Abstract

We demonstrate the generation of dark pulses from carbon nanotube (CNT) incorporated erbium-doped fiber ring lasers with net anomalous dispersion. A side-polished fiber coated with CNT layer by optically-driven deposition method is embedded into the laser in order to enhance the birefringence and nonlinearity of the laser cavity. The dual-wavelength domain-wall dark pulses are obtained from the developed CNT-incorporated fiber laser at a relatively low pump threshold of 50.6 mW. Dark pulses repeated at the fifth-order harmonic of the fundamental cavity frequency are observed by adjusting the intra-cavity polarization state.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transform-limited pulse generation in normal cavity dispersion erbium doped single-walled carbon nanotubes mode-locked fiber ring laser

M.A. Chernysheva, A.A. Krylov, A.A. Ogleznev, N.R. Arutyunyan, A.S. Pozharov, E.D. Obraztsova, and E.M. Dianov
Opt. Express 20(21) 23994-24001 (2012)

Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing

Amos Martinez, Kazuyuki Fuse, Bo Xu, and Shinji Yamashita
Opt. Express 18(22) 23054-23061 (2010)

References

  • View by:
  • |
  • |
  • |

  1. H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
    [Crossref]
  2. J. B. Schröder, S. Coen, T. Sylvestre, and B. J. Eggleton, “Dark and bright pulse passive mode-locked laser with in-cavity pulse-shaper,” Opt. Express 18(22), 22715–22721 (2010).
    [Crossref] [PubMed]
  3. W. Zhao and E. Bourkoff, “Generation, propagation, and amplification of dark solitons,” J. Opt. Soc. Am. B 9(7), 1134–1144 (1992).
    [Crossref]
  4. C. Milián, D. V. Skryabin, and A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett. 34(14), 2096–2098 (2009).
    [Crossref] [PubMed]
  5. X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “2 µm bright–dark pulses in Tm-doped fiber ring laser with net anomalous dispersion,” Appl. Phys. Express 7(2), 022704 (2014).
    [Crossref]
  6. D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, “Evidence of dark solitons in all-normal-dispersion-fiber lasers,” Phys. Rev. A 88(1), 013849 (2013).
    [Crossref]
  7. H. Zhang, D. Tang, L. Zhao, and X. Wu, “Dual-wavelength domain wall solitons in a fiber ring laser,” Opt. Express 19(4), 3525–3530 (2011).
    [Crossref] [PubMed]
  8. Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright–dark pulse pair in a figure-eight dispersion-managed passively mode-locked fiber laser,” IEEE Photon. J. 4(5), 1647–1652 (2012).
    [Crossref]
  9. J. Zhao, P. Yan, and S. C. Ruan, “Observations of three types of pulses in an erbium-doped fiber laser by incorporating a graphene saturable absorber,” Appl. Opt. 52(35), 8465–8470 (2013).
    [Crossref] [PubMed]
  10. L. Y. Wang, W. C. Xu, Z. C. Luo, W. J. Cao, A. P. Luo, J. L. Dong, and H. Y. Wang, “Dark pulses with tunable repetition rate emission from fiber ring laser,” Opt. Commun. 285(8), 2113–2117 (2012).
    [Crossref]
  11. V. A. Margulis, “Theoretical estimations of third-order optical nonlinearities for semiconductor carbon nanotubes,” J. Phys. Condens. Matter 11(15), 3065–3074 (1999).
    [Crossref]
  12. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol. 30(4), 427–447 (2012).
    [Crossref]
  13. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
    [Crossref]
  14. K. K. Chow, S. Yamashita, and Y. W. Song, “A widely tunable wavelength converter based on nonlinear polarization rotation in a carbon-nanotube-deposited D-shaped fiber,” Opt. Express 17(9), 7664–7669 (2009).
    [Crossref] [PubMed]
  15. K. K. Chow and S. Yamashita, “Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion,” Opt. Express 17(18), 15608–15613 (2009).
    [Crossref] [PubMed]
  16. K. Kashiwagi and S. Yamashita, “Deposition of carbon nanotubes around microfiber via evanascent light,” Opt. Express 17(20), 18364–18370 (2009).
    [Crossref] [PubMed]
  17. H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274(1), 116–123 (2007).
    [Crossref]
  18. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
    [Crossref]
  19. S. Q. Chen, C. J. Zhao, Y. Li, H. H. Huang, S. B. Lu, H. Zhang, and S. C. Wen, “Broadband optical and microwave nonlinear response in topological insulator,” Opt. Mater. Express 4(4), 587–596 (2014).
    [Crossref]
  20. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref] [PubMed]
  21. C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
    [Crossref] [PubMed]

2014 (3)

2013 (2)

J. Zhao, P. Yan, and S. C. Ruan, “Observations of three types of pulses in an erbium-doped fiber laser by incorporating a graphene saturable absorber,” Appl. Opt. 52(35), 8465–8470 (2013).
[Crossref] [PubMed]

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, “Evidence of dark solitons in all-normal-dispersion-fiber lasers,” Phys. Rev. A 88(1), 013849 (2013).
[Crossref]

2012 (4)

Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright–dark pulse pair in a figure-eight dispersion-managed passively mode-locked fiber laser,” IEEE Photon. J. 4(5), 1647–1652 (2012).
[Crossref]

L. Y. Wang, W. C. Xu, Z. C. Luo, W. J. Cao, A. P. Luo, J. L. Dong, and H. Y. Wang, “Dark pulses with tunable repetition rate emission from fiber ring laser,” Opt. Commun. 285(8), 2113–2117 (2012).
[Crossref]

S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol. 30(4), 427–447 (2012).
[Crossref]

C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2009 (5)

2007 (1)

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274(1), 116–123 (2007).
[Crossref]

2005 (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

2004 (1)

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

1999 (1)

V. A. Margulis, “Theoretical estimations of third-order optical nonlinearities for semiconductor carbon nanotubes,” J. Phys. Condens. Matter 11(15), 3065–3074 (1999).
[Crossref]

1992 (1)

Bourkoff, E.

Cao, W. J.

L. Y. Wang, W. C. Xu, Z. C. Luo, W. J. Cao, A. P. Luo, J. L. Dong, and H. Y. Wang, “Dark pulses with tunable repetition rate emission from fiber ring laser,” Opt. Commun. 285(8), 2113–2117 (2012).
[Crossref]

Chen, S. Q.

Chen, Y.

Chow, K. K.

Coen, S.

Dong, H.

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274(1), 116–123 (2007).
[Crossref]

Dong, J. L.

L. Y. Wang, W. C. Xu, Z. C. Luo, W. J. Cao, A. P. Luo, J. L. Dong, and H. Y. Wang, “Dark pulses with tunable repetition rate emission from fiber ring laser,” Opt. Commun. 285(8), 2113–2117 (2012).
[Crossref]

Du, J.

Eggleton, B. J.

Ferrando, A.

Gong, Y. D.

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274(1), 116–123 (2007).
[Crossref]

Huang, H. H.

Jablonski, M.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

Kashiwagi, K.

Li, L.

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, “Evidence of dark solitons in all-normal-dispersion-fiber lasers,” Phys. Rev. A 88(1), 013849 (2013).
[Crossref]

Li, Y.

Lin, Z. B.

Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright–dark pulse pair in a figure-eight dispersion-managed passively mode-locked fiber laser,” IEEE Photon. J. 4(5), 1647–1652 (2012).
[Crossref]

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Liu, Z.

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “2 µm bright–dark pulses in Tm-doped fiber ring laser with net anomalous dispersion,” Appl. Phys. Express 7(2), 022704 (2014).
[Crossref]

Loh, K. P.

Lu, S. B.

Luo, A. P.

L. Y. Wang, W. C. Xu, Z. C. Luo, W. J. Cao, A. P. Luo, J. L. Dong, and H. Y. Wang, “Dark pulses with tunable repetition rate emission from fiber ring laser,” Opt. Commun. 285(8), 2113–2117 (2012).
[Crossref]

Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright–dark pulse pair in a figure-eight dispersion-managed passively mode-locked fiber laser,” IEEE Photon. J. 4(5), 1647–1652 (2012).
[Crossref]

Luo, Z. C.

L. Y. Wang, W. C. Xu, Z. C. Luo, W. J. Cao, A. P. Luo, J. L. Dong, and H. Y. Wang, “Dark pulses with tunable repetition rate emission from fiber ring laser,” Opt. Commun. 285(8), 2113–2117 (2012).
[Crossref]

Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright–dark pulse pair in a figure-eight dispersion-managed passively mode-locked fiber laser,” IEEE Photon. J. 4(5), 1647–1652 (2012).
[Crossref]

Margulis, V. A.

V. A. Margulis, “Theoretical estimations of third-order optical nonlinearities for semiconductor carbon nanotubes,” J. Phys. Condens. Matter 11(15), 3065–3074 (1999).
[Crossref]

Milián, C.

Ning, G. X.

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274(1), 116–123 (2007).
[Crossref]

Ning, Q. Y.

Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright–dark pulse pair in a figure-eight dispersion-managed passively mode-locked fiber laser,” IEEE Photon. J. 4(5), 1647–1652 (2012).
[Crossref]

Ruan, S. C.

Schröder, J. B.

Set, S. Y.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

Shen, D. Y.

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, “Evidence of dark solitons in all-normal-dispersion-fiber lasers,” Phys. Rev. A 88(1), 013849 (2013).
[Crossref]

Shum, P.

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274(1), 116–123 (2007).
[Crossref]

Skryabin, D. V.

Song, Y. F.

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, “Evidence of dark solitons in all-normal-dispersion-fiber lasers,” Phys. Rev. A 88(1), 013849 (2013).
[Crossref]

Song, Y. W.

Sylvestre, T.

Tanaka, Y.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

Tang, D.

Tang, D. Y.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, “Evidence of dark solitons in all-normal-dispersion-fiber lasers,” Phys. Rev. A 88(1), 013849 (2013).
[Crossref]

C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Wang, H. Y.

L. Y. Wang, W. C. Xu, Z. C. Luo, W. J. Cao, A. P. Luo, J. L. Dong, and H. Y. Wang, “Dark pulses with tunable repetition rate emission from fiber ring laser,” Opt. Commun. 285(8), 2113–2117 (2012).
[Crossref]

Wang, L. Y.

L. Y. Wang, W. C. Xu, Z. C. Luo, W. J. Cao, A. P. Luo, J. L. Dong, and H. Y. Wang, “Dark pulses with tunable repetition rate emission from fiber ring laser,” Opt. Commun. 285(8), 2113–2117 (2012).
[Crossref]

Wang, S. K.

Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright–dark pulse pair in a figure-eight dispersion-managed passively mode-locked fiber laser,” IEEE Photon. J. 4(5), 1647–1652 (2012).
[Crossref]

Wang, X.

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “2 µm bright–dark pulses in Tm-doped fiber ring laser with net anomalous dispersion,” Appl. Phys. Express 7(2), 022704 (2014).
[Crossref]

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “2 µm bright–dark pulses in Tm-doped fiber ring laser with net anomalous dispersion,” Appl. Phys. Express 7(2), 022704 (2014).
[Crossref]

Wang, Z. T.

Wen, S. C.

Wu, C. Q.

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274(1), 116–123 (2007).
[Crossref]

Wu, X.

H. Zhang, D. Tang, L. Zhao, and X. Wu, “Dual-wavelength domain wall solitons in a fiber ring laser,” Opt. Express 19(4), 3525–3530 (2011).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[Crossref]

Xiao, H.

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “2 µm bright–dark pulses in Tm-doped fiber ring laser with net anomalous dispersion,” Appl. Phys. Express 7(2), 022704 (2014).
[Crossref]

Xu, W. C.

L. Y. Wang, W. C. Xu, Z. C. Luo, W. J. Cao, A. P. Luo, J. L. Dong, and H. Y. Wang, “Dark pulses with tunable repetition rate emission from fiber ring laser,” Opt. Commun. 285(8), 2113–2117 (2012).
[Crossref]

Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright–dark pulse pair in a figure-eight dispersion-managed passively mode-locked fiber laser,” IEEE Photon. J. 4(5), 1647–1652 (2012).
[Crossref]

Yaguchi, H.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

Yamashita, S.

Yan, M.

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274(1), 116–123 (2007).
[Crossref]

Yan, P.

Zhang, H.

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, C. J.

Zhao, J.

Zhao, L.

Zhao, L. M.

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, “Evidence of dark solitons in all-normal-dispersion-fiber lasers,” Phys. Rev. A 88(1), 013849 (2013).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, W.

Zheng, J.

Zhou, J. Q.

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274(1), 116–123 (2007).
[Crossref]

Zhou, P.

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “2 µm bright–dark pulses in Tm-doped fiber ring laser with net anomalous dispersion,” Appl. Phys. Express 7(2), 022704 (2014).
[Crossref]

Zou, Y. H.

Appl. Opt. (1)

Appl. Phys. Express (1)

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “2 µm bright–dark pulses in Tm-doped fiber ring laser with net anomalous dispersion,” Appl. Phys. Express 7(2), 022704 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

IEEE Photon. J. (1)

Q. Y. Ning, S. K. Wang, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Bright–dark pulse pair in a figure-eight dispersion-managed passively mode-locked fiber laser,” IEEE Photon. J. 4(5), 1647–1652 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

V. A. Margulis, “Theoretical estimations of third-order optical nonlinearities for semiconductor carbon nanotubes,” J. Phys. Condens. Matter 11(15), 3065–3074 (1999).
[Crossref]

Opt. Commun. (2)

L. Y. Wang, W. C. Xu, Z. C. Luo, W. J. Cao, A. P. Luo, J. L. Dong, and H. Y. Wang, “Dark pulses with tunable repetition rate emission from fiber ring laser,” Opt. Commun. 285(8), 2113–2117 (2012).
[Crossref]

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274(1), 116–123 (2007).
[Crossref]

Opt. Express (7)

K. K. Chow, S. Yamashita, and Y. W. Song, “A widely tunable wavelength converter based on nonlinear polarization rotation in a carbon-nanotube-deposited D-shaped fiber,” Opt. Express 17(9), 7664–7669 (2009).
[Crossref] [PubMed]

C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, and D. Y. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref] [PubMed]

K. K. Chow and S. Yamashita, “Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion,” Opt. Express 17(18), 15608–15613 (2009).
[Crossref] [PubMed]

K. Kashiwagi and S. Yamashita, “Deposition of carbon nanotubes around microfiber via evanascent light,” Opt. Express 17(20), 18364–18370 (2009).
[Crossref] [PubMed]

J. B. Schröder, S. Coen, T. Sylvestre, and B. J. Eggleton, “Dark and bright pulse passive mode-locked laser with in-cavity pulse-shaper,” Opt. Express 18(22), 22715–22721 (2010).
[Crossref] [PubMed]

H. Zhang, D. Tang, L. Zhao, and X. Wu, “Dual-wavelength domain wall solitons in a fiber ring laser,” Opt. Express 19(4), 3525–3530 (2011).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. A (3)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[Crossref]

D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, “Evidence of dark solitons in all-normal-dispersion-fiber lasers,” Phys. Rev. A 88(1), 013849 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental setup for optically-driven deposition of carbon nanotubes (CNTs) on a side-polished fiber. EDFA: erbium-doped fiber amplifier, PC: polarization controller; and (b) microscopic image of the side-polished fiber deposited with CNT-layer from the top view.
Fig. 2
Fig. 2 Experimental setup of an all-fiber ring-configuration fiber laser incorporated with CNT-deposited side-polished fiber. WDM: wavelength division multiplexer; EDF: erbium-doped fiber; and PC: polarization controller.
Fig. 3
Fig. 3 Outputs from the CNT-incorporated fiber laser showing (a) the bright pulse and (b) its corresponding optical spectrum at a pump power of 38.9 mW; (c) the dark pulse and (d) its corresponding optical spectrum at a pump power of 50.6 mW.
Fig. 4
Fig. 4 Transformation of single bright pulse into dark pulse, the curves refer to pulse trains under different pump powers: P1 = 38.9 mW, P2 = 42.7 mW and P3 = 50.6 mW. The inset shows the output optical spectrum of laser under a pump power of 42.7 mW.
Fig. 5
Fig. 5 (a) Output pulse trains and (b) the corresponding optical spectra showing the transformation of multiple bright pulses into dark pulses per cavity round-trip time under pump powers: P1 = 38.9 mW and P3 = 50.6 mW.

Metrics