Abstract

We present a fast approach to the continuous measurement of rotational symmetric optical surfaces. This approach is based on a line scanning interferometer with sinusoidal modulation of the optical path length. The specimen is positioned with respect to the sensor and both are moved during measurement by use of a five axes system comprising a high precision rotational table. The calibration of both the line sensor as well as the scanning and positioning system is discussed. As proof of principle of the measurement and stitching concept results of a scan of a rotational symmetric sinusoidal structure and a spherical lens with a moderate slope are shown.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of the optical path length difference in an interferometer using a sinusoidally frequency-modulated light source

Shumpei Shimada, Makoto Shizuka, Neisei Hayashi, Yosuke Mizuno, and Kentaro Nakamura
Appl. Opt. 55(11) 2904-2908 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J.-M. Asfour and A. G. Poleshchuk, “Asphere testing with a Fizeau interferometer based on a combined computer-generated hologram,” J. Opt. Soc. Am. A 23(1), 172–178 (2006).
    [Crossref]
  2. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13(11), 2693–2703 (1974).
    [Crossref] [PubMed]
  3. C. Pruss and H. J. Tiziani, “Dynamic null lens for aspheric testing using a membrane mirror,” Opt. Commun. 233(1), 15–19 (2004).
    [Crossref]
  4. A. Beutler, “Comparison of 2D and 3D measurements of aspheres with a tactile and optical sensor on one measuring instrument,” in “Proceedings of Optical Fabrication and Testing,” ed. (Optical Society of America, 2014), pp. OTu4A–1.
  5. R. Mastylo, D. Dontsov, E. Manske, and G. Jager, “A focus sensor for an application in a nanopositioning and nanomeasuring machine,” in Proc. SPIE5856, 238–244 (2005).
    [Crossref]
  6. H. J. Tiziani and H.-M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt. 33(10), 1838–1843 (1994).
    [Crossref] [PubMed]
  7. J. Petter and G. Berger, “Non-contact profiling for high precision fast asphere topology measurement,” Proc. SPIE 8788, 878819 (2013).
    [Crossref]
  8. P. Lehmann, M. Schulz, and J. Niehues, “Fiber optic interferometric sensor based on mechanical oscillation,” Proc. SPIE 7389, 738915 (2009).
    [Crossref]
  9. M. Schulz and P. Lehmann, “Measurement of distance changes using a fibre-coupled common-path interferometer with mechanical path length modulation,” Meas. Sci. Technol. 24(6), 65202–65209 (2013).
    [Crossref]
  10. C.-W. Liang, H.-S. Chang, P.-C. Lin, C.-C. Lee, and Y.-C. Chen, “Vibration modulated subaperture stitching interferometry,” Opt. Express 21(15), 18255–18260 (2013).
    [Crossref] [PubMed]
  11. H. Zhang, H. Cheng, H. Y. Tam, Y. Wen, and D. Zhou, “High precision mode of subaperture stitching for optical surfaces measurement,” Front. Optoelec. 6(1), 167–174 (2013).
    [Crossref]
  12. J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, (2004), pp. 304–314.
    [Crossref]
  13. M. F. Küchel, “Interferometric measurement of rotationally symmetric aspheric surfaces,” Proc. SPIE 7389, 738916 (2009).
    [Crossref]
  14. E. Garbusi, C. Pruss, and W. Osten, “Interferometer for precise and flexible asphere testing,” Opt. Lett. 33(24), 2973–2975 (2008).
    [Crossref] [PubMed]
  15. G. B. Baer, J. Schindler, C. Pruss, and W. Osten, “Measurement of Aspheres and Free-Form Surfaces with the Tilted-Wave-Interferometer,” in Proceedings of Fringe, ITO, ed. (Springer, 2014), pp. 87–95.
  16. H. Knell and P. Lehmann, “High speed measurement of specular surfaces based on carrier fringe patterns in a line scan Michelson interferometer setup,” Proc. SPIE 8788, 87880R (2013).
    [Crossref]
  17. H. Knell, M. Schake, M. Schulz, and P. Lehmann, “Interferometric sensors based on sinusoidal optical path length modulation,” Proc. SPIE 9132, 91320I (2014).
    [Crossref]
  18. O. Sasaki and H. Okazaki, “Sinusoidal phase modulating interferometry for surface profile measurement,” Appl. Opt. 25(18), 3137–3140 (1986).
    [Crossref] [PubMed]
  19. U. Minoni, E. Sardini, E. Gelmini, F. Docchio, and D. Marioli, “A high-frequency sinusoidal phase-modulation interferometer using an electro-optic modulator: Development and evaluation,” Rev. Sci. Instrum. 62, 2579–2583 (1991).
    [Crossref]
  20. K. Falaggis, D. P. Towers, and C. E. Towers, “Phase measurement through sinusoidal excitation with application to multi-wavelength interferometry,” J. Opt. A: Pure Appl. Opt. 11(5), 54008–54018 (2009).
    [Crossref]
  21. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26(13), 2504–2506 (1987).
    [Crossref] [PubMed]
  22. P. Lehmann, P. Kühnhold, and W. Xie, “Reduction of chromatic aberration influences in vertical scanning white-light interferometry,” Meas. Sci. Technol. 25(6), 065203 (2014).
    [Crossref]
  23. G. Ehret, M. Stavridis, and C. Elster, “Deflectometric systems for absolute flatness measurements at PTB,” Meas. Sci. Technol. 23(9), 094007 (2012).
    [Crossref]
  24. Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43(13), 2695–2702 (2004).
    [Crossref] [PubMed]

2014 (2)

H. Knell, M. Schake, M. Schulz, and P. Lehmann, “Interferometric sensors based on sinusoidal optical path length modulation,” Proc. SPIE 9132, 91320I (2014).
[Crossref]

P. Lehmann, P. Kühnhold, and W. Xie, “Reduction of chromatic aberration influences in vertical scanning white-light interferometry,” Meas. Sci. Technol. 25(6), 065203 (2014).
[Crossref]

2013 (5)

J. Petter and G. Berger, “Non-contact profiling for high precision fast asphere topology measurement,” Proc. SPIE 8788, 878819 (2013).
[Crossref]

H. Knell and P. Lehmann, “High speed measurement of specular surfaces based on carrier fringe patterns in a line scan Michelson interferometer setup,” Proc. SPIE 8788, 87880R (2013).
[Crossref]

M. Schulz and P. Lehmann, “Measurement of distance changes using a fibre-coupled common-path interferometer with mechanical path length modulation,” Meas. Sci. Technol. 24(6), 65202–65209 (2013).
[Crossref]

C.-W. Liang, H.-S. Chang, P.-C. Lin, C.-C. Lee, and Y.-C. Chen, “Vibration modulated subaperture stitching interferometry,” Opt. Express 21(15), 18255–18260 (2013).
[Crossref] [PubMed]

H. Zhang, H. Cheng, H. Y. Tam, Y. Wen, and D. Zhou, “High precision mode of subaperture stitching for optical surfaces measurement,” Front. Optoelec. 6(1), 167–174 (2013).
[Crossref]

2012 (1)

G. Ehret, M. Stavridis, and C. Elster, “Deflectometric systems for absolute flatness measurements at PTB,” Meas. Sci. Technol. 23(9), 094007 (2012).
[Crossref]

2009 (3)

M. F. Küchel, “Interferometric measurement of rotationally symmetric aspheric surfaces,” Proc. SPIE 7389, 738916 (2009).
[Crossref]

K. Falaggis, D. P. Towers, and C. E. Towers, “Phase measurement through sinusoidal excitation with application to multi-wavelength interferometry,” J. Opt. A: Pure Appl. Opt. 11(5), 54008–54018 (2009).
[Crossref]

P. Lehmann, M. Schulz, and J. Niehues, “Fiber optic interferometric sensor based on mechanical oscillation,” Proc. SPIE 7389, 738915 (2009).
[Crossref]

2008 (1)

2006 (1)

2004 (2)

C. Pruss and H. J. Tiziani, “Dynamic null lens for aspheric testing using a membrane mirror,” Opt. Commun. 233(1), 15–19 (2004).
[Crossref]

Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43(13), 2695–2702 (2004).
[Crossref] [PubMed]

1994 (1)

1991 (1)

U. Minoni, E. Sardini, E. Gelmini, F. Docchio, and D. Marioli, “A high-frequency sinusoidal phase-modulation interferometer using an electro-optic modulator: Development and evaluation,” Rev. Sci. Instrum. 62, 2579–2583 (1991).
[Crossref]

1987 (1)

1986 (1)

1974 (1)

Asfour, J.-M.

Baer, G. B.

G. B. Baer, J. Schindler, C. Pruss, and W. Osten, “Measurement of Aspheres and Free-Form Surfaces with the Tilted-Wave-Interferometer,” in Proceedings of Fringe, ITO, ed. (Springer, 2014), pp. 87–95.

Berger, G.

J. Petter and G. Berger, “Non-contact profiling for high precision fast asphere topology measurement,” Proc. SPIE 8788, 878819 (2013).
[Crossref]

Beutler, A.

A. Beutler, “Comparison of 2D and 3D measurements of aspheres with a tactile and optical sensor on one measuring instrument,” in “Proceedings of Optical Fabrication and Testing,” ed. (Optical Society of America, 2014), pp. OTu4A–1.

Brangaccio, D. J.

Brock, N. J.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, (2004), pp. 304–314.
[Crossref]

Bruning, J. H.

Chang, H.-S.

Chen, Y.-C.

Cheng, H.

H. Zhang, H. Cheng, H. Y. Tam, Y. Wen, and D. Zhou, “High precision mode of subaperture stitching for optical surfaces measurement,” Front. Optoelec. 6(1), 167–174 (2013).
[Crossref]

Docchio, F.

U. Minoni, E. Sardini, E. Gelmini, F. Docchio, and D. Marioli, “A high-frequency sinusoidal phase-modulation interferometer using an electro-optic modulator: Development and evaluation,” Rev. Sci. Instrum. 62, 2579–2583 (1991).
[Crossref]

Dontsov, D.

R. Mastylo, D. Dontsov, E. Manske, and G. Jager, “A focus sensor for an application in a nanopositioning and nanomeasuring machine,” in Proc. SPIE5856, 238–244 (2005).
[Crossref]

Ehret, G.

G. Ehret, M. Stavridis, and C. Elster, “Deflectometric systems for absolute flatness measurements at PTB,” Meas. Sci. Technol. 23(9), 094007 (2012).
[Crossref]

Eiju, T.

Elster, C.

G. Ehret, M. Stavridis, and C. Elster, “Deflectometric systems for absolute flatness measurements at PTB,” Meas. Sci. Technol. 23(9), 094007 (2012).
[Crossref]

Falaggis, K.

K. Falaggis, D. P. Towers, and C. E. Towers, “Phase measurement through sinusoidal excitation with application to multi-wavelength interferometry,” J. Opt. A: Pure Appl. Opt. 11(5), 54008–54018 (2009).
[Crossref]

Gallagher, J. E.

Garbusi, E.

Gelmini, E.

U. Minoni, E. Sardini, E. Gelmini, F. Docchio, and D. Marioli, “A high-frequency sinusoidal phase-modulation interferometer using an electro-optic modulator: Development and evaluation,” Rev. Sci. Instrum. 62, 2579–2583 (1991).
[Crossref]

Hariharan, P.

Hayes, J. B.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, (2004), pp. 304–314.
[Crossref]

Herriott, D. R.

Jager, G.

R. Mastylo, D. Dontsov, E. Manske, and G. Jager, “A focus sensor for an application in a nanopositioning and nanomeasuring machine,” in Proc. SPIE5856, 238–244 (2005).
[Crossref]

Kemao, Q.

Knell, H.

H. Knell, M. Schake, M. Schulz, and P. Lehmann, “Interferometric sensors based on sinusoidal optical path length modulation,” Proc. SPIE 9132, 91320I (2014).
[Crossref]

H. Knell and P. Lehmann, “High speed measurement of specular surfaces based on carrier fringe patterns in a line scan Michelson interferometer setup,” Proc. SPIE 8788, 87880R (2013).
[Crossref]

Küchel, M. F.

M. F. Küchel, “Interferometric measurement of rotationally symmetric aspheric surfaces,” Proc. SPIE 7389, 738916 (2009).
[Crossref]

Kühnhold, P.

P. Lehmann, P. Kühnhold, and W. Xie, “Reduction of chromatic aberration influences in vertical scanning white-light interferometry,” Meas. Sci. Technol. 25(6), 065203 (2014).
[Crossref]

Lee, C.-C.

Lehmann, P.

P. Lehmann, P. Kühnhold, and W. Xie, “Reduction of chromatic aberration influences in vertical scanning white-light interferometry,” Meas. Sci. Technol. 25(6), 065203 (2014).
[Crossref]

H. Knell, M. Schake, M. Schulz, and P. Lehmann, “Interferometric sensors based on sinusoidal optical path length modulation,” Proc. SPIE 9132, 91320I (2014).
[Crossref]

M. Schulz and P. Lehmann, “Measurement of distance changes using a fibre-coupled common-path interferometer with mechanical path length modulation,” Meas. Sci. Technol. 24(6), 65202–65209 (2013).
[Crossref]

H. Knell and P. Lehmann, “High speed measurement of specular surfaces based on carrier fringe patterns in a line scan Michelson interferometer setup,” Proc. SPIE 8788, 87880R (2013).
[Crossref]

P. Lehmann, M. Schulz, and J. Niehues, “Fiber optic interferometric sensor based on mechanical oscillation,” Proc. SPIE 7389, 738915 (2009).
[Crossref]

Liang, C.-W.

Lin, P.-C.

Manske, E.

R. Mastylo, D. Dontsov, E. Manske, and G. Jager, “A focus sensor for an application in a nanopositioning and nanomeasuring machine,” in Proc. SPIE5856, 238–244 (2005).
[Crossref]

Marioli, D.

U. Minoni, E. Sardini, E. Gelmini, F. Docchio, and D. Marioli, “A high-frequency sinusoidal phase-modulation interferometer using an electro-optic modulator: Development and evaluation,” Rev. Sci. Instrum. 62, 2579–2583 (1991).
[Crossref]

Mastylo, R.

R. Mastylo, D. Dontsov, E. Manske, and G. Jager, “A focus sensor for an application in a nanopositioning and nanomeasuring machine,” in Proc. SPIE5856, 238–244 (2005).
[Crossref]

Millerd, J. E.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, (2004), pp. 304–314.
[Crossref]

Minoni, U.

U. Minoni, E. Sardini, E. Gelmini, F. Docchio, and D. Marioli, “A high-frequency sinusoidal phase-modulation interferometer using an electro-optic modulator: Development and evaluation,” Rev. Sci. Instrum. 62, 2579–2583 (1991).
[Crossref]

Niehues, J.

P. Lehmann, M. Schulz, and J. Niehues, “Fiber optic interferometric sensor based on mechanical oscillation,” Proc. SPIE 7389, 738915 (2009).
[Crossref]

North-Morris, M. B.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, (2004), pp. 304–314.
[Crossref]

Novak, M.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, (2004), pp. 304–314.
[Crossref]

Okazaki, H.

Oreb, B. F.

Osten, W.

E. Garbusi, C. Pruss, and W. Osten, “Interferometer for precise and flexible asphere testing,” Opt. Lett. 33(24), 2973–2975 (2008).
[Crossref] [PubMed]

G. B. Baer, J. Schindler, C. Pruss, and W. Osten, “Measurement of Aspheres and Free-Form Surfaces with the Tilted-Wave-Interferometer,” in Proceedings of Fringe, ITO, ed. (Springer, 2014), pp. 87–95.

Petter, J.

J. Petter and G. Berger, “Non-contact profiling for high precision fast asphere topology measurement,” Proc. SPIE 8788, 878819 (2013).
[Crossref]

Poleshchuk, A. G.

Pruss, C.

E. Garbusi, C. Pruss, and W. Osten, “Interferometer for precise and flexible asphere testing,” Opt. Lett. 33(24), 2973–2975 (2008).
[Crossref] [PubMed]

C. Pruss and H. J. Tiziani, “Dynamic null lens for aspheric testing using a membrane mirror,” Opt. Commun. 233(1), 15–19 (2004).
[Crossref]

G. B. Baer, J. Schindler, C. Pruss, and W. Osten, “Measurement of Aspheres and Free-Form Surfaces with the Tilted-Wave-Interferometer,” in Proceedings of Fringe, ITO, ed. (Springer, 2014), pp. 87–95.

Rosenfeld, D. P.

Sardini, E.

U. Minoni, E. Sardini, E. Gelmini, F. Docchio, and D. Marioli, “A high-frequency sinusoidal phase-modulation interferometer using an electro-optic modulator: Development and evaluation,” Rev. Sci. Instrum. 62, 2579–2583 (1991).
[Crossref]

Sasaki, O.

Schake, M.

H. Knell, M. Schake, M. Schulz, and P. Lehmann, “Interferometric sensors based on sinusoidal optical path length modulation,” Proc. SPIE 9132, 91320I (2014).
[Crossref]

Schindler, J.

G. B. Baer, J. Schindler, C. Pruss, and W. Osten, “Measurement of Aspheres and Free-Form Surfaces with the Tilted-Wave-Interferometer,” in Proceedings of Fringe, ITO, ed. (Springer, 2014), pp. 87–95.

Schulz, M.

H. Knell, M. Schake, M. Schulz, and P. Lehmann, “Interferometric sensors based on sinusoidal optical path length modulation,” Proc. SPIE 9132, 91320I (2014).
[Crossref]

M. Schulz and P. Lehmann, “Measurement of distance changes using a fibre-coupled common-path interferometer with mechanical path length modulation,” Meas. Sci. Technol. 24(6), 65202–65209 (2013).
[Crossref]

P. Lehmann, M. Schulz, and J. Niehues, “Fiber optic interferometric sensor based on mechanical oscillation,” Proc. SPIE 7389, 738915 (2009).
[Crossref]

Stavridis, M.

G. Ehret, M. Stavridis, and C. Elster, “Deflectometric systems for absolute flatness measurements at PTB,” Meas. Sci. Technol. 23(9), 094007 (2012).
[Crossref]

Tam, H. Y.

H. Zhang, H. Cheng, H. Y. Tam, Y. Wen, and D. Zhou, “High precision mode of subaperture stitching for optical surfaces measurement,” Front. Optoelec. 6(1), 167–174 (2013).
[Crossref]

Tiziani, H. J.

C. Pruss and H. J. Tiziani, “Dynamic null lens for aspheric testing using a membrane mirror,” Opt. Commun. 233(1), 15–19 (2004).
[Crossref]

H. J. Tiziani and H.-M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt. 33(10), 1838–1843 (1994).
[Crossref] [PubMed]

Towers, C. E.

K. Falaggis, D. P. Towers, and C. E. Towers, “Phase measurement through sinusoidal excitation with application to multi-wavelength interferometry,” J. Opt. A: Pure Appl. Opt. 11(5), 54008–54018 (2009).
[Crossref]

Towers, D. P.

K. Falaggis, D. P. Towers, and C. E. Towers, “Phase measurement through sinusoidal excitation with application to multi-wavelength interferometry,” J. Opt. A: Pure Appl. Opt. 11(5), 54008–54018 (2009).
[Crossref]

Uhde, H.-M.

Wen, Y.

H. Zhang, H. Cheng, H. Y. Tam, Y. Wen, and D. Zhou, “High precision mode of subaperture stitching for optical surfaces measurement,” Front. Optoelec. 6(1), 167–174 (2013).
[Crossref]

White, A. D.

Wyant, J. C.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, (2004), pp. 304–314.
[Crossref]

Xie, W.

P. Lehmann, P. Kühnhold, and W. Xie, “Reduction of chromatic aberration influences in vertical scanning white-light interferometry,” Meas. Sci. Technol. 25(6), 065203 (2014).
[Crossref]

Zhang, H.

H. Zhang, H. Cheng, H. Y. Tam, Y. Wen, and D. Zhou, “High precision mode of subaperture stitching for optical surfaces measurement,” Front. Optoelec. 6(1), 167–174 (2013).
[Crossref]

Zhou, D.

H. Zhang, H. Cheng, H. Y. Tam, Y. Wen, and D. Zhou, “High precision mode of subaperture stitching for optical surfaces measurement,” Front. Optoelec. 6(1), 167–174 (2013).
[Crossref]

Appl. Opt. (5)

Front. Optoelec. (1)

H. Zhang, H. Cheng, H. Y. Tam, Y. Wen, and D. Zhou, “High precision mode of subaperture stitching for optical surfaces measurement,” Front. Optoelec. 6(1), 167–174 (2013).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

K. Falaggis, D. P. Towers, and C. E. Towers, “Phase measurement through sinusoidal excitation with application to multi-wavelength interferometry,” J. Opt. A: Pure Appl. Opt. 11(5), 54008–54018 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (3)

M. Schulz and P. Lehmann, “Measurement of distance changes using a fibre-coupled common-path interferometer with mechanical path length modulation,” Meas. Sci. Technol. 24(6), 65202–65209 (2013).
[Crossref]

P. Lehmann, P. Kühnhold, and W. Xie, “Reduction of chromatic aberration influences in vertical scanning white-light interferometry,” Meas. Sci. Technol. 25(6), 065203 (2014).
[Crossref]

G. Ehret, M. Stavridis, and C. Elster, “Deflectometric systems for absolute flatness measurements at PTB,” Meas. Sci. Technol. 23(9), 094007 (2012).
[Crossref]

Opt. Commun. (1)

C. Pruss and H. J. Tiziani, “Dynamic null lens for aspheric testing using a membrane mirror,” Opt. Commun. 233(1), 15–19 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (5)

H. Knell and P. Lehmann, “High speed measurement of specular surfaces based on carrier fringe patterns in a line scan Michelson interferometer setup,” Proc. SPIE 8788, 87880R (2013).
[Crossref]

H. Knell, M. Schake, M. Schulz, and P. Lehmann, “Interferometric sensors based on sinusoidal optical path length modulation,” Proc. SPIE 9132, 91320I (2014).
[Crossref]

M. F. Küchel, “Interferometric measurement of rotationally symmetric aspheric surfaces,” Proc. SPIE 7389, 738916 (2009).
[Crossref]

J. Petter and G. Berger, “Non-contact profiling for high precision fast asphere topology measurement,” Proc. SPIE 8788, 878819 (2013).
[Crossref]

P. Lehmann, M. Schulz, and J. Niehues, “Fiber optic interferometric sensor based on mechanical oscillation,” Proc. SPIE 7389, 738915 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

U. Minoni, E. Sardini, E. Gelmini, F. Docchio, and D. Marioli, “A high-frequency sinusoidal phase-modulation interferometer using an electro-optic modulator: Development and evaluation,” Rev. Sci. Instrum. 62, 2579–2583 (1991).
[Crossref]

Other (4)

A. Beutler, “Comparison of 2D and 3D measurements of aspheres with a tactile and optical sensor on one measuring instrument,” in “Proceedings of Optical Fabrication and Testing,” ed. (Optical Society of America, 2014), pp. OTu4A–1.

R. Mastylo, D. Dontsov, E. Manske, and G. Jager, “A focus sensor for an application in a nanopositioning and nanomeasuring machine,” in Proc. SPIE5856, 238–244 (2005).
[Crossref]

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, (2004), pp. 304–314.
[Crossref]

G. B. Baer, J. Schindler, C. Pruss, and W. Osten, “Measurement of Aspheres and Free-Form Surfaces with the Tilted-Wave-Interferometer,” in Proceedings of Fringe, ITO, ed. (Springer, 2014), pp. 87–95.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1:
Fig. 1: Michelson interferometer with oscillating reference mirror and light coupled directly into the interference beam splitter.
Fig. 2:
Fig. 2: Simulated interference signal of an OPLM interferometer and the corresponding path length modulation.
Fig. 3:
Fig. 3: Repeatability measurements on a static target for one single pixel, standard deviation is σ = 0.77nm.
Fig. 4:
Fig. 4: Schematic of the measurement process: in step (1) the specimen is rotated by 370° and in step (2) the sensor is translated by 1mm relative to the specimen.
Fig. 5:
Fig. 5: Five axes movement system with line sensor (left) and the specimen used for testing (right).
Fig. 6:
Fig. 6: Deviation of the position value from the median of the repeatability measurement for one step of the x-axis
Fig. 7:
Fig. 7: Deviation of the step width from the intended step width of 1mm for 140 consecutive steps.
Fig. 8:
Fig. 8: Measured interference data of the sinusoidal structure and the plane structure of the test surface
Fig. 9:
Fig. 9: Intensity values of Fig. 8 at 0.15° rotation along scan line (a) and for radial position 14.5mm during rotation (b).
Fig. 10:
Fig. 10: Unwrapped phase data of one ring measurement of the sinusoidal specimen
Fig. 11:
Fig. 11: Height values at a rotation angle of 0° calculated from the phase data in Fig. 10 (b) and reference measurement (a). The tilt of the specimen has been removed.
Fig. 12:
Fig. 12: Two overlapping topography data sets of neighboring ring measurements in cylindrical coordinates
Fig. 13:
Fig. 13: Stitched topography result of the two measurements shown in Fig. 12, the apparent height step is the beginning of the sinus profile
Fig. 14:
Fig. 14: Stitched sub-topographies of a spherical lens as test specimen.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I 0 ( 1 + B cos ( 4 π λ z ( t ) + φ ( t ) ) )
I ^ _ f ( p ) = n = 0 N / 2 1 I ( n , p ) W ( n ) exp ( 2 π i n f f ( p ) f s )
φ f ( p ) = arctan ( Im ( I ^ _ f ( p ) ) Re ( I ^ _ f ( p ) ) ) φ o ( p )
Δ φ j = 2 π f f , max Δ t j

Metrics