Abstract

LumiConSense, a transparent, flexible, scalable, and disposable thin-film image sensor has the potential to lead to new human-computer interfaces that are unconstrained in shape and sensing-distance. In this article we make four new contributions: (1) A new real-time image reconstruction method that results in a significant enhancement of image quality compared to previous approaches; (2) the efficient combination of image reconstruction and shift-invariant linear image processing operations; (3) various hardware and software prototypes which, realize the above contributions, demonstrating the current potential of our sensor for real-time applications; and finally, (4) a further higher quality offline reconstruction algorithm.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Towards a transparent, flexible, scalable and disposable image sensor using thin-film luminescent concentrators

Alexander Koppelhuber and Oliver Bimber
Opt. Express 21(4) 4796-4810 (2013)

A transparent thin-film sensor for multi-focal image reconstruction and depth estimation

Alexander Koppelhuber, Clemens Birklbauer, Shahram Izadi, and Oliver Bimber
Opt. Express 22(8) 8928-8942 (2014)

Thin-film camera using luminescent concentrators and an optical Söller collimator

Alexander Koppelhuber and Oliver Bimber
Opt. Express 25(16) 18526-18536 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92(21), 213303 (2008).
    [Crossref]
  2. G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10(17), 1431–1434 (1998).
    [Crossref]
  3. T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev. 52(11), 2502–2511 (2005).
    [Crossref]
  4. H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
    [Crossref] [PubMed]
  5. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Hung, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
    [Crossref] [PubMed]
  6. S. Hodges, S. Izadi, A. Butler, A. Rrustemi, and B. Buxton, “ThinSight: versatile multi-touch sensing for thin form-factor displays,” in Proceedings of the 20th annual ACM symposium on User interface software and technology (Association for Computing Machinery, New York, 2007), 259–268.
    [Crossref]
  7. J. Y. Han, “Low-cost multi-touch sensing through frustrated total internal reflection,” in Proceedings of the 18th annual ACM symposium on User interface software and technology, (Association for Computing Machinery, New York, 2005), 115–118.
    [Crossref]
  8. N. Villar, S. Izadi, D. Rosenfeld, H. Benko, J. Helmes, J. Westhues, S. Hodges, E. Ofek, A. Butler, X. Cao, and B. Chen, “Mouse 2.0: multi-touch meets the mouse,” in Proceedings of the 22nd annual ACM symposium on User interface software and technology, (Association for Computing Machinery, 2009), 33–42.
    [Crossref]
  9. J. Moeller and A. Kerne, “Scanning FTIR: unobtrusive optoelectronic multi-touch sensing through waveguide transmissivity imaging,” in Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction, (Association for Computing Machinery, New York, 2010), 73–76.
    [Crossref]
  10. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Optics 18(18), 3090–3110 (1979).
    [Crossref]
  11. P. J. Jungwirth, “Photoluminescent concentrator based receptive fields,” Ph.D. Thesis, Simon Fraser University (1996).
  12. P. J. Jungwirth, I. S. Melnik, and A. H. Rawicz, “Position-sensitive receptive fields based on photoluminescent concentrators,” P. Soc. Photo-Opt. Ins. 3199, 239–247 (1998).
  13. I. S. Melnik and A. H. Rawicz, “Thin-film luminescent concentrators for position-sensitive devices,” Appl. Optics 36(34), 9025–9033 (1997).
    [Crossref]
  14. R. Koeppe, A. Neulinger, P. Bartu, and S. Bauer, “Video-speed detection of the absolute position of a light point on a large-area photodetector based on luminescent waveguides,” Opt. Express 18(3), 2209–2218 (2010).
    [Crossref] [PubMed]
  15. A. Koppelhuber and O. Bimber, “Towards a transparent, flexible, scalable and disposable image sensor using thin-film luminescent concentrators,” Opt. Express 21, 4796–4810 (2013).
    [Crossref] [PubMed]
  16. A. Koppelhuber, C. Birklbauer, S. Izadi, and O. Bimber, “A transparent thin-film sensor for multi-focal image reconstruction and depth estimation,” Opt. Express 22, 8928–8942 (2014).
    [Crossref] [PubMed]
  17. G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd ed. (Springer Verlag, 2010).
  18. Y. Saad, Iterative Methods for Sparse Linear Systems, (Society for Industrial Mathematics, 2003).
    [Crossref]
  19. A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm,” Ultrasonic Imaging 6(1), 81–94 (1984).
    [Crossref] [PubMed]
  20. T. M. Buzug, Computed Tomography from Photon Statistics to Modern Cone-Beam CT (Springer Verlag, 2008)
  21. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE T. Image Process. 13(4), 600–612 (2004).
    [Crossref]
  22. R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: Motion deblurring using fluttered shutter,” ACM T. Graphic 25(3), 795–804 (2006).
    [Crossref]
  23. S. Taylor, C. Keskin, O. Hilliges, S. Izadi, and J. Helmes, “Type-hover-swipe in 96 bytes: A motion sensing mechanical keyboard,” in Proceedings of the 32nd annual ACM conference on Human factors in computing systems, (Association for Computing Machinery, 2014), 1695–1704.
    [Crossref]
  24. A. F. Bobick and J. W. Davis, “The recognition of human movement using temporal templates,” IEEE T. Pattern Anal. 23(3), 257–267 (2001).
    [Crossref]
  25. V. Vapnik, Statistical Learning Theory (John Wiley and Sons, Inc., 1998).
  26. A. N. Tikhonov, A. S. Leonov, and A. G. Yagola, Nonlinear Ill-Posed Problems (Chapman & Hall, 1998).
    [Crossref]
  27. T. Evgeniou, M. Pontil, and T. Poggio, “Regularization networks and support vector machines,” Adv. Comput. Math. 13(1), 1–50 (2000).
    [Crossref]
  28. B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer theorem,” in Proceedings of the 14th Annual Conference on Computational Learning Theory and and 5th European Conference on Computational Learning Theory, (Springer-Verlag, London, 2001), 416–426.
  29. A. Tacchetti, P. K. Mallapragada, M. Santoro, and L. Rosasco, “GURLS: A Least Squares library for supervised learning,” J. Mach. Learn. Res. 14, 3201–3205 (2013).

2014 (1)

2013 (3)

A. Koppelhuber and O. Bimber, “Towards a transparent, flexible, scalable and disposable image sensor using thin-film luminescent concentrators,” Opt. Express 21, 4796–4810 (2013).
[Crossref] [PubMed]

A. Tacchetti, P. K. Mallapragada, M. Santoro, and L. Rosasco, “GURLS: A Least Squares library for supervised learning,” J. Mach. Learn. Res. 14, 3201–3205 (2013).

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Hung, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

2010 (1)

2008 (2)

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92(21), 213303 (2008).
[Crossref]

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[Crossref] [PubMed]

2006 (1)

R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: Motion deblurring using fluttered shutter,” ACM T. Graphic 25(3), 795–804 (2006).
[Crossref]

2005 (1)

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev. 52(11), 2502–2511 (2005).
[Crossref]

2004 (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE T. Image Process. 13(4), 600–612 (2004).
[Crossref]

2001 (1)

A. F. Bobick and J. W. Davis, “The recognition of human movement using temporal templates,” IEEE T. Pattern Anal. 23(3), 257–267 (2001).
[Crossref]

2000 (1)

T. Evgeniou, M. Pontil, and T. Poggio, “Regularization networks and support vector machines,” Adv. Comput. Math. 13(1), 1–50 (2000).
[Crossref]

1998 (2)

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10(17), 1431–1434 (1998).
[Crossref]

P. J. Jungwirth, I. S. Melnik, and A. H. Rawicz, “Position-sensitive receptive fields based on photoluminescent concentrators,” P. Soc. Photo-Opt. Ins. 3199, 239–247 (1998).

1997 (1)

I. S. Melnik and A. H. Rawicz, “Thin-film luminescent concentrators for position-sensitive devices,” Appl. Optics 36(34), 9025–9033 (1997).
[Crossref]

1984 (1)

A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm,” Ultrasonic Imaging 6(1), 81–94 (1984).
[Crossref] [PubMed]

1979 (1)

J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Optics 18(18), 3090–3110 (1979).
[Crossref]

Agrawal, A.

R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: Motion deblurring using fluttered shutter,” ACM T. Graphic 25(3), 795–804 (2006).
[Crossref]

Andersen, A. H.

A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm,” Ultrasonic Imaging 6(1), 81–94 (1984).
[Crossref] [PubMed]

Bartu, P.

Batchelder, J. S.

J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Optics 18(18), 3090–3110 (1979).
[Crossref]

Bauer, S.

Benko, H.

N. Villar, S. Izadi, D. Rosenfeld, H. Benko, J. Helmes, J. Westhues, S. Hodges, E. Ofek, A. Butler, X. Cao, and B. Chen, “Mouse 2.0: multi-touch meets the mouse,” in Proceedings of the 22nd annual ACM symposium on User interface software and technology, (Association for Computing Machinery, 2009), 33–42.
[Crossref]

Bimber, O.

Birklbauer, C.

Bobick, A. F.

A. F. Bobick and J. W. Davis, “The recognition of human movement using temporal templates,” IEEE T. Pattern Anal. 23(3), 257–267 (2001).
[Crossref]

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE T. Image Process. 13(4), 600–612 (2004).
[Crossref]

Butler, A.

S. Hodges, S. Izadi, A. Butler, A. Rrustemi, and B. Buxton, “ThinSight: versatile multi-touch sensing for thin form-factor displays,” in Proceedings of the 20th annual ACM symposium on User interface software and technology (Association for Computing Machinery, New York, 2007), 259–268.
[Crossref]

N. Villar, S. Izadi, D. Rosenfeld, H. Benko, J. Helmes, J. Westhues, S. Hodges, E. Ofek, A. Butler, X. Cao, and B. Chen, “Mouse 2.0: multi-touch meets the mouse,” in Proceedings of the 22nd annual ACM symposium on User interface software and technology, (Association for Computing Machinery, 2009), 33–42.
[Crossref]

Buxton, B.

S. Hodges, S. Izadi, A. Butler, A. Rrustemi, and B. Buxton, “ThinSight: versatile multi-touch sensing for thin form-factor displays,” in Proceedings of the 20th annual ACM symposium on User interface software and technology (Association for Computing Machinery, New York, 2007), 259–268.
[Crossref]

Buzug, T. M.

T. M. Buzug, Computed Tomography from Photon Statistics to Modern Cone-Beam CT (Springer Verlag, 2008)

Cao, X.

N. Villar, S. Izadi, D. Rosenfeld, H. Benko, J. Helmes, J. Westhues, S. Hodges, E. Ofek, A. Butler, X. Cao, and B. Chen, “Mouse 2.0: multi-touch meets the mouse,” in Proceedings of the 22nd annual ACM symposium on User interface software and technology, (Association for Computing Machinery, 2009), 33–42.
[Crossref]

Chabinyc, M. L.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92(21), 213303 (2008).
[Crossref]

Chen, B.

N. Villar, S. Izadi, D. Rosenfeld, H. Benko, J. Helmes, J. Westhues, S. Hodges, E. Ofek, A. Butler, X. Cao, and B. Chen, “Mouse 2.0: multi-touch meets the mouse,” in Proceedings of the 22nd annual ACM symposium on User interface software and technology, (Association for Computing Machinery, 2009), 33–42.
[Crossref]

Choi, K. J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Hung, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Choi, W. M.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[Crossref] [PubMed]

Cole, T.

J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Optics 18(18), 3090–3110 (1979).
[Crossref]

Crozier, K. B.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Hung, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Davis, J. W.

A. F. Bobick and J. W. Davis, “The recognition of human movement using temporal templates,” IEEE T. Pattern Anal. 23(3), 257–267 (2001).
[Crossref]

Evgeniou, T.

T. Evgeniou, M. Pontil, and T. Poggio, “Regularization networks and support vector machines,” Adv. Comput. Math. 13(1), 1–50 (2000).
[Crossref]

Geddes, J. B.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[Crossref] [PubMed]

Han, J. Y.

J. Y. Han, “Low-cost multi-touch sensing through frustrated total internal reflection,” in Proceedings of the 18th annual ACM symposium on User interface software and technology, (Association for Computing Machinery, New York, 2005), 115–118.
[Crossref]

Heeger, A. J.

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10(17), 1431–1434 (1998).
[Crossref]

Helmes, J.

N. Villar, S. Izadi, D. Rosenfeld, H. Benko, J. Helmes, J. Westhues, S. Hodges, E. Ofek, A. Butler, X. Cao, and B. Chen, “Mouse 2.0: multi-touch meets the mouse,” in Proceedings of the 22nd annual ACM symposium on User interface software and technology, (Association for Computing Machinery, 2009), 33–42.
[Crossref]

S. Taylor, C. Keskin, O. Hilliges, S. Izadi, and J. Helmes, “Type-hover-swipe in 96 bytes: A motion sensing mechanical keyboard,” in Proceedings of the 32nd annual ACM conference on Human factors in computing systems, (Association for Computing Machinery, 2014), 1695–1704.
[Crossref]

Herbrich, R.

B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer theorem,” in Proceedings of the 14th Annual Conference on Computational Learning Theory and and 5th European Conference on Computational Learning Theory, (Springer-Verlag, London, 2001), 416–426.

Herman, G. T.

G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd ed. (Springer Verlag, 2010).

Hilliges, O.

S. Taylor, C. Keskin, O. Hilliges, S. Izadi, and J. Helmes, “Type-hover-swipe in 96 bytes: A motion sensing mechanical keyboard,” in Proceedings of the 32nd annual ACM conference on Human factors in computing systems, (Association for Computing Machinery, 2014), 1695–1704.
[Crossref]

Hodges, S.

N. Villar, S. Izadi, D. Rosenfeld, H. Benko, J. Helmes, J. Westhues, S. Hodges, E. Ofek, A. Butler, X. Cao, and B. Chen, “Mouse 2.0: multi-touch meets the mouse,” in Proceedings of the 22nd annual ACM symposium on User interface software and technology, (Association for Computing Machinery, 2009), 33–42.
[Crossref]

S. Hodges, S. Izadi, A. Butler, A. Rrustemi, and B. Buxton, “ThinSight: versatile multi-touch sensing for thin form-factor displays,” in Proceedings of the 20th annual ACM symposium on User interface software and technology (Association for Computing Machinery, New York, 2007), 259–268.
[Crossref]

Huang, Y.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[Crossref] [PubMed]

Hung, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Hung, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Iba, S.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev. 52(11), 2502–2511 (2005).
[Crossref]

Izadi, S.

A. Koppelhuber, C. Birklbauer, S. Izadi, and O. Bimber, “A transparent thin-film sensor for multi-focal image reconstruction and depth estimation,” Opt. Express 22, 8928–8942 (2014).
[Crossref] [PubMed]

S. Taylor, C. Keskin, O. Hilliges, S. Izadi, and J. Helmes, “Type-hover-swipe in 96 bytes: A motion sensing mechanical keyboard,” in Proceedings of the 32nd annual ACM conference on Human factors in computing systems, (Association for Computing Machinery, 2014), 1695–1704.
[Crossref]

S. Hodges, S. Izadi, A. Butler, A. Rrustemi, and B. Buxton, “ThinSight: versatile multi-touch sensing for thin form-factor displays,” in Proceedings of the 20th annual ACM symposium on User interface software and technology (Association for Computing Machinery, New York, 2007), 259–268.
[Crossref]

N. Villar, S. Izadi, D. Rosenfeld, H. Benko, J. Helmes, J. Westhues, S. Hodges, E. Ofek, A. Butler, X. Cao, and B. Chen, “Mouse 2.0: multi-touch meets the mouse,” in Proceedings of the 22nd annual ACM symposium on User interface software and technology, (Association for Computing Machinery, 2009), 33–42.
[Crossref]

Jung, I.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Hung, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Jungwirth, P. J.

P. J. Jungwirth, I. S. Melnik, and A. H. Rawicz, “Position-sensitive receptive fields based on photoluminescent concentrators,” P. Soc. Photo-Opt. Ins. 3199, 239–247 (1998).

P. J. Jungwirth, “Photoluminescent concentrator based receptive fields,” Ph.D. Thesis, Simon Fraser University (1996).

Kak, A. C.

A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm,” Ultrasonic Imaging 6(1), 81–94 (1984).
[Crossref] [PubMed]

Kato, Y.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev. 52(11), 2502–2511 (2005).
[Crossref]

Kawaguchi, H.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev. 52(11), 2502–2511 (2005).
[Crossref]

Kerne, A.

J. Moeller and A. Kerne, “Scanning FTIR: unobtrusive optoelectronic multi-touch sensing through waveguide transmissivity imaging,” in Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction, (Association for Computing Machinery, New York, 2010), 73–76.
[Crossref]

Keskin, C.

S. Taylor, C. Keskin, O. Hilliges, S. Izadi, and J. Helmes, “Type-hover-swipe in 96 bytes: A motion sensing mechanical keyboard,” in Proceedings of the 32nd annual ACM conference on Human factors in computing systems, (Association for Computing Machinery, 2014), 1695–1704.
[Crossref]

Kim, R.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Hung, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Ko, H. C.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[Crossref] [PubMed]

Koeppe, R.

Koppelhuber, A.

Leonov, A. S.

A. N. Tikhonov, A. S. Leonov, and A. G. Yagola, Nonlinear Ill-Posed Problems (Chapman & Hall, 1998).
[Crossref]

Li, R.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Hung, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Liu, Z.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Hung, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Lu, C.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Hung, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Mallapragada, P. K.

A. Tacchetti, P. K. Mallapragada, M. Santoro, and L. Rosasco, “GURLS: A Least Squares library for supervised learning,” J. Mach. Learn. Res. 14, 3201–3205 (2013).

Malyarchuk, V.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Hung, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[Crossref] [PubMed]

McElvain, J.

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10(17), 1431–1434 (1998).
[Crossref]

Melnik, I. S.

P. J. Jungwirth, I. S. Melnik, and A. H. Rawicz, “Position-sensitive receptive fields based on photoluminescent concentrators,” P. Soc. Photo-Opt. Ins. 3199, 239–247 (1998).

I. S. Melnik and A. H. Rawicz, “Thin-film luminescent concentrators for position-sensitive devices,” Appl. Optics 36(34), 9025–9033 (1997).
[Crossref]

Moeller, J.

J. Moeller and A. Kerne, “Scanning FTIR: unobtrusive optoelectronic multi-touch sensing through waveguide transmissivity imaging,” in Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction, (Association for Computing Machinery, New York, 2010), 73–76.
[Crossref]

Neulinger, A.

Ng, T. N.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92(21), 213303 (2008).
[Crossref]

Noguchi, Y.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev. 52(11), 2502–2511 (2005).
[Crossref]

Ofek, E.

N. Villar, S. Izadi, D. Rosenfeld, H. Benko, J. Helmes, J. Westhues, S. Hodges, E. Ofek, A. Butler, X. Cao, and B. Chen, “Mouse 2.0: multi-touch meets the mouse,” in Proceedings of the 22nd annual ACM symposium on User interface software and technology, (Association for Computing Machinery, 2009), 33–42.
[Crossref]

Park, H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Hung, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Poggio, T.

T. Evgeniou, M. Pontil, and T. Poggio, “Regularization networks and support vector machines,” Adv. Comput. Math. 13(1), 1–50 (2000).
[Crossref]

Pontil, M.

T. Evgeniou, M. Pontil, and T. Poggio, “Regularization networks and support vector machines,” Adv. Comput. Math. 13(1), 1–50 (2000).
[Crossref]

Raskar, R.

R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: Motion deblurring using fluttered shutter,” ACM T. Graphic 25(3), 795–804 (2006).
[Crossref]

Rawicz, A. H.

P. J. Jungwirth, I. S. Melnik, and A. H. Rawicz, “Position-sensitive receptive fields based on photoluminescent concentrators,” P. Soc. Photo-Opt. Ins. 3199, 239–247 (1998).

I. S. Melnik and A. H. Rawicz, “Thin-film luminescent concentrators for position-sensitive devices,” Appl. Optics 36(34), 9025–9033 (1997).
[Crossref]

Rogers, J. A.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Hung, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[Crossref] [PubMed]

Rosasco, L.

A. Tacchetti, P. K. Mallapragada, M. Santoro, and L. Rosasco, “GURLS: A Least Squares library for supervised learning,” J. Mach. Learn. Res. 14, 3201–3205 (2013).

Rosenfeld, D.

N. Villar, S. Izadi, D. Rosenfeld, H. Benko, J. Helmes, J. Westhues, S. Hodges, E. Ofek, A. Butler, X. Cao, and B. Chen, “Mouse 2.0: multi-touch meets the mouse,” in Proceedings of the 22nd annual ACM symposium on User interface software and technology, (Association for Computing Machinery, 2009), 33–42.
[Crossref]

Rrustemi, A.

S. Hodges, S. Izadi, A. Butler, A. Rrustemi, and B. Buxton, “ThinSight: versatile multi-touch sensing for thin form-factor displays,” in Proceedings of the 20th annual ACM symposium on User interface software and technology (Association for Computing Machinery, New York, 2007), 259–268.
[Crossref]

Saad, Y.

Y. Saad, Iterative Methods for Sparse Linear Systems, (Society for Industrial Mathematics, 2003).
[Crossref]

Sakurai, T.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev. 52(11), 2502–2511 (2005).
[Crossref]

Sambandan, S.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92(21), 213303 (2008).
[Crossref]

Santoro, M.

A. Tacchetti, P. K. Mallapragada, M. Santoro, and L. Rosasco, “GURLS: A Least Squares library for supervised learning,” J. Mach. Learn. Res. 14, 3201–3205 (2013).

Schölkopf, B.

B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer theorem,” in Proceedings of the 14th Annual Conference on Computational Learning Theory and and 5th European Conference on Computational Learning Theory, (Springer-Verlag, London, 2001), 416–426.

Sekitani, T.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev. 52(11), 2502–2511 (2005).
[Crossref]

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE T. Image Process. 13(4), 600–612 (2004).
[Crossref]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE T. Image Process. 13(4), 600–612 (2004).
[Crossref]

Smola, A. J.

B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer theorem,” in Proceedings of the 14th Annual Conference on Computational Learning Theory and and 5th European Conference on Computational Learning Theory, (Springer-Verlag, London, 2001), 416–426.

Someya, T.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev. 52(11), 2502–2511 (2005).
[Crossref]

Song, J.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[Crossref] [PubMed]

Song, Y. M.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Hung, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Stoykovich, M. P.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[Crossref] [PubMed]

Street, R. A.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92(21), 213303 (2008).
[Crossref]

Tacchetti, A.

A. Tacchetti, P. K. Mallapragada, M. Santoro, and L. Rosasco, “GURLS: A Least Squares library for supervised learning,” J. Mach. Learn. Res. 14, 3201–3205 (2013).

Taylor, S.

S. Taylor, C. Keskin, O. Hilliges, S. Izadi, and J. Helmes, “Type-hover-swipe in 96 bytes: A motion sensing mechanical keyboard,” in Proceedings of the 32nd annual ACM conference on Human factors in computing systems, (Association for Computing Machinery, 2014), 1695–1704.
[Crossref]

Tikhonov, A. N.

A. N. Tikhonov, A. S. Leonov, and A. G. Yagola, Nonlinear Ill-Posed Problems (Chapman & Hall, 1998).
[Crossref]

Tumblin, J.

R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: Motion deblurring using fluttered shutter,” ACM T. Graphic 25(3), 795–804 (2006).
[Crossref]

Vapnik, V.

V. Vapnik, Statistical Learning Theory (John Wiley and Sons, Inc., 1998).

Villar, N.

N. Villar, S. Izadi, D. Rosenfeld, H. Benko, J. Helmes, J. Westhues, S. Hodges, E. Ofek, A. Butler, X. Cao, and B. Chen, “Mouse 2.0: multi-touch meets the mouse,” in Proceedings of the 22nd annual ACM symposium on User interface software and technology, (Association for Computing Machinery, 2009), 33–42.
[Crossref]

Wang, J.

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10(17), 1431–1434 (1998).
[Crossref]

Wang, S.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE T. Image Process. 13(4), 600–612 (2004).
[Crossref]

Westhues, J.

N. Villar, S. Izadi, D. Rosenfeld, H. Benko, J. Helmes, J. Westhues, S. Hodges, E. Ofek, A. Butler, X. Cao, and B. Chen, “Mouse 2.0: multi-touch meets the mouse,” in Proceedings of the 22nd annual ACM symposium on User interface software and technology, (Association for Computing Machinery, 2009), 33–42.
[Crossref]

Wong, W. S.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92(21), 213303 (2008).
[Crossref]

Xiao, J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Hung, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[Crossref] [PubMed]

Xie, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Hung, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Yagola, A. G.

A. N. Tikhonov, A. S. Leonov, and A. G. Yagola, Nonlinear Ill-Posed Problems (Chapman & Hall, 1998).
[Crossref]

Yu, C. J.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[Crossref] [PubMed]

Yu, G.

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10(17), 1431–1434 (1998).
[Crossref]

Zewail, A. H.

J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Optics 18(18), 3090–3110 (1979).
[Crossref]

ACM T. Graphic (1)

R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: Motion deblurring using fluttered shutter,” ACM T. Graphic 25(3), 795–804 (2006).
[Crossref]

Adv. Comput. Math. (1)

T. Evgeniou, M. Pontil, and T. Poggio, “Regularization networks and support vector machines,” Adv. Comput. Math. 13(1), 1–50 (2000).
[Crossref]

Adv. Mater. (1)

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10(17), 1431–1434 (1998).
[Crossref]

Appl. Optics (2)

J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Optics 18(18), 3090–3110 (1979).
[Crossref]

I. S. Melnik and A. H. Rawicz, “Thin-film luminescent concentrators for position-sensitive devices,” Appl. Optics 36(34), 9025–9033 (1997).
[Crossref]

Appl. Phys. Lett. (1)

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92(21), 213303 (2008).
[Crossref]

IEEE T. Electron Dev. (1)

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev. 52(11), 2502–2511 (2005).
[Crossref]

IEEE T. Image Process. (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE T. Image Process. 13(4), 600–612 (2004).
[Crossref]

IEEE T. Pattern Anal. (1)

A. F. Bobick and J. W. Davis, “The recognition of human movement using temporal templates,” IEEE T. Pattern Anal. 23(3), 257–267 (2001).
[Crossref]

J. Mach. Learn. Res. (1)

A. Tacchetti, P. K. Mallapragada, M. Santoro, and L. Rosasco, “GURLS: A Least Squares library for supervised learning,” J. Mach. Learn. Res. 14, 3201–3205 (2013).

Nature (2)

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature 454(7205), 748–753 (2008).
[Crossref] [PubMed]

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. Kim, R. Li, K. B. Crozier, Y. Hung, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Opt. Express (3)

P. Soc. Photo-Opt. Ins. (1)

P. J. Jungwirth, I. S. Melnik, and A. H. Rawicz, “Position-sensitive receptive fields based on photoluminescent concentrators,” P. Soc. Photo-Opt. Ins. 3199, 239–247 (1998).

Ultrasonic Imaging (1)

A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm,” Ultrasonic Imaging 6(1), 81–94 (1984).
[Crossref] [PubMed]

Other (12)

T. M. Buzug, Computed Tomography from Photon Statistics to Modern Cone-Beam CT (Springer Verlag, 2008)

G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd ed. (Springer Verlag, 2010).

Y. Saad, Iterative Methods for Sparse Linear Systems, (Society for Industrial Mathematics, 2003).
[Crossref]

P. J. Jungwirth, “Photoluminescent concentrator based receptive fields,” Ph.D. Thesis, Simon Fraser University (1996).

S. Hodges, S. Izadi, A. Butler, A. Rrustemi, and B. Buxton, “ThinSight: versatile multi-touch sensing for thin form-factor displays,” in Proceedings of the 20th annual ACM symposium on User interface software and technology (Association for Computing Machinery, New York, 2007), 259–268.
[Crossref]

J. Y. Han, “Low-cost multi-touch sensing through frustrated total internal reflection,” in Proceedings of the 18th annual ACM symposium on User interface software and technology, (Association for Computing Machinery, New York, 2005), 115–118.
[Crossref]

N. Villar, S. Izadi, D. Rosenfeld, H. Benko, J. Helmes, J. Westhues, S. Hodges, E. Ofek, A. Butler, X. Cao, and B. Chen, “Mouse 2.0: multi-touch meets the mouse,” in Proceedings of the 22nd annual ACM symposium on User interface software and technology, (Association for Computing Machinery, 2009), 33–42.
[Crossref]

J. Moeller and A. Kerne, “Scanning FTIR: unobtrusive optoelectronic multi-touch sensing through waveguide transmissivity imaging,” in Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction, (Association for Computing Machinery, New York, 2010), 73–76.
[Crossref]

V. Vapnik, Statistical Learning Theory (John Wiley and Sons, Inc., 1998).

A. N. Tikhonov, A. S. Leonov, and A. G. Yagola, Nonlinear Ill-Posed Problems (Chapman & Hall, 1998).
[Crossref]

S. Taylor, C. Keskin, O. Hilliges, S. Izadi, and J. Helmes, “Type-hover-swipe in 96 bytes: A motion sensing mechanical keyboard,” in Proceedings of the 32nd annual ACM conference on Human factors in computing systems, (Association for Computing Machinery, 2014), 1695–1704.
[Crossref]

B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer theorem,” in Proceedings of the 14th Annual Conference on Computational Learning Theory and and 5th European Conference on Computational Learning Theory, (Springer-Verlag, London, 2001), 416–426.

Supplementary Material (9)

» Media 1: MP4 (8269 KB)     
» Media 2: MP4 (14059 KB)     
» Media 3: MP4 (12210 KB)     
» Media 4: MP4 (13178 KB)     
» Media 5: MP4 (11138 KB)     
» Media 6: MP4 (9437 KB)     
» Media 7: MP4 (11526 KB)     
» Media 8: MP4 (10107 KB)     
» Media 9: MP4 (13521 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 A thin-film luminescent concentrator (a) serves as a fluorescent light guide which, together with an optical multiplexer (b), enables the measurement of two-dimensional light-fields that are injected by images focused on the film surface (incident to the film plane) and propagated inside the film towards its outer edges. From the light-field measurements, the corresponding images can be reconstructed in real-time.
Fig. 2
Fig. 2 A set of 60,000 randomly selected Flickr images are used for calibration. Additional 4,000 images were used for testing. Media 1 illustrates the calibration process.
Fig. 3
Fig. 3 Comparison between results of previous tomographic reconstruction (BiSART, [15, 16]) and the reconstruction results achieved with the presented method (before and after additional bilateral filtering for noise reduction).
Fig. 4
Fig. 4 With an increasing number of training images, the quality of reconstructed images increases up to a saturated optimum that depends on the desired image resolution. The error metrics shown are: (left) the RMSE and (right) the SSIM. If the training set is too small, the regression is underdetermined.
Fig. 5
Fig. 5 Reconstructions of increasing sizes indicate a resolution limit at 64 × 64 pixels for our hardware prototypes. Higher resolutions do not reveal additional image details due to a too sparse sampling of the integral light-fields. Bilateral filtering has not been applied for de-noising in these cases.
Fig. 6
Fig. 6 Six reshaped columns, li(x, ϕ), of T−1 that all belong to the same aperture triangle (i.e., at constant position x) and vary in the sampling direction (i.e., with changing ϕ) are convolved with four different filter kernels.
Fig. 7
Fig. 7 Image reconstruction results achieved with the updated inverse light transport matrices shown in Fig. 6. Bilateral filtering has not been applied for de-noising. Media 2 shows various real-time examples.
Fig. 8
Fig. 8 Summing different reconstructed images directly and summing their sensor values before reconstruction leads to an identical outcome. For the latter case, integrated motion images and motion difference images can be efficiently computed, and support various applications, such as motion gesture recognition. Bilateral filtering has not been applied for de-noising these results. Real-time examples are presented in Media 3.
Fig. 9
Fig. 9 Additional sample images (64 × 64 pixels) reconstructed with our online (section 3) and offline (section 5) methods. Bilateral filtering was applied in addition for noise-reduction.
Fig. 10
Fig. 10 Various hardware prototypes (a–c, Media 4 and Media 5) enable different demonstrator applications, such as 6DoF marker tracking (d, Media 6), 3D hand tracking and gesture recognition (e, Media 7), game control with cast shadows (f, Media 8), or 2D scanning of printouts and live handwriting (g, Media 9).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

l = T p + e ,
p = T T ( l e )
p = T 1 ( l e )
T 1 = [ ( L T L ) 1 L T P ] T ,
p s = ( T 1 s ) ( l e )
p * k = ( T 1 * k ) ( l e )
t τ p ( t ) = T 1 t τ ( l ( t ) e )
t τ 1 t ( p ( t ) p ( t 1 ) ) = T 1 t τ 1 t ( l ( t ) l ( t 1 ) )
arg min C P K C 2 + λ C T K C .
K ( u , v ) = exp ( ( l e ) u ( l e ) v 2 2 σ 2 ) ,
C = ( K + λ I ) 1 P

Metrics