Abstract

For the first time, we experimentally and theoretically research about the probe transmission signal (PTS), the reflected four wave mixing band gap signal(FWM BGS) and fluorescence signal (FLS) under the double dressing effect in an inverted Y-type four level system. FWM BGS results from photonic band gap structure. We demonstrate that the characteristics of PTS, FWM BGS and FLS can be controlled by power, phase and the frequency detuning of the dressing beams. It is observed in our experiment that FWM BGS switches from suppression to enhancement, corresponding to the switch from transmission enhancement to absorption enhancement in the PTS with changing the relative phase. We also observe the relation among the three signals, which satisfy the law of conservation of energy. Such scheme could have potential applications in optical diodes, amplifiers and quantum information processing.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Observation of triple-dressing on photonic band gap of optically driven hot atoms

Dan Zhang, Zhiguo Wang, Mengqin Gao, Zakir Ullah, Yiqi Zhang, Haixia Chen, and Yanpeng Zhang
J. Opt. Soc. Am. B 32(9) 1961-1967 (2015)

Interplay between six wave mixing photonic band gap signal and second-order nonlinear signal in electromagnetically induced grating

Zhiguo Wang, Mengqin Gao, Zakir Ullah, Dan Zhang, Haixia Chen, Hong Gao, and Yanpeng Zhang
Opt. Express 23(19) 25098-25110 (2015)

Modulated photonic band gaps generated by high-order wave mixing

Mengqin Gao, Zhiguo Wang, Zakir Ullah, Haixia Chen, Dan Zhang, Yiqi Zhang, and Yanpeng Zhang
J. Opt. Soc. Am. B 32(1) 179-187 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. P. Shahriar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20(9), 982–984 (1995).
    [Crossref] [PubMed]
  2. Y. Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21(14), 1064–1066 (1996).
    [Crossref] [PubMed]
  3. D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004).
    [Crossref] [PubMed]
  4. Y. V. Rostovtsev, Z. E. Sariyanni, and M. O. Scully, “Electromagnetically induced coherent backscattering,” Phys. Rev. Lett. 97(11), 113001 (2006).
    [Crossref] [PubMed]
  5. C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
    [Crossref]
  6. H. B. Zheng, X. Zhang, C. B. Li, H. Y. Lan, J. L. Che, Y. Q. Zhang, and Y. P. Zhang, “Suppression and enhancement of coexisting super-fluorescence and multi-wave mixing processes in sodium vapor,” J. Chem. Phys. 138(20), 204315 (2013).
    [Crossref] [PubMed]
  7. J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
    [Crossref]
  8. J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88(17), 173003 (2002).
    [Crossref] [PubMed]
  9. J. B. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A 73(4), 043810 (2006).
    [Crossref]
  10. C. Li, H. B. Zheng, Z. Y. Zhang, X. Yao, Y. Z. Zhang, Y. Q. Zhang, and Y. P. Zhang, “Electromagnetically induced transparency and fluorescence in blockaded Rydberg atomic system,” J. Chem. Phys. 139(16), 164316 (2013).
    [Crossref] [PubMed]
  11. H. Y. Ling, Y.-Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
    [Crossref]
  12. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
    [Crossref] [PubMed]
  13. Y. P. Zhang, Z. G. Wang, Z. Q. Nie, C. B. Li, H. X. Chen, K. Q. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
    [Crossref] [PubMed]
  14. Y. P. Zhang, C. Z. Yuan, Y. Q. Zhang, H. B. Zheng, H. X. Chen, C. B. Li, Z. G. Wang, and M. Xiao, “Surface solitons of four-wave mixing in anelectromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
    [Crossref]
  15. A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30(7), 699–701 (2005).
    [Crossref] [PubMed]
  16. M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96(7), 073905 (2006).
    [Crossref] [PubMed]
  17. A. Schilke, C. Zimmermann, P. W. Courteille, and W. Guerin, “Photonic Band Gaps in One-Dimensionally Ordered Cold Atomic Vapors,” Phys. Rev. Lett. 106(22), 223903 (2011).
    [Crossref] [PubMed]
  18. D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical Diode Made From a Moving Photonic Crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
    [Crossref] [PubMed]
  19. S. A. R. Horsley, J. H. Wu, M. Artoni, and G. C. La Rocca, “Optical Nonreciprocity of Cold Atom Bragg Mirrors in Motion,” Phys. Rev. Lett. 110(22), 223602 (2013).
    [Crossref] [PubMed]
  20. F. E. Zimmer, A. Andre, M. D. Lukin, and M. Fleischhauer, “Coherent control of stationary light pulses,” Opt. Commun. 264(2), 441–453 (2006).
    [Crossref]
  21. S. A. Moiseev and B. S. Ham, “Generation of entangled lights with temporally reversed photon wave packets,” Phys. Rev. A 71(5), 053802 (2005).
    [Crossref]
  22. K. R. Hansen and K. Molmer, “Trapping of light pulses in ensembles of stationary Lambda atoms,” Phys. Rev. A 75(5), 053802 (2007).
    [Crossref]
  23. K. R. Hansen and K. Molmer, “Stationary light pulses in ultracold atomic gases,” Phys. Rev. A 75(6), 065804 (2007).
    [Crossref]
  24. Z. G. Wang, P. Ying, P. Y. Li, D. Zhang, H. Q. Huang, H. Tian, and Y. Zhang, “Switching suppression and enhancement of fluorescence and six-wave mixing by phase modulation,” Sci Rep 3, 3417 (2013).
    [PubMed]

2013 (6)

H. B. Zheng, X. Zhang, C. B. Li, H. Y. Lan, J. L. Che, Y. Q. Zhang, and Y. P. Zhang, “Suppression and enhancement of coexisting super-fluorescence and multi-wave mixing processes in sodium vapor,” J. Chem. Phys. 138(20), 204315 (2013).
[Crossref] [PubMed]

C. Li, H. B. Zheng, Z. Y. Zhang, X. Yao, Y. Z. Zhang, Y. Q. Zhang, and Y. P. Zhang, “Electromagnetically induced transparency and fluorescence in blockaded Rydberg atomic system,” J. Chem. Phys. 139(16), 164316 (2013).
[Crossref] [PubMed]

Y. P. Zhang, C. Z. Yuan, Y. Q. Zhang, H. B. Zheng, H. X. Chen, C. B. Li, Z. G. Wang, and M. Xiao, “Surface solitons of four-wave mixing in anelectromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical Diode Made From a Moving Photonic Crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref] [PubMed]

S. A. R. Horsley, J. H. Wu, M. Artoni, and G. C. La Rocca, “Optical Nonreciprocity of Cold Atom Bragg Mirrors in Motion,” Phys. Rev. Lett. 110(22), 223602 (2013).
[Crossref] [PubMed]

Z. G. Wang, P. Ying, P. Y. Li, D. Zhang, H. Q. Huang, H. Tian, and Y. Zhang, “Switching suppression and enhancement of fluorescence and six-wave mixing by phase modulation,” Sci Rep 3, 3417 (2013).
[PubMed]

2011 (2)

A. Schilke, C. Zimmermann, P. W. Courteille, and W. Guerin, “Photonic Band Gaps in One-Dimensionally Ordered Cold Atomic Vapors,” Phys. Rev. Lett. 106(22), 223903 (2011).
[Crossref] [PubMed]

Y. P. Zhang, Z. G. Wang, Z. Q. Nie, C. B. Li, H. X. Chen, K. Q. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
[Crossref] [PubMed]

2009 (1)

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[Crossref]

2007 (2)

K. R. Hansen and K. Molmer, “Trapping of light pulses in ensembles of stationary Lambda atoms,” Phys. Rev. A 75(5), 053802 (2007).
[Crossref]

K. R. Hansen and K. Molmer, “Stationary light pulses in ultracold atomic gases,” Phys. Rev. A 75(6), 065804 (2007).
[Crossref]

2006 (4)

F. E. Zimmer, A. Andre, M. D. Lukin, and M. Fleischhauer, “Coherent control of stationary light pulses,” Opt. Commun. 264(2), 441–453 (2006).
[Crossref]

Y. V. Rostovtsev, Z. E. Sariyanni, and M. O. Scully, “Electromagnetically induced coherent backscattering,” Phys. Rev. Lett. 97(11), 113001 (2006).
[Crossref] [PubMed]

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96(7), 073905 (2006).
[Crossref] [PubMed]

J. B. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A 73(4), 043810 (2006).
[Crossref]

2005 (2)

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30(7), 699–701 (2005).
[Crossref] [PubMed]

S. A. Moiseev and B. S. Ham, “Generation of entangled lights with temporally reversed photon wave packets,” Phys. Rev. A 71(5), 053802 (2005).
[Crossref]

2004 (1)

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004).
[Crossref] [PubMed]

2003 (1)

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[Crossref] [PubMed]

2002 (1)

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88(17), 173003 (2002).
[Crossref] [PubMed]

1999 (1)

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[Crossref]

1998 (1)

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

1996 (1)

1995 (1)

Andre, A.

F. E. Zimmer, A. Andre, M. D. Lukin, and M. Fleischhauer, “Coherent control of stationary light pulses,” Opt. Commun. 264(2), 441–453 (2006).
[Crossref]

Artoni, M.

S. A. R. Horsley, J. H. Wu, M. Artoni, and G. C. La Rocca, “Optical Nonreciprocity of Cold Atom Bragg Mirrors in Motion,” Phys. Rev. Lett. 110(22), 223602 (2013).
[Crossref] [PubMed]

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96(7), 073905 (2006).
[Crossref] [PubMed]

Bajcsy, M.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[Crossref] [PubMed]

Balic, V.

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004).
[Crossref] [PubMed]

Braje, D. A.

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004).
[Crossref] [PubMed]

Brown, A. W.

Che, J. L.

H. B. Zheng, X. Zhang, C. B. Li, H. Y. Lan, J. L. Che, Y. Q. Zhang, and Y. P. Zhang, “Suppression and enhancement of coexisting super-fluorescence and multi-wave mixing processes in sodium vapor,” J. Chem. Phys. 138(20), 204315 (2013).
[Crossref] [PubMed]

Chen, H. X.

Y. P. Zhang, C. Z. Yuan, Y. Q. Zhang, H. B. Zheng, H. X. Chen, C. B. Li, Z. G. Wang, and M. Xiao, “Surface solitons of four-wave mixing in anelectromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

Y. P. Zhang, Z. G. Wang, Z. Q. Nie, C. B. Li, H. X. Chen, K. Q. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
[Crossref] [PubMed]

Courteille, P. W.

A. Schilke, C. Zimmermann, P. W. Courteille, and W. Guerin, “Photonic Band Gaps in One-Dimensionally Ordered Cold Atomic Vapors,” Phys. Rev. Lett. 106(22), 223903 (2011).
[Crossref] [PubMed]

Cronin-Golomb, M.

Donoghue, J.

Evers, J.

D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical Diode Made From a Moving Photonic Crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref] [PubMed]

Field, R. W.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88(17), 173003 (2002).
[Crossref] [PubMed]

Fleischhauer, M.

F. E. Zimmer, A. Andre, M. D. Lukin, and M. Fleischhauer, “Coherent control of stationary light pulses,” Opt. Commun. 264(2), 441–453 (2006).
[Crossref]

Goda, S.

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004).
[Crossref] [PubMed]

Guerin, W.

A. Schilke, C. Zimmermann, P. W. Courteille, and W. Guerin, “Photonic Band Gaps in One-Dimensionally Ordered Cold Atomic Vapors,” Phys. Rev. Lett. 106(22), 223903 (2011).
[Crossref] [PubMed]

Guo, M. J.

D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical Diode Made From a Moving Photonic Crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref] [PubMed]

Ham, B. S.

S. A. Moiseev and B. S. Ham, “Generation of entangled lights with temporally reversed photon wave packets,” Phys. Rev. A 71(5), 053802 (2005).
[Crossref]

Hansen, K. R.

K. R. Hansen and K. Molmer, “Trapping of light pulses in ensembles of stationary Lambda atoms,” Phys. Rev. A 75(5), 053802 (2007).
[Crossref]

K. R. Hansen and K. Molmer, “Stationary light pulses in ultracold atomic gases,” Phys. Rev. A 75(6), 065804 (2007).
[Crossref]

Harris, S. E.

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004).
[Crossref] [PubMed]

Hemmer, P. R.

Horsley, S. A. R.

S. A. R. Horsley, J. H. Wu, M. Artoni, and G. C. La Rocca, “Optical Nonreciprocity of Cold Atom Bragg Mirrors in Motion,” Phys. Rev. Lett. 110(22), 223602 (2013).
[Crossref] [PubMed]

Huang, H. Q.

Z. G. Wang, P. Ying, P. Y. Li, D. Zhang, H. Q. Huang, H. Tian, and Y. Zhang, “Switching suppression and enhancement of fluorescence and six-wave mixing by phase modulation,” Sci Rep 3, 3417 (2013).
[PubMed]

Katz, D. P.

Kirova, T.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88(17), 173003 (2002).
[Crossref] [PubMed]

Kumar, P.

La Rocca, G. C.

S. A. R. Horsley, J. H. Wu, M. Artoni, and G. C. La Rocca, “Optical Nonreciprocity of Cold Atom Bragg Mirrors in Motion,” Phys. Rev. Lett. 110(22), 223602 (2013).
[Crossref] [PubMed]

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96(7), 073905 (2006).
[Crossref] [PubMed]

Lan, H. Y.

H. B. Zheng, X. Zhang, C. B. Li, H. Y. Lan, J. L. Che, Y. Q. Zhang, and Y. P. Zhang, “Suppression and enhancement of coexisting super-fluorescence and multi-wave mixing processes in sodium vapor,” J. Chem. Phys. 138(20), 204315 (2013).
[Crossref] [PubMed]

Lazarov, G.

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[Crossref]

Lazoudis, A.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88(17), 173003 (2002).
[Crossref] [PubMed]

Li, C.

C. Li, H. B. Zheng, Z. Y. Zhang, X. Yao, Y. Z. Zhang, Y. Q. Zhang, and Y. P. Zhang, “Electromagnetically induced transparency and fluorescence in blockaded Rydberg atomic system,” J. Chem. Phys. 139(16), 164316 (2013).
[Crossref] [PubMed]

Li, C. B.

Y. P. Zhang, C. Z. Yuan, Y. Q. Zhang, H. B. Zheng, H. X. Chen, C. B. Li, Z. G. Wang, and M. Xiao, “Surface solitons of four-wave mixing in anelectromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

H. B. Zheng, X. Zhang, C. B. Li, H. Y. Lan, J. L. Che, Y. Q. Zhang, and Y. P. Zhang, “Suppression and enhancement of coexisting super-fluorescence and multi-wave mixing processes in sodium vapor,” J. Chem. Phys. 138(20), 204315 (2013).
[Crossref] [PubMed]

Y. P. Zhang, Z. G. Wang, Z. Q. Nie, C. B. Li, H. X. Chen, K. Q. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
[Crossref] [PubMed]

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[Crossref]

Li, L.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88(17), 173003 (2002).
[Crossref] [PubMed]

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[Crossref]

Li, P. Y.

Z. G. Wang, P. Ying, P. Y. Li, D. Zhang, H. Q. Huang, H. Tian, and Y. Zhang, “Switching suppression and enhancement of fluorescence and six-wave mixing by phase modulation,” Sci Rep 3, 3417 (2013).
[PubMed]

Li, Y. Q.

Li, Y.-Q.

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

Ling, H. Y.

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

Lu, K. Q.

Y. P. Zhang, Z. G. Wang, Z. Q. Nie, C. B. Li, H. X. Chen, K. Q. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
[Crossref] [PubMed]

Lukin, M. D.

F. E. Zimmer, A. Andre, M. D. Lukin, and M. Fleischhauer, “Coherent control of stationary light pulses,” Opt. Commun. 264(2), 441–453 (2006).
[Crossref]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[Crossref] [PubMed]

Lyyra, A. M.

J. B. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A 73(4), 043810 (2006).
[Crossref]

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88(17), 173003 (2002).
[Crossref] [PubMed]

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[Crossref]

Magnes, J.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88(17), 173003 (2002).
[Crossref] [PubMed]

Moiseev, S. A.

S. A. Moiseev and B. S. Ham, “Generation of entangled lights with temporally reversed photon wave packets,” Phys. Rev. A 71(5), 053802 (2005).
[Crossref]

Molmer, K.

K. R. Hansen and K. Molmer, “Trapping of light pulses in ensembles of stationary Lambda atoms,” Phys. Rev. A 75(5), 053802 (2007).
[Crossref]

K. R. Hansen and K. Molmer, “Stationary light pulses in ultracold atomic gases,” Phys. Rev. A 75(6), 065804 (2007).
[Crossref]

Narducci, L. M.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88(17), 173003 (2002).
[Crossref] [PubMed]

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[Crossref]

Nie, Z. Q.

Y. P. Zhang, Z. G. Wang, Z. Q. Nie, C. B. Li, H. X. Chen, K. Q. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
[Crossref] [PubMed]

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[Crossref]

Qi, J.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88(17), 173003 (2002).
[Crossref] [PubMed]

Qi, J. B.

J. B. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A 73(4), 043810 (2006).
[Crossref]

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[Crossref]

Rostovtsev, Y. V.

Y. V. Rostovtsev, Z. E. Sariyanni, and M. O. Scully, “Electromagnetically induced coherent backscattering,” Phys. Rev. Lett. 97(11), 113001 (2006).
[Crossref] [PubMed]

Sariyanni, Z. E.

Y. V. Rostovtsev, Z. E. Sariyanni, and M. O. Scully, “Electromagnetically induced coherent backscattering,” Phys. Rev. Lett. 97(11), 113001 (2006).
[Crossref] [PubMed]

Schilke, A.

A. Schilke, C. Zimmermann, P. W. Courteille, and W. Guerin, “Photonic Band Gaps in One-Dimensionally Ordered Cold Atomic Vapors,” Phys. Rev. Lett. 106(22), 223903 (2011).
[Crossref] [PubMed]

Scully, M. O.

Y. V. Rostovtsev, Z. E. Sariyanni, and M. O. Scully, “Electromagnetically induced coherent backscattering,” Phys. Rev. Lett. 97(11), 113001 (2006).
[Crossref] [PubMed]

Shahriar, M. S. P.

Song, J. P.

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[Crossref]

Spano, F. C.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88(17), 173003 (2002).
[Crossref] [PubMed]

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[Crossref]

Tian, H.

Z. G. Wang, P. Ying, P. Y. Li, D. Zhang, H. Q. Huang, H. Tian, and Y. Zhang, “Switching suppression and enhancement of fluorescence and six-wave mixing by phase modulation,” Sci Rep 3, 3417 (2013).
[PubMed]

Wang, D. W.

D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical Diode Made From a Moving Photonic Crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref] [PubMed]

Wang, X. J.

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[Crossref]

Wang, Z. G.

Y. P. Zhang, C. Z. Yuan, Y. Q. Zhang, H. B. Zheng, H. X. Chen, C. B. Li, Z. G. Wang, and M. Xiao, “Surface solitons of four-wave mixing in anelectromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

Z. G. Wang, P. Ying, P. Y. Li, D. Zhang, H. Q. Huang, H. Tian, and Y. Zhang, “Switching suppression and enhancement of fluorescence and six-wave mixing by phase modulation,” Sci Rep 3, 3417 (2013).
[PubMed]

Y. P. Zhang, Z. G. Wang, Z. Q. Nie, C. B. Li, H. X. Chen, K. Q. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
[Crossref] [PubMed]

Wu, J. H.

S. A. R. Horsley, J. H. Wu, M. Artoni, and G. C. La Rocca, “Optical Nonreciprocity of Cold Atom Bragg Mirrors in Motion,” Phys. Rev. Lett. 110(22), 223602 (2013).
[Crossref] [PubMed]

Xiao, M.

Y. P. Zhang, C. Z. Yuan, Y. Q. Zhang, H. B. Zheng, H. X. Chen, C. B. Li, Z. G. Wang, and M. Xiao, “Surface solitons of four-wave mixing in anelectromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

Y. P. Zhang, Z. G. Wang, Z. Q. Nie, C. B. Li, H. X. Chen, K. Q. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
[Crossref] [PubMed]

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[Crossref]

A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30(7), 699–701 (2005).
[Crossref] [PubMed]

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

Y. Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21(14), 1064–1066 (1996).
[Crossref] [PubMed]

Yao, X.

C. Li, H. B. Zheng, Z. Y. Zhang, X. Yao, Y. Z. Zhang, Y. Q. Zhang, and Y. P. Zhang, “Electromagnetically induced transparency and fluorescence in blockaded Rydberg atomic system,” J. Chem. Phys. 139(16), 164316 (2013).
[Crossref] [PubMed]

Yin, G. Y.

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004).
[Crossref] [PubMed]

Ying, P.

Z. G. Wang, P. Ying, P. Y. Li, D. Zhang, H. Q. Huang, H. Tian, and Y. Zhang, “Switching suppression and enhancement of fluorescence and six-wave mixing by phase modulation,” Sci Rep 3, 3417 (2013).
[PubMed]

Yuan, C. Z.

Y. P. Zhang, C. Z. Yuan, Y. Q. Zhang, H. B. Zheng, H. X. Chen, C. B. Li, Z. G. Wang, and M. Xiao, “Surface solitons of four-wave mixing in anelectromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

Zhang, D.

Z. G. Wang, P. Ying, P. Y. Li, D. Zhang, H. Q. Huang, H. Tian, and Y. Zhang, “Switching suppression and enhancement of fluorescence and six-wave mixing by phase modulation,” Sci Rep 3, 3417 (2013).
[PubMed]

Zhang, J. X.

D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical Diode Made From a Moving Photonic Crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref] [PubMed]

Zhang, X.

H. B. Zheng, X. Zhang, C. B. Li, H. Y. Lan, J. L. Che, Y. Q. Zhang, and Y. P. Zhang, “Suppression and enhancement of coexisting super-fluorescence and multi-wave mixing processes in sodium vapor,” J. Chem. Phys. 138(20), 204315 (2013).
[Crossref] [PubMed]

Zhang, Y.

Z. G. Wang, P. Ying, P. Y. Li, D. Zhang, H. Q. Huang, H. Tian, and Y. Zhang, “Switching suppression and enhancement of fluorescence and six-wave mixing by phase modulation,” Sci Rep 3, 3417 (2013).
[PubMed]

Zhang, Y. P.

H. B. Zheng, X. Zhang, C. B. Li, H. Y. Lan, J. L. Che, Y. Q. Zhang, and Y. P. Zhang, “Suppression and enhancement of coexisting super-fluorescence and multi-wave mixing processes in sodium vapor,” J. Chem. Phys. 138(20), 204315 (2013).
[Crossref] [PubMed]

C. Li, H. B. Zheng, Z. Y. Zhang, X. Yao, Y. Z. Zhang, Y. Q. Zhang, and Y. P. Zhang, “Electromagnetically induced transparency and fluorescence in blockaded Rydberg atomic system,” J. Chem. Phys. 139(16), 164316 (2013).
[Crossref] [PubMed]

Y. P. Zhang, C. Z. Yuan, Y. Q. Zhang, H. B. Zheng, H. X. Chen, C. B. Li, Z. G. Wang, and M. Xiao, “Surface solitons of four-wave mixing in anelectromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

Y. P. Zhang, Z. G. Wang, Z. Q. Nie, C. B. Li, H. X. Chen, K. Q. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
[Crossref] [PubMed]

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[Crossref]

Zhang, Y. Q.

H. B. Zheng, X. Zhang, C. B. Li, H. Y. Lan, J. L. Che, Y. Q. Zhang, and Y. P. Zhang, “Suppression and enhancement of coexisting super-fluorescence and multi-wave mixing processes in sodium vapor,” J. Chem. Phys. 138(20), 204315 (2013).
[Crossref] [PubMed]

C. Li, H. B. Zheng, Z. Y. Zhang, X. Yao, Y. Z. Zhang, Y. Q. Zhang, and Y. P. Zhang, “Electromagnetically induced transparency and fluorescence in blockaded Rydberg atomic system,” J. Chem. Phys. 139(16), 164316 (2013).
[Crossref] [PubMed]

Y. P. Zhang, C. Z. Yuan, Y. Q. Zhang, H. B. Zheng, H. X. Chen, C. B. Li, Z. G. Wang, and M. Xiao, “Surface solitons of four-wave mixing in anelectromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

Zhang, Y. Z.

C. Li, H. B. Zheng, Z. Y. Zhang, X. Yao, Y. Z. Zhang, Y. Q. Zhang, and Y. P. Zhang, “Electromagnetically induced transparency and fluorescence in blockaded Rydberg atomic system,” J. Chem. Phys. 139(16), 164316 (2013).
[Crossref] [PubMed]

Zhang, Z. Y.

C. Li, H. B. Zheng, Z. Y. Zhang, X. Yao, Y. Z. Zhang, Y. Q. Zhang, and Y. P. Zhang, “Electromagnetically induced transparency and fluorescence in blockaded Rydberg atomic system,” J. Chem. Phys. 139(16), 164316 (2013).
[Crossref] [PubMed]

Zheng, H. B.

C. Li, H. B. Zheng, Z. Y. Zhang, X. Yao, Y. Z. Zhang, Y. Q. Zhang, and Y. P. Zhang, “Electromagnetically induced transparency and fluorescence in blockaded Rydberg atomic system,” J. Chem. Phys. 139(16), 164316 (2013).
[Crossref] [PubMed]

H. B. Zheng, X. Zhang, C. B. Li, H. Y. Lan, J. L. Che, Y. Q. Zhang, and Y. P. Zhang, “Suppression and enhancement of coexisting super-fluorescence and multi-wave mixing processes in sodium vapor,” J. Chem. Phys. 138(20), 204315 (2013).
[Crossref] [PubMed]

Y. P. Zhang, C. Z. Yuan, Y. Q. Zhang, H. B. Zheng, H. X. Chen, C. B. Li, Z. G. Wang, and M. Xiao, “Surface solitons of four-wave mixing in anelectromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[Crossref]

Zhou, H. T.

D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical Diode Made From a Moving Photonic Crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref] [PubMed]

Zhu, S. Y.

D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical Diode Made From a Moving Photonic Crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref] [PubMed]

Zibrov, A. S.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[Crossref] [PubMed]

Zimmer, F. E.

F. E. Zimmer, A. Andre, M. D. Lukin, and M. Fleischhauer, “Coherent control of stationary light pulses,” Opt. Commun. 264(2), 441–453 (2006).
[Crossref]

Zimmermann, C.

A. Schilke, C. Zimmermann, P. W. Courteille, and W. Guerin, “Photonic Band Gaps in One-Dimensionally Ordered Cold Atomic Vapors,” Phys. Rev. Lett. 106(22), 223903 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

C. B. Li, H. B. Zheng, Y. P. Zhang, Z. Q. Nie, J. P. Song, and M. Xiao, “Observation of enhancement and suppression in four-wave mixing processes,” Appl. Phys. Lett. 95(4), 041103 (2009).
[Crossref]

J. Chem. Phys. (2)

H. B. Zheng, X. Zhang, C. B. Li, H. Y. Lan, J. L. Che, Y. Q. Zhang, and Y. P. Zhang, “Suppression and enhancement of coexisting super-fluorescence and multi-wave mixing processes in sodium vapor,” J. Chem. Phys. 138(20), 204315 (2013).
[Crossref] [PubMed]

C. Li, H. B. Zheng, Z. Y. Zhang, X. Yao, Y. Z. Zhang, Y. Q. Zhang, and Y. P. Zhang, “Electromagnetically induced transparency and fluorescence in blockaded Rydberg atomic system,” J. Chem. Phys. 139(16), 164316 (2013).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

Y. P. Zhang, C. Z. Yuan, Y. Q. Zhang, H. B. Zheng, H. X. Chen, C. B. Li, Z. G. Wang, and M. Xiao, “Surface solitons of four-wave mixing in anelectromagnetically induced lattice,” Laser Phys. Lett. 10(5), 055406 (2013).
[Crossref]

Nature (1)

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

F. E. Zimmer, A. Andre, M. D. Lukin, and M. Fleischhauer, “Coherent control of stationary light pulses,” Opt. Commun. 264(2), 441–453 (2006).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (5)

H. Y. Ling, Y.-Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998).
[Crossref]

S. A. Moiseev and B. S. Ham, “Generation of entangled lights with temporally reversed photon wave packets,” Phys. Rev. A 71(5), 053802 (2005).
[Crossref]

K. R. Hansen and K. Molmer, “Trapping of light pulses in ensembles of stationary Lambda atoms,” Phys. Rev. A 75(5), 053802 (2007).
[Crossref]

K. R. Hansen and K. Molmer, “Stationary light pulses in ultracold atomic gases,” Phys. Rev. A 75(6), 065804 (2007).
[Crossref]

J. B. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A 73(4), 043810 (2006).
[Crossref]

Phys. Rev. Lett. (9)

Y. P. Zhang, Z. G. Wang, Z. Q. Nie, C. B. Li, H. X. Chen, K. Q. Lu, and M. Xiao, “Four-Wave Mixing Dipole Soliton in Laser-Induced Atomic Gratings,” Phys. Rev. Lett. 106(9), 093904 (2011).
[Crossref] [PubMed]

M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96(7), 073905 (2006).
[Crossref] [PubMed]

A. Schilke, C. Zimmermann, P. W. Courteille, and W. Guerin, “Photonic Band Gaps in One-Dimensionally Ordered Cold Atomic Vapors,” Phys. Rev. Lett. 106(22), 223903 (2011).
[Crossref] [PubMed]

D. W. Wang, H. T. Zhou, M. J. Guo, J. X. Zhang, J. Evers, and S. Y. Zhu, “Optical Diode Made From a Moving Photonic Crystal,” Phys. Rev. Lett. 110(9), 093901 (2013).
[Crossref] [PubMed]

S. A. R. Horsley, J. H. Wu, M. Artoni, and G. C. La Rocca, “Optical Nonreciprocity of Cold Atom Bragg Mirrors in Motion,” Phys. Rev. Lett. 110(22), 223602 (2013).
[Crossref] [PubMed]

D. A. Braje, V. Balić, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93(18), 183601 (2004).
[Crossref] [PubMed]

Y. V. Rostovtsev, Z. E. Sariyanni, and M. O. Scully, “Electromagnetically induced coherent backscattering,” Phys. Rev. Lett. 97(11), 113001 (2006).
[Crossref] [PubMed]

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler-Townes splitting in molecular lithium: Prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83(2), 288–291 (1999).
[Crossref]

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88(17), 173003 (2002).
[Crossref] [PubMed]

Sci Rep (1)

Z. G. Wang, P. Ying, P. Y. Li, D. Zhang, H. Q. Huang, H. Tian, and Y. Zhang, “Switching suppression and enhancement of fluorescence and six-wave mixing by phase modulation,” Sci Rep 3, 3417 (2013).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Four-level energy system. (b) Schematic of an EIG formed by two coupling beams E3 and E′3. Together with the dressing field E2 and probe field E1, a dressed FWM BGS EF will be generated according to the phase-matching condition KF = K1−K3 + K′3. (c) The setup of our experiment.
Fig. 2
Fig. 2 (a1)-(a3) the single dressed energy level schematic diagrams and (b1)-(b3) the calculated single dressed periodic energy levels with changing Δ3. (c1)-(c5) the double dressed energy level schematic diagrams and (d1)-(d5) the calculated double dressed periodic energy levels with changing Δ2.
Fig. 3
Fig. 3 Measured (a) PTS, (b) FWM BGS and (c) FLS versus Δ1 from −100 MHz to 100 MHz when different beams are blocked. (a1)-(c1) E2 blocked with Δ3 = 10 MHz and (a2)-(c2) no beam blocked with Δ2 = −10 MHz and Δ3 = 10 MHz.
Fig. 4
Fig. 4 Measured (a1) PTS, (b1) FWM BGS and (c1) FLS versus Δ2, when we select five different discrete values of Δ1 as black(−47 MHz), red(−23 MHz), blue(0 MHz), pink(28 MHz) and green(47 MHz) and Δ3 = 0 MHz. (a2), (b2) and (c2) are the theoretical calculations of (a1), (b1) and (c1), respectively.
Fig. 5
Fig. 5 Measured (a) PTS, (b) FWM BGS and (c) FLS versus Δ2 from −120 MHz to 120 MHz with Δ3 = Δ1 = 0, when we set the power of E2 (P2) from bottom to top as (1) 9.2 mW, (2) 13.0 mW, (3) 17.1 mW, (4) 21.6 mW, (5) 25.7 mW, respectively.
Fig. 6
Fig. 6 Measured (a) PTS, (b) FWM BGS and (c) FLS versus Δ2 with Δ1 = Δ3 = −120 MHz, when we change the relative phase of E2 as 2π/3 , π/3 , 0, π/6 and π/3 , respectively.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ρ 10 (1) =i G 1 /( d 1 + | G 31 | 2 / d 3 +| G 2 | 2 / d 2 )
ρ 10 (3) =-i G 1 G 3 G 3 /[ ( d 1 +| G 31 | 2 / d 3 +| G 2 | 2 / d 2 ) 2 d 3 ]
ρ 10 (1) =i G 1 /( d 1 +| G 31 | 2 / d 3 +| G 2 | 2 e iΔφ / d 2 )
ρ 10 (3) = -i G 1 G 3 G 3 ( d 1 +| G 31 | 2 /d + 3 | G 2 | 2 e iΔφ / d 2 ) 2 ( d 3 )
χ (1) = iN μ 2 h ε 0 1 d 1 +| G 31 | 2 / d 3 +| G 2 | 2 / d 2
χ (3) =- iN μ 2 h ε 0 1 ( d 1 +| G 31 | 2 / d 3 +| G 2 | 2 / d 2 ) 2 d 3
E 1 (x)/x=α E 1 (x)+k e iΔ k x x E F (x)
E F (x)/x=α E F (x)+k e iΔ k x x E 1 (x)
R= | 1 k e λ 2 + d x e λ 2 d x e λ 2 + d x ( λ 1 + +α) 1 e λ 2 d x ( λ 1 +α) 1 | 2
T= | e ( λ 1 + + λ 1 ) d x ( λ 1 λ 1 + ) ( λ 1 +α) e λ 1 d x ( λ 1 + +α) e λ 1 + d x | 2
ρ 11SD (2) = | G 1 | 2 /[( d 1 + | G 31 | 2 / d 3 ) Γ 11 ]
ρ 11DD (2) = | G 1 | 2 / Γ 11 ( d 1 + | G 31 | 2 / d 3 + | G 2 | 2 / d 2 )
ρ 22 (4) = | G 1 | 2 | G 2 | 2 /( Γ 22 d 1 d 2 d 4 )
ρ 22DD (4) = | G 1 | 2 | G 2 | 2 /[ Γ 22 d 1 d 4 ( d 2 + | G 2 | 2 / d 1 ]
ρ 11DD (2) = | G 1 | 2 / Γ 11 ( d 1 + | G 31 | 2 / d 3 + | G 2 | 2 e iΔφ / d 2 )
ρ 22DD (4) = | G 1 | 2 | G 2 | 2 /[ Γ 22 d 1 d 4 ( d 2 + | G 2 | 2 e iΔφ / d 1 ]
R+T+ I R 0 = I in

Metrics