Abstract

A continuous-wave singly-resonant optical parametric oscillator (SRO) with an optimum extraction efficiency, that can be adjusted independent of the pump power, is demonstrated. The scheme employs a variable-reflectivity volume Bragg grating (VBG) as the output coupler of a ring cavity, omitting any additional intra-cavity elements. In this configuration, we obtained a 75%-efficient SRO with a combined signal (19 W @ 1.55 µm) and idler (11 W @ 3.4 µm) output power of 30 W.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Antiresonant ring output-coupled continuous-wave optical parametric oscillator

Kavita Devi, S. Chaitanya Kumar, A. Esteban-Martin, and M. Ebrahim-Zadeh
Opt. Express 20(17) 19313-19321 (2012)

Continuous-wave intra-cavity singly resonant optical parametric oscillator with resonant wave output coupling

Quan Sheng, Xin Ding, Ce Shang, Bin Li, Chen Fan, Haiyong Zhang, Xuanyi Yu, Wuqi Wen, Yila Ma, and Jianquan Yao
Opt. Express 20(25) 27953-27958 (2012)

Continuous-wave singly-resonant optical parametric oscillator with resonant wave coupling

G. K. Samanta and M. Ebrahim-Zadeh
Opt. Express 16(10) 6883-6888 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Cristescu, S. T. Persijn, S. te Lintel Hekkert, and F. J. M. Harren, “Laser-based systems for trace gas detection in life sciences,” Appl. Phys. B 92(3), 343–349 (2008).
    [Crossref]
  2. K. Marushkevich, M. Siltanen, M. Räsänen, L. Halonen, and L. Khriachtchev, “Identification of New Dimers of Formic Acid: The Use of a Continuous-Wave Optical Parametric Oscillator in Matrix Isolation Experiments,” J. Phys. Chem. Lett. 2(7), 695–699 (2011).
    [Crossref]
  3. D. H. Titterton, “A review of the development of optical countermeasures,” Proc. SPIE 5615, 1–15 (2004).
    [Crossref]
  4. P. Gross, M. E. Klein, T. Walde, K.-J. Boller, M. Auerbach, P. Wessels, and C. Fallnich, “Fiber-laser-pumped continuous-wave singly resonant optical parametric oscillator,” Opt. Lett. 27(6), 418–420 (2002).
    [Crossref] [PubMed]
  5. I. D. Lindsay, B. Adhimoolam, P. Groß, M. E. Klein, and K.-J. Boller, “110GHz rapid, continuous tuning from an optical parametric oscillator pumped by a fiber-amplified DBR diode laser,” Opt. Express 13(4), 1234–1239 (2005).
    [Crossref] [PubMed]
  6. A. Henderson and R. Stafford, “Low threshold, singly-resonant CW OPO pumped by an all-fiber pump source,” Opt. Express 14(2), 767–772 (2006).
    [Crossref] [PubMed]
  7. A. Henderson and P. Esquinasi, “23-watt 77% efficient CW OPO pumped by a fiber laser,” Proc. SPIE 7580, 75800D (2010).
    [Crossref]
  8. R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B 96(1), 25–28 (2009).
    [Crossref]
  9. A. Henderson and R. Stafford, “Spectral broadening and stimulated Raman conversion in a continuous-wave optical parametric oscillator,” Opt. Lett. 32(10), 1281–1283 (2007).
    [Crossref] [PubMed]
  10. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
    [Crossref]
  11. S. Yang, R. Eckardt, and R. Byer, “Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition,” J. Opt. Soc. Am. B 10(9), 1684–1695 (1993).
    [Crossref]
  12. S. Guha, “Focusing dependence of the efficiency of a singly resonant optical parametric oscillator,” Appl. Phys. B 66(6), 663–675 (1998).
    [Crossref]
  13. C. Phillips and M. Fejer, “Stability of the singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 27(12), 2687–2699 (2010).
    [Crossref]
  14. S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B 102(1), 31–35 (2011).
    [Crossref]
  15. K. Devi, S. C. Kumar, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Antiresonant ring output-coupled continuous-wave optical parametric oscillator,” Opt. Express 20(17), 19313–19321 (2012).
    [Crossref] [PubMed]
  16. B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009).
    [Crossref] [PubMed]
  17. N. Thilmann, B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “A narrowband optical parametric oscillator tunable over 6.8 THz through degeneracy with a transversely-chirped volume Bragg grating,” Appl. Phys. B 105(2), 239–244 (2011).
    [Crossref]
  18. M. Vainio and L. Halonen, “Stable operation of a cw optical parametric oscillator near the signal-idler degeneracy,” Opt. Lett. 36(4), 475–477 (2011).
    [Crossref] [PubMed]
  19. M. Vainio, C. Ozanam, V. Ulvila, and L. Halonen, “Tuning and stability of a singly resonant continuous-wave optical parametric oscillator close to degeneracy,” Opt. Express 19(23), 22515–22527 (2011).
    [Crossref] [PubMed]
  20. P. Zeil, V. Pasiskevicius, and F. Laurell, “Efficient spectral control and tuning of a high-power narrow-linewidth Yb-doped fiber laser using a transversely chirped volume Bragg grating,” Opt. Express 21(4), 4027–4035 (2013).
    [PubMed]
  21. J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
    [Crossref]
  22. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).
  23. G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  24. S. T. Lin, Y. Y. Lin, Y. C. Huang, A. C. Chiang, and J. T. Shy, “Observation of thermal-induced optical guiding and bistability in a mid-IR continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 33(20), 2338–2340 (2008).
    [Crossref] [PubMed]

2013 (1)

2012 (1)

2011 (5)

M. Vainio and L. Halonen, “Stable operation of a cw optical parametric oscillator near the signal-idler degeneracy,” Opt. Lett. 36(4), 475–477 (2011).
[Crossref] [PubMed]

M. Vainio, C. Ozanam, V. Ulvila, and L. Halonen, “Tuning and stability of a singly resonant continuous-wave optical parametric oscillator close to degeneracy,” Opt. Express 19(23), 22515–22527 (2011).
[Crossref] [PubMed]

K. Marushkevich, M. Siltanen, M. Räsänen, L. Halonen, and L. Khriachtchev, “Identification of New Dimers of Formic Acid: The Use of a Continuous-Wave Optical Parametric Oscillator in Matrix Isolation Experiments,” J. Phys. Chem. Lett. 2(7), 695–699 (2011).
[Crossref]

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B 102(1), 31–35 (2011).
[Crossref]

N. Thilmann, B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “A narrowband optical parametric oscillator tunable over 6.8 THz through degeneracy with a transversely-chirped volume Bragg grating,” Appl. Phys. B 105(2), 239–244 (2011).
[Crossref]

2010 (2)

A. Henderson and P. Esquinasi, “23-watt 77% efficient CW OPO pumped by a fiber laser,” Proc. SPIE 7580, 75800D (2010).
[Crossref]

C. Phillips and M. Fejer, “Stability of the singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 27(12), 2687–2699 (2010).
[Crossref]

2009 (2)

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009).
[Crossref] [PubMed]

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B 96(1), 25–28 (2009).
[Crossref]

2008 (3)

J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[Crossref]

S. M. Cristescu, S. T. Persijn, S. te Lintel Hekkert, and F. J. M. Harren, “Laser-based systems for trace gas detection in life sciences,” Appl. Phys. B 92(3), 343–349 (2008).
[Crossref]

S. T. Lin, Y. Y. Lin, Y. C. Huang, A. C. Chiang, and J. T. Shy, “Observation of thermal-induced optical guiding and bistability in a mid-IR continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 33(20), 2338–2340 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

2005 (1)

2004 (1)

D. H. Titterton, “A review of the development of optical countermeasures,” Proc. SPIE 5615, 1–15 (2004).
[Crossref]

2002 (1)

1998 (1)

S. Guha, “Focusing dependence of the efficiency of a singly resonant optical parametric oscillator,” Appl. Phys. B 66(6), 663–675 (1998).
[Crossref]

1997 (1)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

1993 (1)

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Adhimoolam, B.

Auerbach, M.

Boller, K.-J.

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Breunig, I.

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B 96(1), 25–28 (2009).
[Crossref]

Buse, K.

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B 96(1), 25–28 (2009).
[Crossref]

Byer, R.

Canalias, C.

N. Thilmann, B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “A narrowband optical parametric oscillator tunable over 6.8 THz through degeneracy with a transversely-chirped volume Bragg grating,” Appl. Phys. B 105(2), 239–244 (2011).
[Crossref]

Chaitanya Kumar, S.

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B 102(1), 31–35 (2011).
[Crossref]

Chiang, A. C.

Cristescu, S. M.

S. M. Cristescu, S. T. Persijn, S. te Lintel Hekkert, and F. J. M. Harren, “Laser-based systems for trace gas detection in life sciences,” Appl. Phys. B 92(3), 343–349 (2008).
[Crossref]

Das, R.

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B 102(1), 31–35 (2011).
[Crossref]

Devi, K.

Ebrahim-Zadeh, M.

K. Devi, S. C. Kumar, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Antiresonant ring output-coupled continuous-wave optical parametric oscillator,” Opt. Express 20(17), 19313–19321 (2012).
[Crossref] [PubMed]

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B 102(1), 31–35 (2011).
[Crossref]

Eckardt, R.

Esquinasi, P.

A. Henderson and P. Esquinasi, “23-watt 77% efficient CW OPO pumped by a fiber laser,” Proc. SPIE 7580, 75800D (2010).
[Crossref]

Esteban-Martin, A.

Fallnich, C.

Fejer, M.

Glebov, L.

Groß, P.

Gross, P.

Guha, S.

S. Guha, “Focusing dependence of the efficiency of a singly resonant optical parametric oscillator,” Appl. Phys. B 66(6), 663–675 (1998).
[Crossref]

Halonen, L.

Harren, F. J. M.

S. M. Cristescu, S. T. Persijn, S. te Lintel Hekkert, and F. J. M. Harren, “Laser-based systems for trace gas detection in life sciences,” Appl. Phys. B 92(3), 343–349 (2008).
[Crossref]

Hellstrom, J. E.

J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[Crossref]

Henderson, A.

Huang, Y. C.

Jacobsson, B.

N. Thilmann, B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “A narrowband optical parametric oscillator tunable over 6.8 THz through degeneracy with a transversely-chirped volume Bragg grating,” Appl. Phys. B 105(2), 239–244 (2011).
[Crossref]

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009).
[Crossref] [PubMed]

J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[Crossref]

Khriachtchev, L.

K. Marushkevich, M. Siltanen, M. Räsänen, L. Halonen, and L. Khriachtchev, “Identification of New Dimers of Formic Acid: The Use of a Continuous-Wave Optical Parametric Oscillator in Matrix Isolation Experiments,” J. Phys. Chem. Lett. 2(7), 695–699 (2011).
[Crossref]

Kiessling, J.

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B 96(1), 25–28 (2009).
[Crossref]

Klein, M. E.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Kumar, S. C.

Laurell, F.

P. Zeil, V. Pasiskevicius, and F. Laurell, “Efficient spectral control and tuning of a high-power narrow-linewidth Yb-doped fiber laser using a transversely chirped volume Bragg grating,” Opt. Express 21(4), 4027–4035 (2013).
[PubMed]

N. Thilmann, B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “A narrowband optical parametric oscillator tunable over 6.8 THz through degeneracy with a transversely-chirped volume Bragg grating,” Appl. Phys. B 105(2), 239–244 (2011).
[Crossref]

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009).
[Crossref] [PubMed]

J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[Crossref]

Lin, S. T.

Lin, Y. Y.

Lindsay, I. D.

Marushkevich, K.

K. Marushkevich, M. Siltanen, M. Räsänen, L. Halonen, and L. Khriachtchev, “Identification of New Dimers of Formic Acid: The Use of a Continuous-Wave Optical Parametric Oscillator in Matrix Isolation Experiments,” J. Phys. Chem. Lett. 2(7), 695–699 (2011).
[Crossref]

Myers, L. E.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

Ozanam, C.

Pasiskevicius, V.

P. Zeil, V. Pasiskevicius, and F. Laurell, “Efficient spectral control and tuning of a high-power narrow-linewidth Yb-doped fiber laser using a transversely chirped volume Bragg grating,” Opt. Express 21(4), 4027–4035 (2013).
[PubMed]

N. Thilmann, B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “A narrowband optical parametric oscillator tunable over 6.8 THz through degeneracy with a transversely-chirped volume Bragg grating,” Appl. Phys. B 105(2), 239–244 (2011).
[Crossref]

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009).
[Crossref] [PubMed]

J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[Crossref]

Persijn, S. T.

S. M. Cristescu, S. T. Persijn, S. te Lintel Hekkert, and F. J. M. Harren, “Laser-based systems for trace gas detection in life sciences,” Appl. Phys. B 92(3), 343–349 (2008).
[Crossref]

Phillips, C.

Räsänen, M.

K. Marushkevich, M. Siltanen, M. Räsänen, L. Halonen, and L. Khriachtchev, “Identification of New Dimers of Formic Acid: The Use of a Continuous-Wave Optical Parametric Oscillator in Matrix Isolation Experiments,” J. Phys. Chem. Lett. 2(7), 695–699 (2011).
[Crossref]

Rotari, E.

Samanta, G. K.

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B 102(1), 31–35 (2011).
[Crossref]

Shy, J. T.

Siltanen, M.

K. Marushkevich, M. Siltanen, M. Räsänen, L. Halonen, and L. Khriachtchev, “Identification of New Dimers of Formic Acid: The Use of a Continuous-Wave Optical Parametric Oscillator in Matrix Isolation Experiments,” J. Phys. Chem. Lett. 2(7), 695–699 (2011).
[Crossref]

Smirnov, V.

Sowade, R.

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B 96(1), 25–28 (2009).
[Crossref]

Stafford, R.

te Lintel Hekkert, S.

S. M. Cristescu, S. T. Persijn, S. te Lintel Hekkert, and F. J. M. Harren, “Laser-based systems for trace gas detection in life sciences,” Appl. Phys. B 92(3), 343–349 (2008).
[Crossref]

Thilmann, N.

N. Thilmann, B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “A narrowband optical parametric oscillator tunable over 6.8 THz through degeneracy with a transversely-chirped volume Bragg grating,” Appl. Phys. B 105(2), 239–244 (2011).
[Crossref]

Titterton, D. H.

D. H. Titterton, “A review of the development of optical countermeasures,” Proc. SPIE 5615, 1–15 (2004).
[Crossref]

Ulvila, V.

Vainio, M.

Walde, T.

Wessels, P.

Yang, S.

Zeil, P.

Appl. Phys. B (5)

S. M. Cristescu, S. T. Persijn, S. te Lintel Hekkert, and F. J. M. Harren, “Laser-based systems for trace gas detection in life sciences,” Appl. Phys. B 92(3), 343–349 (2008).
[Crossref]

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B 96(1), 25–28 (2009).
[Crossref]

S. Guha, “Focusing dependence of the efficiency of a singly resonant optical parametric oscillator,” Appl. Phys. B 66(6), 663–675 (1998).
[Crossref]

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B 102(1), 31–35 (2011).
[Crossref]

N. Thilmann, B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, “A narrowband optical parametric oscillator tunable over 6.8 THz through degeneracy with a transversely-chirped volume Bragg grating,” Appl. Phys. B 105(2), 239–244 (2011).
[Crossref]

IEEE J. Quantum Electron. (2)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric Interaction of Focused Gaussian Light Beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Lett. (1)

K. Marushkevich, M. Siltanen, M. Räsänen, L. Halonen, and L. Khriachtchev, “Identification of New Dimers of Formic Acid: The Use of a Continuous-Wave Optical Parametric Oscillator in Matrix Isolation Experiments,” J. Phys. Chem. Lett. 2(7), 695–699 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Proc. SPIE (2)

A. Henderson and P. Esquinasi, “23-watt 77% efficient CW OPO pumped by a fiber laser,” Proc. SPIE 7580, 75800D (2010).
[Crossref]

D. H. Titterton, “A review of the development of optical countermeasures,” Proc. SPIE 5615, 1–15 (2004).
[Crossref]

Other (1)

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the SRO bow-tie cavity with a variable-reflectivity VBG as output coupler.
Fig. 2
Fig. 2 Measured VBG peak reflectivity at normal incidence (black squares) and calculated peak reflectivities under oblique incidence at 3° assuming a Gaussian beam waist of 200 µm at the grating position (red circles).
Fig. 3
Fig. 3 (a) Measured threshold power for different positions of the VBG and (b) measured (black squares) and calculated (dashed red line) correlation between SRO threshold and VBG transmission.
Fig. 4
Fig. 4 (a) Depletion and (b) extraction efficiencies for different maximum pump thresholds (VBG transmissions) as indicated in the legend of the graphs. Dashed lines correspond to the calculated extraction efficiencies using the measured depletion values and previously determined parasitic loss of 1.2% according to Eq. (2).
Fig. 5
Fig. 5 Measurement on signal bandwidth using a scanning Fabry-Pérot interferometer with 1 GHz free spectral range; the FWHM bandwidth of the signal was 1.65 MHz.
Fig. 6
Fig. 6 Long-term measurements over 1.5 hours of (a) the frequency deviation of the signal from the initial central frequency measured with a wavemeter (circles) and a Fabry-Pérot interferometer (line), (b) the output power of the signal, (c) the output power of the idler, and (d) the room temperature

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P th = ε 0 n s 2 c 0 λ p λ s λ i 4 π 2 d eff 2 L h m (B,ξ) ( T s + V s ),
η d =1 P p out P p in η e = P s + P i P p in =( λ p λ s T s T s + V s + λ p λ i ) η d ,

Metrics