P. Gallion, D. Erasme, A. J. Seeds, and A. Bordonalli, “Optical injection locking and phase-lock loop combined systems,” Opt. Lett. 19(1), 4–6 (1994).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Dual-mode lasing in a 1310-nm quantum dot distributed feedback laser induced by single-beam optical injection,” Appl. Phys. Lett. 102(20), 201117 (2013).
[Crossref]

2012 (1)

2011 (2)

M. J. Fice, A. Chiuchiarelli, E. Ciaramella, and A. J. Seeds, “Homodyne coherent optical receiver using an optical injection phase-lock loop,” J. Lightwave Technol. 29(8), 1152–1164 (2011).
[Crossref]

W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion using stimulated Brillouin scattering,” Opt. Commun. 284(13), 3437–3439 (2011).
[Crossref]

2010 (1)

A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
[Crossref]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (1)

2003 (1)

1999 (1)

1997 (1)

1994 (1)

1992 (1)

U. Gliese, T. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonic. Tech. L. 4(8), 936–938 (1992).
[Crossref]

1981 (1)

S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron 17(15), 681–689 (1981).

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Adams, M. J.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Dual-mode lasing in a 1310-nm quantum dot distributed feedback laser induced by single-beam optical injection,” Appl. Phys. Lett. 102(20), 201117 (2013).
[Crossref]

Babiel, S.

A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
[Crossref]

Balakier, K.

Bente, E.

Bordonalli, A.

Bordonalli, A. C.

Broberg, B.

U. Gliese, T. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonic. Tech. L. 4(8), 936–938 (1992).
[Crossref]

Bruun, M.

U. Gliese, T. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonic. Tech. L. 4(8), 936–938 (1992).
[Crossref]

Cannard, P. J.

A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Carpintero, G.

Charbonnier, B.

A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
[Crossref]

Chiuchiarelli, A.

Christensen, E. L.

U. Gliese, T. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonic. Tech. L. 4(8), 936–938 (1992).
[Crossref]

Chtioui, M.

Ciaramella, E.

Corradi, A.

Erasme, D.

Esterline, J.

J. Esterline, “Oscillator phase noise: theory vs. practicality,” Microwave J.72–86 (2008).

Fedderwitz, S.

A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
[Crossref]

Fice, M.

Fice, M. J.

Fukushima, S.

Gallion, P.

Gliese, U.

U. Gliese, T. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonic. Tech. L. 4(8), 936–938 (1992).
[Crossref]

Guzman, R.

Henning, I. D.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Dual-mode lasing in a 1310-nm quantum dot distributed feedback laser induced by single-beam optical injection,” Appl. Phys. Lett. 102(20), 201117 (2013).
[Crossref]

Hurtado, A.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Dual-mode lasing in a 1310-nm quantum dot distributed feedback laser induced by single-beam optical injection,” Appl. Phys. Lett. 102(20), 201117 (2013).
[Crossref]

Jimenez, A.

Kervella, G.

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Kimura, T.

S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron 17(15), 681–689 (1981).

Kobayashi, S.

S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron 17(15), 681–689 (1981).

Lamponi, M.

Lelarge, F.

Lester, L. F.

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Dual-mode lasing in a 1310-nm quantum dot distributed feedback laser induced by single-beam optical injection,” Appl. Phys. Lett. 102(20), 201117 (2013).
[Crossref]

Li, W.

W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion using stimulated Brillouin scattering,” Opt. Commun. 284(13), 3437–3439 (2011).
[Crossref]

Lindgren, S.

U. Gliese, T. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonic. Tech. L. 4(8), 936–938 (1992).
[Crossref]

Member, S.

A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
[Crossref]

Moodie, D.

A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
[Crossref]

Muramoto, Y.

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Nielsen, T.

U. Gliese, T. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonic. Tech. L. 4(8), 936–938 (1992).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Pavlovic, L.

A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
[Crossref]

Penty, R.

Ponnampalam, L.

A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
[Crossref]

Ramos, R. T.

Renaud, C. C.

Rogers, D.

A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
[Crossref]

Rouvalis, E.

Rymanov, V.

A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
[Crossref]

Seeds, A. J.

G. Carpintero, K. Balakier, Z. Yang, R. Guzman, A. Corradi, A. Jimenez, G. Kervella, M. Fice, M. Lamponi, M. Chtioui, F. van Dijk, C. C. Renaud, A. Wonfor, E. Bente, R. Penty, I. White, and A. J. Seeds, “Microwave photonic integrated circuits for millimeter-wave wireless communications,” J. Lightwave Technol. 32, 3495 (2014).

E. Rouvalis, M. Chtioui, F. van Dijk, F. Lelarge, M. J. Fice, C. C. Renaud, G. Carpintero, and A. J. Seeds, “170 GHz Uni-Traveling Carrier Photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(18), 20090–20095 (2012).
[Crossref] [PubMed]

M. J. Fice, A. Chiuchiarelli, E. Ciaramella, and A. J. Seeds, “Homodyne coherent optical receiver using an optical injection phase-lock loop,” J. Lightwave Technol. 29(8), 1152–1164 (2011).
[Crossref]

A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
[Crossref]

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
[Crossref]

S. Fukushima, C. Silva, Y. Muramoto, and A. J. Seeds, “Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode,” J. Lightwave Technol. 21(12), 3043–3051 (2003).
[Crossref]

A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop,” J. Lightwave Technol. 17(2), 328–342 (1999).
[Crossref]

R. T. Ramos, P. Gallion, D. Erasme, A. J. Seeds, and A. Bordonalli, “Optical injection locking and phase-lock loop combined systems,” Opt. Lett. 19(1), 4–6 (1994).
[Crossref] [PubMed]

Silva, C.

Steffan, A. G.

A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
[Crossref]

Stöhr, A.

A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
[Crossref]

Stubkjzr, K. E.

U. Gliese, T. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonic. Tech. L. 4(8), 936–938 (1992).
[Crossref]

Umbach, A.

A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
[Crossref]

van Dijk, F.

Walton, C.

Wang, L. X.

W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion using stimulated Brillouin scattering,” Opt. Commun. 284(13), 3437–3439 (2011).
[Crossref]

Weiß, M.

A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
[Crossref]

White, I.

Williams, K. J.

Wonfor, A.

Yang, Z.

Yao, X. S.

Zhu, N. H.

W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion using stimulated Brillouin scattering,” Opt. Commun. 284(13), 3437–3439 (2011).
[Crossref]

Appl. Phys. Lett. (1)

A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, “Dual-mode lasing in a 1310-nm quantum dot distributed feedback laser induced by single-beam optical injection,” Appl. Phys. Lett. 102(20), 201117 (2013).
[Crossref]

Electron. Lett. (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

IEEE J. Quantum Electron (1)

S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron 17(15), 681–689 (1981).

IEEE Photonic. Tech. L. (1)

U. Gliese, T. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers,” IEEE Photonic. Tech. L. 4(8), 936–938 (1992).
[Crossref]

IEEE T. Microw. Theory (1)

A. Stöhr, S. Member, S. Babiel, P. J. Cannard, B. Charbonnier, F. Van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE T. Microw. Theory 58(11), 3071–3082 (2010).
[Crossref]

J. Lightwave Technol. (5)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Commun. (1)

W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion using stimulated Brillouin scattering,” Opt. Commun. 284(13), 3437–3439 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Other (8)

B. Cai, D. Wake, and A. J. Seeds, “Microwave frequency synthesis using injection locked laser comb line selection,” LEOS Summer Topical Meeting. 3–4 (1995).
[Crossref]

J. Esterline, “Oscillator phase noise: theory vs. practicality,” Microwave J.72–86 (2008).

F. van Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge, “Monolithic dual wavelength DFB lasers for narrow linewidth heterodyne beat-note generation,” International Topical Meeting on Microwave Photonics & Asia-Pacific Microwave Photonics Conference (2011).
[Crossref]

F. van Dijk, B. Charbonnier, S. Constant, A. Enard, S. Fedderwitz, S. Formont, I. F. Lealman, F. Lecoche, F. Lelarge, D. Moodie, L. Ponnampalam, C. C. Renaud, M. J. Robertson, A. J. Seeds, A. Stohr, and M. Weiss, “Quantum dash mode-locked lasers for millimeter wave signal generation and transmission,” 2010 IEEE Photinic Society’s 23rd Annual Meeting 187–188 (2010).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Company, “Integrated microwave photonics,” Laser Photonics Rev. (2012).

R. DiFazio and P. Pietraski, “The bandwidth crunch: Can wireless technology meet the skyrocketing demand for mobile data?” IEEE Long Island Systems, Applications and Technology Conference (LISAT), (2011).
[Crossref]

T. Nagatsuma, N. Kukutsu, and Y. Kado, “Photonic generation of millimeter and terahertz waves and its applications,” International Conference on Applied Electromagnetics and Communications 49, (2007).

L. A. Coldren, “Photonic integrated circuits for microwave photonics,” IEEE International Topical Meeting on Microwave Photonics 1–4 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Photograph of the PIC, showing notation used to describe the various elements of the device.
Fig. 2
Fig. 2 Linewidth measurement of DFB lasers; Lorentzian fit gives FWHM linewidth of ~2 MHz and ~3 MHz (RBW = 2 MHz, VBW = 5 kHz).
Fig. 3
Fig. 3 Free-running optical signals generated by monolithically integrated DFB lasers (a) and heterodyne detected by integrated UTC-PD (b).
Fig. 4
Fig. 4 Schematic representation of experimental assembly for injection locking.
Fig. 5
Fig. 5 Optical spectra of integrated DFB lasers and reference OFCG.
Fig. 6
Fig. 6 Electrical spectra of the free running (blue) and phase controlled (red) heterodyne signal (RBW = 300kHz, VBW = 30 kHz).
Fig. 7
Fig. 7 Single-sideband phase noise of locked heterodyne signal at 101.7 GHz. The phase noise of the synthesisers used in the experiment are shown for comparison, as is the calculated phase noise for a free-running heterodyne with 5 MHz Lorentzian FWHM linewidth.
Fig. 8
Fig. 8 SSB phase noise of locked heterodyne signal at different optical injection ratios.

Metrics