Abstract

Chirped-pulse upconversion technique has been applied to attenuated total reflectance (ATR) infrared spectroscopy. An extremely broadband infrared pulse was sent to an ATR diamond prism and the reflected pulse was converted to the visible by using four-wave mixing in krypton gas. Absorption spectra of liquids in the range from 200 to 5500 cm−1 were measured with a visible spectrometer on a single-shot basis. The system was applied to observe the dynamics of exchanging process of two solvents, water and acetone, which give clear vibrational spectral contrast. We observed that the exchange was finished within ∼10 ms.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-shot detection of mid-infrared spectra by chirped-pulse upconversion with four-wave difference frequency generation in gases

Y. Nomura, Y.-T. Wang, T. Kozai, H. Shirai, A. Yabushita, C.-W. Luo, S. Nakanishi, and T. Fuji
Opt. Express 21(15) 18249-18254 (2013)

Two-dimensional infrared spectroscopy detected by chirped pulse upconversion

Matthew J. Nee, Robert McCanne, Kevin J. Kubarych, and Manuel Joffre
Opt. Lett. 32(6) 713-715 (2007)

Thin-film absorption coefficients by attenuated-total-reflection spectroscopy

R. T. Holm and E. D. Palik
Appl. Opt. 17(3) 394-403 (1978)

References

  • View by:
  • |
  • |
  • |

  1. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, 1967).
  2. R. M. Nyquist, K. Ataka, and J. Heberle, “The molecular mechanism of membrane proteins probed by evanescent infrared waves,” ChemBioChem 5, 431–436 (2004).
    [Crossref] [PubMed]
  3. P. R. Rich and M. Iwaki, “Methods to probe protein transitions with ATR infrared spectroscopy,” Mol. BioSyst. 3, 398–407 (2007).
    [Crossref] [PubMed]
  4. Y. Furutani, T. Kimura, and K. Okamoto, “Development of a rapid buffer-exchange system for time-resolved ATR-FTIR spectroscopy with the step-scan mode,” BIOPHYSICS 9, 123–129 (2013).
    [Crossref]
  5. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, “Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm,” J. Opt. Soc. Am. B 17, 2086–2094 (2000).
    [Crossref]
  6. V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A-Pure and Appiled Optics 3, R1–R19 (2001).
    [Crossref]
  7. G. Cerullo and S. D. Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
    [Crossref]
  8. K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D. M. Jonas, “Mid-infrared electric field characterization using a visible charge-coupled-device-based spectrometer,” Opt. Lett. 30, 1228–1230 (2005).
    [Crossref] [PubMed]
  9. C. R. Baiz and K. J. Kubarych, “Ultrabroadband detection of a mid-IR continuum by chirped-pulse upconversion,” Opt. Lett. 36, 187–189 (2011).
    [Crossref] [PubMed]
  10. J. Zhu, T. Mathes, A. D. Stahl, J. T. M. Kennis, and M. L. Groot, “Ultrafast mid-infrared spectroscopy by chirped pulse upconversion in 1800–1000cm−1 region,” Opt. Express 20, 10562–10571 (2012).
    [Crossref] [PubMed]
  11. J. Knorr, P. Rudolf, and P. Nuernberger, “A comparative study on chirped-pulse upconversion and direct multi-channel MCT detection,” Opt. Express 21, 30693–30706 (2013).
    [Crossref]
  12. Y. Nomura, Y. T. Wang, T. Kozai, H. Shirai, A. Yabushita, C. W. Luo, S. Nakanishi, and T. Fuji, “Single-shot detection of mid-infrared spectra by chirped-pulse upconversion with four-wave difference frequency generation in gases,” Opt. Express 21, 18249–18254 (2013).
    [Crossref] [PubMed]
  13. Y. Nomura, H. Shirai, K. Ishii, N. Tsurumachi, A. A. Voronin, A. M. Zheltikov, and T. Fuji, “Phase-stable subcycle mid-infrared conical emission from filamentation in gases,” Opt. Express 20, 24741–24747 (2012).
    [Crossref] [PubMed]
  14. T. Fuji and Y. Nomura, “Generation of phase-stable sub-cycle mid-infrared pulses from filamentation in nitrogen,” Appl. Sci. 3, 122–138 (2013).
    [Crossref]
  15. K. F. Lee, P. Nuernberger, A. Bonvalet, and M. Joffre, “Removing cross-phase modulation from midinfrared chirped-pulse upconversion spectra,” Opt. Express 17, 18738–18744 (2009).
    [Crossref]
  16. A. A. Lanin, A. B. Fedotov, and A. M. Zheltikov, “Ultrabroadband XFROG of few-cycle mid-infrared pulses by four-wave mixing in a gas,” J. Opt. Soc. Am. B 31, 1901–1905 (2014).
    [Crossref]
  17. J.-J. Max and C. Chapados, “Infrared spectroscopy of acetone–water liquid mixtures. I. factor analysis,” J. Chem. Phys. 119, 5632–5643 (2003).
    [Crossref]
  18. J.-J. Max and C. Chapados, “Infrared spectroscopy of acetone–water liquid mixtures. II. molecular model,” J. Chem. Phys. 120, 6625–6641 (2004).
    [Crossref] [PubMed]

2014 (1)

2013 (4)

J. Knorr, P. Rudolf, and P. Nuernberger, “A comparative study on chirped-pulse upconversion and direct multi-channel MCT detection,” Opt. Express 21, 30693–30706 (2013).
[Crossref]

Y. Nomura, Y. T. Wang, T. Kozai, H. Shirai, A. Yabushita, C. W. Luo, S. Nakanishi, and T. Fuji, “Single-shot detection of mid-infrared spectra by chirped-pulse upconversion with four-wave difference frequency generation in gases,” Opt. Express 21, 18249–18254 (2013).
[Crossref] [PubMed]

T. Fuji and Y. Nomura, “Generation of phase-stable sub-cycle mid-infrared pulses from filamentation in nitrogen,” Appl. Sci. 3, 122–138 (2013).
[Crossref]

Y. Furutani, T. Kimura, and K. Okamoto, “Development of a rapid buffer-exchange system for time-resolved ATR-FTIR spectroscopy with the step-scan mode,” BIOPHYSICS 9, 123–129 (2013).
[Crossref]

2012 (2)

2011 (1)

2009 (1)

2007 (1)

P. R. Rich and M. Iwaki, “Methods to probe protein transitions with ATR infrared spectroscopy,” Mol. BioSyst. 3, 398–407 (2007).
[Crossref] [PubMed]

2005 (1)

2004 (2)

R. M. Nyquist, K. Ataka, and J. Heberle, “The molecular mechanism of membrane proteins probed by evanescent infrared waves,” ChemBioChem 5, 431–436 (2004).
[Crossref] [PubMed]

J.-J. Max and C. Chapados, “Infrared spectroscopy of acetone–water liquid mixtures. II. molecular model,” J. Chem. Phys. 120, 6625–6641 (2004).
[Crossref] [PubMed]

2003 (2)

J.-J. Max and C. Chapados, “Infrared spectroscopy of acetone–water liquid mixtures. I. factor analysis,” J. Chem. Phys. 119, 5632–5643 (2003).
[Crossref]

G. Cerullo and S. D. Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
[Crossref]

2001 (1)

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A-Pure and Appiled Optics 3, R1–R19 (2001).
[Crossref]

2000 (1)

Ataka, K.

R. M. Nyquist, K. Ataka, and J. Heberle, “The molecular mechanism of membrane proteins probed by evanescent infrared waves,” ChemBioChem 5, 431–436 (2004).
[Crossref] [PubMed]

Baiz, C. R.

Belabas, N.

Bonvalet, A.

Cerullo, G.

G. Cerullo and S. D. Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
[Crossref]

Chapados, C.

J.-J. Max and C. Chapados, “Infrared spectroscopy of acetone–water liquid mixtures. II. molecular model,” J. Chem. Phys. 120, 6625–6641 (2004).
[Crossref] [PubMed]

J.-J. Max and C. Chapados, “Infrared spectroscopy of acetone–water liquid mixtures. I. factor analysis,” J. Chem. Phys. 119, 5632–5643 (2003).
[Crossref]

Fedotov, A. B.

Fuji, T.

Furutani, Y.

Y. Furutani, T. Kimura, and K. Okamoto, “Development of a rapid buffer-exchange system for time-resolved ATR-FTIR spectroscopy with the step-scan mode,” BIOPHYSICS 9, 123–129 (2013).
[Crossref]

Groot, M. L.

Hamm, P.

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, 1967).

Heberle, J.

R. M. Nyquist, K. Ataka, and J. Heberle, “The molecular mechanism of membrane proteins probed by evanescent infrared waves,” ChemBioChem 5, 431–436 (2004).
[Crossref] [PubMed]

Ishii, K.

Iwaki, M.

P. R. Rich and M. Iwaki, “Methods to probe protein transitions with ATR infrared spectroscopy,” Mol. BioSyst. 3, 398–407 (2007).
[Crossref] [PubMed]

Joffre, M.

Jonas, D. M.

Kaindl, R. A.

Kennis, J. T. M.

Kimura, T.

Y. Furutani, T. Kimura, and K. Okamoto, “Development of a rapid buffer-exchange system for time-resolved ATR-FTIR spectroscopy with the step-scan mode,” BIOPHYSICS 9, 123–129 (2013).
[Crossref]

Knorr, J.

Kozai, T.

Kubarych, K. J.

Lanin, A. A.

Lee, K. F.

Luo, C. W.

Mathes, T.

Max, J.-J.

J.-J. Max and C. Chapados, “Infrared spectroscopy of acetone–water liquid mixtures. II. molecular model,” J. Chem. Phys. 120, 6625–6641 (2004).
[Crossref] [PubMed]

J.-J. Max and C. Chapados, “Infrared spectroscopy of acetone–water liquid mixtures. I. factor analysis,” J. Chem. Phys. 119, 5632–5643 (2003).
[Crossref]

Moore, A.

Nakanishi, S.

Noack, F.

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A-Pure and Appiled Optics 3, R1–R19 (2001).
[Crossref]

Nomura, Y.

Nuernberger, P.

Nyquist, R. M.

R. M. Nyquist, K. Ataka, and J. Heberle, “The molecular mechanism of membrane proteins probed by evanescent infrared waves,” ChemBioChem 5, 431–436 (2004).
[Crossref] [PubMed]

Okamoto, K.

Y. Furutani, T. Kimura, and K. Okamoto, “Development of a rapid buffer-exchange system for time-resolved ATR-FTIR spectroscopy with the step-scan mode,” BIOPHYSICS 9, 123–129 (2013).
[Crossref]

Petrov, V.

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A-Pure and Appiled Optics 3, R1–R19 (2001).
[Crossref]

Reimann, K.

Rich, P. R.

P. R. Rich and M. Iwaki, “Methods to probe protein transitions with ATR infrared spectroscopy,” Mol. BioSyst. 3, 398–407 (2007).
[Crossref] [PubMed]

Rotermund, F.

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A-Pure and Appiled Optics 3, R1–R19 (2001).
[Crossref]

Rudolf, P.

Shirai, H.

Silvestri, S. D.

G. Cerullo and S. D. Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
[Crossref]

Stahl, A. D.

Tsurumachi, N.

Voronin, A. A.

Wang, Y. T.

Weiner, A. M.

Woerner, M.

Wurm, M.

Yabushita, A.

Zheltikov, A. M.

Zhu, J.

Appl. Sci. (1)

T. Fuji and Y. Nomura, “Generation of phase-stable sub-cycle mid-infrared pulses from filamentation in nitrogen,” Appl. Sci. 3, 122–138 (2013).
[Crossref]

BIOPHYSICS (1)

Y. Furutani, T. Kimura, and K. Okamoto, “Development of a rapid buffer-exchange system for time-resolved ATR-FTIR spectroscopy with the step-scan mode,” BIOPHYSICS 9, 123–129 (2013).
[Crossref]

ChemBioChem (1)

R. M. Nyquist, K. Ataka, and J. Heberle, “The molecular mechanism of membrane proteins probed by evanescent infrared waves,” ChemBioChem 5, 431–436 (2004).
[Crossref] [PubMed]

J. Chem. Phys. (2)

J.-J. Max and C. Chapados, “Infrared spectroscopy of acetone–water liquid mixtures. I. factor analysis,” J. Chem. Phys. 119, 5632–5643 (2003).
[Crossref]

J.-J. Max and C. Chapados, “Infrared spectroscopy of acetone–water liquid mixtures. II. molecular model,” J. Chem. Phys. 120, 6625–6641 (2004).
[Crossref] [PubMed]

J. Opt. A-Pure and Appiled Optics (1)

V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals,” J. Opt. A-Pure and Appiled Optics 3, R1–R19 (2001).
[Crossref]

J. Opt. Soc. Am. B (2)

Mol. BioSyst. (1)

P. R. Rich and M. Iwaki, “Methods to probe protein transitions with ATR infrared spectroscopy,” Mol. BioSyst. 3, 398–407 (2007).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

G. Cerullo and S. D. Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1–18 (2003).
[Crossref]

Other (1)

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, 1967).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the ATR system with chirped-pulse upconversion. BBO: β-BaB2O4 crystal (Type 1, θ = 29°, t = 100 μm), DP: delay plate (calcite crystal, t = 1.7 mm), DWP: dual wave plate (λ at 400 nm, λ/2 at 800 nm), CM1: r = 1 m concave dielectric mirror, CM2: r = 0.5 m concave mirror with a hole (ϕ = 7 mm), CM3, CM4: r = 1 m concave silver mirror, MH: aluminium mirror with a hole (ϕ = 7 mm), ITO: indium tin oxide coated plate, ATR: ATR top-plate (Golden Gate ATR, Specac), OP: off-axis parabola (f = 50 mm), BF: blue filter. (b) Side and (c) top views of the ATR system with the solution-exchange system.
Fig. 2
Fig. 2 The intensity (shaded curve) and phase (open squares) of the IR pulse after its reflection by the ATR diamond prism in (a) time and (b) frequency domain.
Fig. 3
Fig. 3 Measured IR spectrum with chirped-pulse upconversion (red) and conventional FTIR spectrometer (blue). The light source of the FTIR spectrometer is a halogen lamp.
Fig. 4
Fig. 4 Absorption spectra of water, acetone and mixture of water and acetone (ratio 1:1). measured with (a), (b) the chirped-pulse upconversion system and (c), (d) a conventional FTIR spectrometer.
Fig. 5
Fig. 5 Measured dynamics of exchange of liquids with the rapid solution-exchange ATRCPU system. (a),(b)Absorption spectra at each timing. (c) Absorption change at each frequency.

Metrics