Abstract

We demonstrate the first PN-type carrier-induced silicon waveguide Bragg grating filter on a SOI wafer. The optical extinction ratio of this kind of filter can be efficiently modulated under both reverse and forward biases. The carrier-induced Bragg grating based on a PN junction is fabricated on the silicon waveguide using litho compensation technology. The measured optical bandwidth and the extinction ratio of the filter are 0.45 nm and 19 dB, respectively. The optical extinction ratio modulation under the reverse bias is more than 11.5 dB and it is more than 10 dB under the forward bias. Only 1-dB optical transmission loss is realized in this Bragg grating under a reverse bias. The shifting rates of the central wavelength under forward and reverse biases are ~-1.25 nm/V and 0.01 nm/V, respectively. The 3-dB modulation bandwidth of this filter is 5.1 GHz at a bias of −10 V.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of a silicon Mach–Zehnder modulator with a U-type PN junction

Tongtong Cao, Yonghao Fei, Libin Zhang, Yanmei Cao, and Shaowu Chen
Appl. Opt. 52(24) 5941-5948 (2013)

Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions

Zhi-Yong Li, Dan-Xia Xu, W. Ross McKinnon, Siegfried Janz, Jens H. Schmid, Pavel Cheben, and Jin-Zhong Yu
Opt. Express 17(18) 15947-15958 (2009)

High-efficiency Si optical modulator using Cu travelling-wave electrode

Yan Yang, Qing Fang, Mingbin Yu, Xiaoguang Tu, Rusli Rusli, and Guo-Qiang Lo
Opt. Express 22(24) 29978-29985 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
    [Crossref]
  2. A. D. Kersey, T. A. Berkoff, and W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry - Perot wavelength filter,” Opt. Lett. 18(16), 1370–1372 (1993).
    [Crossref] [PubMed]
  3. C. Y. Lin and L. A. Wang, “A wavelength- and loss- tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photon. Technol. Lett. 13(4), 332–334 (2001).
    [Crossref]
  4. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [Crossref]
  5. H. Tsuda, “Fiber Bragg grating vibration-sensing system, insensitive to Bragg wavelength and employing fiber ring laser,” Opt. Lett. 35(14), 2349–2351 (2010).
    [Crossref] [PubMed]
  6. Y. G. Han and S. B. Lee, “Tunable dispersion compensator based on uniform fiber Bragg grating and its application to tunable pulse repetition-rate multiplication,” Opt. Express 13(23), 9224–9229 (2005).
    [Crossref] [PubMed]
  7. I. Giuntoni, A. Gajda, M. Krause, R. Steingrüber, J. Bruns, and K. Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Opt. Express 17(21), 18518–18524 (2009).
    [Crossref] [PubMed]
  8. J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. V. Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” IEEE Photon. Technol. Lett. 20(4), 309–311 (2008).
    [Crossref]
  9. R. M. Parker, J. C. Gates, M. C. Grossel, and P. G. R. Smith, “In vacuo measurement of the sensitivity limit of planar Bragg grating sensors for monolayer detection,” Appl. Phys. Lett. 95(17), 173306 (2009).
    [Crossref]
  10. G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg grating in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23(1), 6–8 (2011).
  11. J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, “Optical add-drop multiplexers based on the antisymmetric waveguide Bragg grating,” Appl. Opt. 45(6), 1236–1243 (2006).
    [Crossref] [PubMed]
  12. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Opt. Lett. 34(9), 1357–1359 (2009).
    [Crossref] [PubMed]
  13. S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI ridge waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
    [Crossref]
  14. Q. Fang, J. F. Song, X. G. Tu, L. X. Jia, X. S. Luo, M. B. Yu, and G. Q. Lo, “Carrer-induced silicon Bragg grating filters with a p-i-n junction,” IEEE Photon. Technol. Lett. 25(9), 810–812 (2013).
    [Crossref]
  15. Q. Fang, J. F. Song, X. S. Luo, L. X. Jia, M. B. Yu. G. Q. Lo, and Y. L. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
    [Crossref]

2013 (1)

Q. Fang, J. F. Song, X. G. Tu, L. X. Jia, X. S. Luo, M. B. Yu, and G. Q. Lo, “Carrer-induced silicon Bragg grating filters with a p-i-n junction,” IEEE Photon. Technol. Lett. 25(9), 810–812 (2013).
[Crossref]

2012 (1)

Q. Fang, J. F. Song, X. S. Luo, L. X. Jia, M. B. Yu. G. Q. Lo, and Y. L. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
[Crossref]

2011 (1)

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg grating in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23(1), 6–8 (2011).

2010 (1)

2009 (3)

2008 (1)

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. V. Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” IEEE Photon. Technol. Lett. 20(4), 309–311 (2008).
[Crossref]

2007 (1)

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI ridge waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

2006 (1)

2005 (2)

Y. G. Han and S. B. Lee, “Tunable dispersion compensator based on uniform fiber Bragg grating and its application to tunable pulse repetition-rate multiplication,” Opt. Express 13(23), 9224–9229 (2005).
[Crossref] [PubMed]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

2001 (1)

C. Y. Lin and L. A. Wang, “A wavelength- and loss- tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photon. Technol. Lett. 13(4), 332–334 (2001).
[Crossref]

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

1993 (1)

Baets, R.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. V. Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” IEEE Photon. Technol. Lett. 20(4), 309–311 (2008).
[Crossref]

Berkoff, T. A.

Bogaerts, W.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. V. Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” IEEE Photon. Technol. Lett. 20(4), 309–311 (2008).
[Crossref]

Brouckaert, J.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. V. Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” IEEE Photon. Technol. Lett. 20(4), 309–311 (2008).
[Crossref]

Bruns, J.

Castro, J. M.

Chen, R.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg grating in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23(1), 6–8 (2011).

Dumon, P.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. V. Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” IEEE Photon. Technol. Lett. 20(4), 309–311 (2008).
[Crossref]

Edura, T.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI ridge waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

Fainman, Y.

Fang, Q.

Q. Fang, J. F. Song, X. G. Tu, L. X. Jia, X. S. Luo, M. B. Yu, and G. Q. Lo, “Carrer-induced silicon Bragg grating filters with a p-i-n junction,” IEEE Photon. Technol. Lett. 25(9), 810–812 (2013).
[Crossref]

Q. Fang, J. F. Song, X. S. Luo, L. X. Jia, M. B. Yu. G. Q. Lo, and Y. L. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
[Crossref]

Gajda, A.

Gates, J. C.

R. M. Parker, J. C. Gates, M. C. Grossel, and P. G. R. Smith, “In vacuo measurement of the sensitivity limit of planar Bragg grating sensors for monolayer detection,” Appl. Phys. Lett. 95(17), 173306 (2009).
[Crossref]

Geraghty, D. F.

Giuntoni, I.

Greiner, C. M.

Grossel, M. C.

R. M. Parker, J. C. Gates, M. C. Grossel, and P. G. R. Smith, “In vacuo measurement of the sensitivity limit of planar Bragg grating sensors for monolayer detection,” Appl. Phys. Lett. 95(17), 173306 (2009).
[Crossref]

Han, Y. G.

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Honda, S.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI ridge waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

Honkanen, S.

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Iazikov, D.

Ikeda, K.

Jia, L. X.

Q. Fang, J. F. Song, X. G. Tu, L. X. Jia, X. S. Luo, M. B. Yu, and G. Q. Lo, “Carrer-induced silicon Bragg grating filters with a p-i-n junction,” IEEE Photon. Technol. Lett. 25(9), 810–812 (2013).
[Crossref]

Q. Fang, J. F. Song, X. S. Luo, L. X. Jia, M. B. Yu. G. Q. Lo, and Y. L. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
[Crossref]

Jiang, G.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg grating in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23(1), 6–8 (2011).

Jiang, X.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg grating in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23(1), 6–8 (2011).

Kersey, A. D.

Krause, M.

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Lee, S. B.

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Lin, C. Y.

C. Y. Lin and L. A. Wang, “A wavelength- and loss- tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photon. Technol. Lett. 13(4), 332–334 (2001).
[Crossref]

Liu, Y. L.

Q. Fang, J. F. Song, X. S. Luo, L. X. Jia, M. B. Yu. G. Q. Lo, and Y. L. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
[Crossref]

Lo, G. Q.

Q. Fang, J. F. Song, X. G. Tu, L. X. Jia, X. S. Luo, M. B. Yu, and G. Q. Lo, “Carrer-induced silicon Bragg grating filters with a p-i-n junction,” IEEE Photon. Technol. Lett. 25(9), 810–812 (2013).
[Crossref]

Lo, M. B. Yu. G. Q.

Q. Fang, J. F. Song, X. S. Luo, L. X. Jia, M. B. Yu. G. Q. Lo, and Y. L. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
[Crossref]

Luo, X. S.

Q. Fang, J. F. Song, X. G. Tu, L. X. Jia, X. S. Luo, M. B. Yu, and G. Q. Lo, “Carrer-induced silicon Bragg grating filters with a p-i-n junction,” IEEE Photon. Technol. Lett. 25(9), 810–812 (2013).
[Crossref]

Q. Fang, J. F. Song, X. S. Luo, L. X. Jia, M. B. Yu. G. Q. Lo, and Y. L. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
[Crossref]

Matsui, J.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI ridge waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Morey, W. W.

Mossberg, T. W.

Parker, R. M.

R. M. Parker, J. C. Gates, M. C. Grossel, and P. G. R. Smith, “In vacuo measurement of the sensitivity limit of planar Bragg grating sensors for monolayer detection,” Appl. Phys. Lett. 95(17), 173306 (2009).
[Crossref]

Petermann, K.

Selvaraja, S.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. V. Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” IEEE Photon. Technol. Lett. 20(4), 309–311 (2008).
[Crossref]

Smith, P. G. R.

R. M. Parker, J. C. Gates, M. C. Grossel, and P. G. R. Smith, “In vacuo measurement of the sensitivity limit of planar Bragg grating sensors for monolayer detection,” Appl. Phys. Lett. 95(17), 173306 (2009).
[Crossref]

Song, J. F.

Q. Fang, J. F. Song, X. G. Tu, L. X. Jia, X. S. Luo, M. B. Yu, and G. Q. Lo, “Carrer-induced silicon Bragg grating filters with a p-i-n junction,” IEEE Photon. Technol. Lett. 25(9), 810–812 (2013).
[Crossref]

Q. Fang, J. F. Song, X. S. Luo, L. X. Jia, M. B. Yu. G. Q. Lo, and Y. L. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
[Crossref]

Steingrüber, R.

Tan, D. T. H.

Thourhout, D. V.

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. V. Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” IEEE Photon. Technol. Lett. 20(4), 309–311 (2008).
[Crossref]

Tokuda, M.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI ridge waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

Tsuda, H.

Tsutsui, K.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI ridge waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

Tu, X. G.

Q. Fang, J. F. Song, X. G. Tu, L. X. Jia, X. S. Luo, M. B. Yu, and G. Q. Lo, “Carrer-induced silicon Bragg grating filters with a p-i-n junction,” IEEE Photon. Technol. Lett. 25(9), 810–812 (2013).
[Crossref]

Utaka, K.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI ridge waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

Wada, Y.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI ridge waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

Wang, L. A.

C. Y. Lin and L. A. Wang, “A wavelength- and loss- tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photon. Technol. Lett. 13(4), 332–334 (2001).
[Crossref]

Wang, M.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg grating in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23(1), 6–8 (2011).

Wu, Z.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI ridge waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yang, J.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg grating in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23(1), 6–8 (2011).

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yu, M. B.

Q. Fang, J. F. Song, X. G. Tu, L. X. Jia, X. S. Luo, M. B. Yu, and G. Q. Lo, “Carrer-induced silicon Bragg grating filters with a p-i-n junction,” IEEE Photon. Technol. Lett. 25(9), 810–812 (2013).
[Crossref]

Zhou, Q.

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg grating in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23(1), 6–8 (2011).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. M. Parker, J. C. Gates, M. C. Grossel, and P. G. R. Smith, “In vacuo measurement of the sensitivity limit of planar Bragg grating sensors for monolayer detection,” Appl. Phys. Lett. 95(17), 173306 (2009).
[Crossref]

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Electron. Lett. (1)

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI ridge waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (5)

Q. Fang, J. F. Song, X. G. Tu, L. X. Jia, X. S. Luo, M. B. Yu, and G. Q. Lo, “Carrer-induced silicon Bragg grating filters with a p-i-n junction,” IEEE Photon. Technol. Lett. 25(9), 810–812 (2013).
[Crossref]

Q. Fang, J. F. Song, X. S. Luo, L. X. Jia, M. B. Yu. G. Q. Lo, and Y. L. Liu, “High efficiency ring-resonator filter with NiSi heater,” IEEE Photon. Technol. Lett. 24(5), 350–352 (2012).
[Crossref]

G. Jiang, R. Chen, Q. Zhou, J. Yang, M. Wang, and X. Jiang, “Slab-modulated sidewall Bragg grating in silicon-on-insulator ridge waveguides,” IEEE Photon. Technol. Lett. 23(1), 6–8 (2011).

C. Y. Lin and L. A. Wang, “A wavelength- and loss- tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photon. Technol. Lett. 13(4), 332–334 (2001).
[Crossref]

J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and D. V. Thourhout, “Planar concave grating demultiplexer with high reflective Bragg reflector facets,” IEEE Photon. Technol. Lett. 20(4), 309–311 (2008).
[Crossref]

J. Lightwave Technol. (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15(8), 1263–1276 (1997).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Three-dimensional (3D) structure for the Bragg grating. (a) Three-dimensional (3D) structure of Bragg grating with a PN junction. (b) Top view of the Bragg grating. (c) Cross-sections of the Bragg grating at the AA’ line and BB’ line in (b).
Fig. 2
Fig. 2 Compensation design for PN-type grating formation. (a) Designed/actual patterns of the finger (red color is the design pattern); (b) Compensation design on the layout, including 180 nm overlapped area.
Fig. 3
Fig. 3 Simulated depletion width of a PN junction under the reverse bias.
Fig. 4
Fig. 4 Optical transmission spectra of filter. (a) With forward biases. (b) With reverse biases.
Fig. 5
Fig. 5 Reflected wavelength shifts of filter. (a) With forward biases. (b) With reverse biases.
Fig. 6
Fig. 6 Electrical performances of grating. (a) 3-dB bandwidth at −10 V. (b) IV curve

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W= [ 2ε( V bi V) e ( N a + N d N a N d ) ] 1 2

Metrics