Abstract

With the recent development of organic solid-state lasers (OSSLs) architectures enabling power scaling and progresses towards continuous-wave operation, the question of thermal effects now arises in OSSLs. In this paper, a Rhodamine 640-PMMA based vertical external cavity surface emitting organic laser is investigated. A thermal microscope is used to record temperature maps at the organic thin film surface during laser action; those maps are compared with time-resolved finite element thermal simulations. The measured and simulated peak temperature rises are in good accordance and are shown to remain below 10 K in standard operating conditions, showing a negligible impact on performance. The validated model is used to investigate typical OSSL structures from the literature, in a virtual high average power regime, and up to the CW regime. It is shown that whenever true CW organic lasing will be realized, significant thermal effects will have to be considered and properly managed.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Very compact tunable solid-state laser utilizing a thin-film organic semiconductor

S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer
Opt. Lett. 26(9) 593-595 (2001)

Transient thermal-lensing effects on the performance of repetitively pulsed solid-state lasers

David H. Stone and Matthew D. Rotondaro
Appl. Opt. 31(9) 1314-1317 (1992)

References

  • View by:
  • |
  • |
  • |

  1. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
    [Crossref] [PubMed]
  2. S. Chénais and S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
    [Crossref]
  3. X. Liu, P. Stefanou, B. H. Wang, T. Woggon, T. Mappes, and U. Lemmer, “Organic semiconductor distributed feedback (DFB) laser as excitation source in Raman spectroscopy,” Opt. Express 21(23), 28941–28947 (2013).
    [Crossref] [PubMed]
  4. Y. Wang, P. O. Morawska, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “LED pumped polymer laser sensor for explosives,” Laser Photonics Rev. 7(6), L71–L76 (2013).
    [Crossref]
  5. A. Rose, Z. G. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
    [Crossref] [PubMed]
  6. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
    [Crossref]
  7. X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
    [Crossref]
  8. S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357–6364 (2012).
    [Crossref] [PubMed]
  9. Y. Wang, G. Tsiminis, A. L. Kanibolotsky, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators,” Opt. Express 21(12), 14362–14367 (2013).
    [Crossref] [PubMed]
  10. V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
    [Crossref]
  11. S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, “Ring microlasers from conducting polymers,” Phys. Rev. B 56(8), R4363–R4366 (1997).
    [Crossref]
  12. H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic–inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).
    [Crossref]
  13. H. Rabbani-Haghighi, S. Forget, S. Chénais, and A. Siove, “Highly efficient, diffraction-limited laser emission from a Vertical External-Cavity Surface-emitting Organic Laser,” Opt. Lett. 35(12), 1968–1970 (2010).
    [Crossref] [PubMed]
  14. S. Chenais and S. Forget, Organic Solid State Lasers (Springer‐Verlag, 2013).
  15. M. D. Rahn, T. A. King, A. A. Gorman, and I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36(24), 5862–5871 (1997).
    [Crossref] [PubMed]
  16. S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91(26), 261104 (2007).
    [Crossref]
  17. Visolas, “VISOLAS Laser Piano,” (Visolas, 2014), http://visolas.de/en// .
  18. H.-J. Brouwer, V. V. Krasnikov, A. Hilberer, J. Wildeman, and G. Hadziioannou, “Novel high efficiency copolymer laser dye in the blue wavelength region,” Appl. Phys. Lett. 66(25), 3404 (1995).
    [Crossref]
  19. D. N. Kumar, J. D. Bhawalkar, and P. N. Prasad, “Solid-State Cavity Lasing from Poly(p-Phenylene Vinylene)-Silica Nanocomposite Bulk,” Appl. Opt. 37(3), 510–513 (1998).
    [Crossref] [PubMed]
  20. Y. F. Zhang and S. R. Forrest, “Existence of continuous-wave threshold for organic semiconductor lasers,” Phys. Rev. B 84(24), 241301 (2011).
    [Crossref]
  21. M. Lehnhardt, T. Riedl, U. Scherf, T. Rabe, and W. Kowalsky, “Room temperature lifetime of triplet excitons in fluorescent host/guest systems,” Org. Electron. 12(3), 1346–1351 (2011).
    [Crossref]
  22. V. Navarro-Fuster, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, M. A. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
    [Crossref]
  23. C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: parallel fabrication and encapsulation,” Opt. Express 18(24), 24881–24887 (2010).
    [Crossref] [PubMed]
  24. W. Koechner, Solid State Laser Engineering (Springer, 2006).
  25. V. G. Kozlov, V. Bulovic, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett. 71(18), 2575 (1997).
    [Crossref]
  26. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
    [Crossref]
  27. M. Talhavini and T. D. Z. Atvars, “Dye-polymer interactions controlling the kinetics of fluorescein photobleaching reactions in poly(vinyl alcohol),” J. Photochem. Photobiol. Chem. 114(1), 65–73 (1998).
    [Crossref]
  28. I. G. Kytina, V. G. Kytin, and K. Lips, “High power polymer dye laser with imporoved stability,” Appl. Phys. Lett. 84(24), 4902 (2004).
    [Crossref]
  29. R. Kappes, Laser Heating of Polymers, PhD dissertation, (Johannes Gutenberg-Universität, 2012).
  30. H. Rabbani-Haghighi, S. Forget, A. Siove, and S. Chénais, “Analytical study of vertical external-cavity surface-emitting organic lasers,” Eur. Phys. J. Appl. Phys. 56(3), 34108 (2011).
    [Crossref]
  31. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [Crossref]
  32. S. Chenais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79(2), 221–224 (2004).
    [Crossref]
  33. H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids (Oxford University, 1959).
  34. A. J. Maclean, R. B. Birch, P. W. Roth, A. J. Kemp, and D. Burns, “Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders,” J. Opt. Soc. Am. B 26(12), 2228–2236 (2009).
  35. J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48-49, 352–358 (1991).
    [Crossref]
  36. M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
    [Crossref]
  37. Y. Zhu and A. Bui, “Thermal modeling of PMMA microfluidic separation chips,” in Technical Proceedings of the 2006 NSTI Nanotechnology Conference and Trade Show (Nanotech 2006), pp. 655–658.
  38. R. Bornemann, U. Lemmer, and E. Thiel, “Continuous-wave solid-state dye laser,” Opt. Lett. 31(11), 1669–1671 (2006).
    [Crossref] [PubMed]
  39. W. J. Wadsworth, S. M. Giffin, I. T. McKinnie, J. C. Sharpe, A. D. Woolhouse, T. G. Haskell, and G. J. Smith, “Thermal and optical properties of polymer hosts for solid-state dye lasers,” Appl. Opt. 38(12), 2504–2509 (1999).
    [Crossref] [PubMed]
  40. G. Tsiminis, Y. Wang, A. L. Kanibolotsky, A. R. Inigo, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted organic semiconductor laser pumped by a light-emitting diode,” Adv. Mater. 25(20), 2826–2830 (2013).
    [Crossref] [PubMed]
  41. N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1–2), 89–96 (1995).
    [Crossref]
  42. M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–320 (2004).
    [Crossref]
  43. X. Qi and S. R. Forrest, “Thermal analysis of high intensity organic light-emitting diodes based on a transmission matrix approach,” J. Appl. Phys. 110(12), 124516 (2011).
    [Crossref]
  44. K. Naito and A. Miura, “Molecular design for nonpolymeric organic dye glasses with thermal stability: relations between thermodynamic parameters and amorphous properties,” J. Phys. Chem. 97(23), 6240–6248 (1993).
    [Crossref]
  45. A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
    [Crossref]

2013 (4)

Y. Wang, P. O. Morawska, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “LED pumped polymer laser sensor for explosives,” Laser Photonics Rev. 7(6), L71–L76 (2013).
[Crossref]

G. Tsiminis, Y. Wang, A. L. Kanibolotsky, A. R. Inigo, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted organic semiconductor laser pumped by a light-emitting diode,” Adv. Mater. 25(20), 2826–2830 (2013).
[Crossref] [PubMed]

Y. Wang, G. Tsiminis, A. L. Kanibolotsky, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators,” Opt. Express 21(12), 14362–14367 (2013).
[Crossref] [PubMed]

X. Liu, P. Stefanou, B. H. Wang, T. Woggon, T. Mappes, and U. Lemmer, “Organic semiconductor distributed feedback (DFB) laser as excitation source in Raman spectroscopy,” Opt. Express 21(23), 28941–28947 (2013).
[Crossref] [PubMed]

2012 (3)

S. Klinkhammer, X. Liu, K. Huska, Y. Shen, S. Vanderheiden, S. Valouch, C. Vannahme, S. Bräse, T. Mappes, and U. Lemmer, “Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode,” Opt. Express 20(6), 6357–6364 (2012).
[Crossref] [PubMed]

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

S. Chénais and S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[Crossref]

2011 (4)

Y. F. Zhang and S. R. Forrest, “Existence of continuous-wave threshold for organic semiconductor lasers,” Phys. Rev. B 84(24), 241301 (2011).
[Crossref]

M. Lehnhardt, T. Riedl, U. Scherf, T. Rabe, and W. Kowalsky, “Room temperature lifetime of triplet excitons in fluorescent host/guest systems,” Org. Electron. 12(3), 1346–1351 (2011).
[Crossref]

H. Rabbani-Haghighi, S. Forget, A. Siove, and S. Chénais, “Analytical study of vertical external-cavity surface-emitting organic lasers,” Eur. Phys. J. Appl. Phys. 56(3), 34108 (2011).
[Crossref]

X. Qi and S. R. Forrest, “Thermal analysis of high intensity organic light-emitting diodes based on a transmission matrix approach,” J. Appl. Phys. 110(12), 124516 (2011).
[Crossref]

2010 (4)

V. Navarro-Fuster, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, M. A. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[Crossref]

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

H. Rabbani-Haghighi, S. Forget, S. Chénais, and A. Siove, “Highly efficient, diffraction-limited laser emission from a Vertical External-Cavity Surface-emitting Organic Laser,” Opt. Lett. 35(12), 1968–1970 (2010).
[Crossref] [PubMed]

C. Vannahme, S. Klinkhammer, M. B. Christiansen, A. Kolew, A. Kristensen, U. Lemmer, and T. Mappes, “All-polymer organic semiconductor laser chips: parallel fabrication and encapsulation,” Opt. Express 18(24), 24881–24887 (2010).
[Crossref] [PubMed]

2009 (2)

A. J. Maclean, R. B. Birch, P. W. Roth, A. J. Kemp, and D. Burns, “Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders,” J. Opt. Soc. Am. B 26(12), 2228–2236 (2009).

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
[Crossref]

2008 (1)

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic–inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).
[Crossref]

2007 (3)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref] [PubMed]

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91(26), 261104 (2007).
[Crossref]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

2006 (2)

R. Bornemann, U. Lemmer, and E. Thiel, “Continuous-wave solid-state dye laser,” Opt. Lett. 31(11), 1669–1671 (2006).
[Crossref] [PubMed]

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

2005 (2)

A. Rose, Z. G. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref] [PubMed]

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

2004 (3)

S. Chenais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79(2), 221–224 (2004).
[Crossref]

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

I. G. Kytina, V. G. Kytin, and K. Lips, “High power polymer dye laser with imporoved stability,” Appl. Phys. Lett. 84(24), 4902 (2004).
[Crossref]

1999 (1)

1998 (2)

D. N. Kumar, J. D. Bhawalkar, and P. N. Prasad, “Solid-State Cavity Lasing from Poly(p-Phenylene Vinylene)-Silica Nanocomposite Bulk,” Appl. Opt. 37(3), 510–513 (1998).
[Crossref] [PubMed]

M. Talhavini and T. D. Z. Atvars, “Dye-polymer interactions controlling the kinetics of fluorescein photobleaching reactions in poly(vinyl alcohol),” J. Photochem. Photobiol. Chem. 114(1), 65–73 (1998).
[Crossref]

1997 (4)

V. G. Kozlov, V. Bulovic, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett. 71(18), 2575 (1997).
[Crossref]

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[Crossref]

S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, “Ring microlasers from conducting polymers,” Phys. Rev. B 56(8), R4363–R4366 (1997).
[Crossref]

M. D. Rahn, T. A. King, A. A. Gorman, and I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36(24), 5862–5871 (1997).
[Crossref] [PubMed]

1995 (2)

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1–2), 89–96 (1995).
[Crossref]

H.-J. Brouwer, V. V. Krasnikov, A. Hilberer, J. Wildeman, and G. Hadziioannou, “Novel high efficiency copolymer laser dye in the blue wavelength region,” Appl. Phys. Lett. 66(25), 3404 (1995).
[Crossref]

1993 (1)

K. Naito and A. Miura, “Molecular design for nonpolymeric organic dye glasses with thermal stability: relations between thermodynamic parameters and amorphous properties,” J. Phys. Chem. 97(23), 6240–6248 (1993).
[Crossref]

1991 (1)

J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48-49, 352–358 (1991).
[Crossref]

Arden, J.

J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48-49, 352–358 (1991).
[Crossref]

Atvars, T. D. Z.

M. Talhavini and T. D. Z. Atvars, “Dye-polymer interactions controlling the kinetics of fluorescein photobleaching reactions in poly(vinyl alcohol),” J. Photochem. Photobiol. Chem. 114(1), 65–73 (1998).
[Crossref]

Balembois, F.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

S. Chenais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79(2), 221–224 (2004).
[Crossref]

Bhawalkar, J. D.

Birch, R. B.

Boj, P. G.

V. Navarro-Fuster, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, M. A. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[Crossref]

Bornemann, R.

Bräse, S.

Brouwer, H.-J.

H.-J. Brouwer, V. V. Krasnikov, A. Hilberer, J. Wildeman, and G. Hadziioannou, “Novel high efficiency copolymer laser dye in the blue wavelength region,” Appl. Phys. Lett. 66(25), 3404 (1995).
[Crossref]

Bulovic, V.

A. Rose, Z. G. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref] [PubMed]

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[Crossref]

V. G. Kozlov, V. Bulovic, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett. 71(18), 2575 (1997).
[Crossref]

Burns, D.

A. J. Maclean, R. B. Birch, P. W. Roth, A. J. Kemp, and D. Burns, “Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders,” J. Opt. Soc. Am. B 26(12), 2228–2236 (2009).

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

Burrows, P. E.

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[Crossref]

Calvez, S.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

Calzado, E. M.

V. Navarro-Fuster, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, M. A. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[Crossref]

Chenais, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

S. Chenais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79(2), 221–224 (2004).
[Crossref]

Chénais, S.

S. Chénais and S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[Crossref]

H. Rabbani-Haghighi, S. Forget, A. Siove, and S. Chénais, “Analytical study of vertical external-cavity surface-emitting organic lasers,” Eur. Phys. J. Appl. Phys. 56(3), 34108 (2011).
[Crossref]

H. Rabbani-Haghighi, S. Forget, S. Chénais, and A. Siove, “Highly efficient, diffraction-limited laser emission from a Vertical External-Cavity Surface-emitting Organic Laser,” Opt. Lett. 35(12), 1968–1970 (2010).
[Crossref] [PubMed]

Christiansen, M. B.

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Dawson, M. D.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

Deltau, G.

J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48-49, 352–358 (1991).
[Crossref]

Díaz-García, M. A.

V. Navarro-Fuster, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, M. A. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[Crossref]

Drexhage, K. H.

J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48-49, 352–358 (1991).
[Crossref]

Druon, F.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

S. Chenais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79(2), 221–224 (2004).
[Crossref]

Eychmüller, A.

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
[Crossref]

Forget, S.

S. Chénais and S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[Crossref]

H. Rabbani-Haghighi, S. Forget, A. Siove, and S. Chénais, “Analytical study of vertical external-cavity surface-emitting organic lasers,” Eur. Phys. J. Appl. Phys. 56(3), 34108 (2011).
[Crossref]

H. Rabbani-Haghighi, S. Forget, S. Chénais, and A. Siove, “Highly efficient, diffraction-limited laser emission from a Vertical External-Cavity Surface-emitting Organic Laser,” Opt. Lett. 35(12), 1968–1970 (2010).
[Crossref] [PubMed]

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

S. Chenais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79(2), 221–224 (2004).
[Crossref]

Forrest, S. R.

X. Qi and S. R. Forrest, “Thermal analysis of high intensity organic light-emitting diodes based on a transmission matrix approach,” J. Appl. Phys. 110(12), 124516 (2011).
[Crossref]

Y. F. Zhang and S. R. Forrest, “Existence of continuous-wave threshold for organic semiconductor lasers,” Phys. Rev. B 84(24), 241301 (2011).
[Crossref]

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[Crossref]

V. G. Kozlov, V. Bulovic, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett. 71(18), 2575 (1997).
[Crossref]

Friend, R. H.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1–2), 89–96 (1995).
[Crossref]

Frolov, S. V.

S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, “Ring microlasers from conducting polymers,” Phys. Rev. B 56(8), R4363–R4366 (1997).
[Crossref]

Funabashi, M.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Gaponik, N.

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
[Crossref]

Gaudin, O. P. M.

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91(26), 261104 (2007).
[Crossref]

Georges, P.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

S. Chenais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79(2), 221–224 (2004).
[Crossref]

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Giffin, S. M.

Gorman, A. A.

Grabolle, M.

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
[Crossref]

Greenham, N. C.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1–2), 89–96 (1995).
[Crossref]

Hadziioannou, G.

H.-J. Brouwer, V. V. Krasnikov, A. Hilberer, J. Wildeman, and G. Hadziioannou, “Novel high efficiency copolymer laser dye in the blue wavelength region,” Appl. Phys. Lett. 66(25), 3404 (1995).
[Crossref]

Hamblett, I.

Haskell, T. G.

Hastie, J. E.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

Hayes, G. R.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1–2), 89–96 (1995).
[Crossref]

Hilberer, A.

H.-J. Brouwer, V. V. Krasnikov, A. Hilberer, J. Wildeman, and G. Hadziioannou, “Novel high efficiency copolymer laser dye in the blue wavelength region,” Appl. Phys. Lett. 66(25), 3404 (1995).
[Crossref]

Holmes, A. B.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1–2), 89–96 (1995).
[Crossref]

Hopkins, J. M.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

Huska, K.

Huth, V.

J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48-49, 352–358 (1991).
[Crossref]

Inigo, A. R.

G. Tsiminis, Y. Wang, A. L. Kanibolotsky, A. R. Inigo, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted organic semiconductor laser pumped by a light-emitting diode,” Adv. Mater. 25(20), 2826–2830 (2013).
[Crossref] [PubMed]

Juarros, A.

V. Navarro-Fuster, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, M. A. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[Crossref]

Kanibolotsky, A. L.

Y. Wang, P. O. Morawska, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “LED pumped polymer laser sensor for explosives,” Laser Photonics Rev. 7(6), L71–L76 (2013).
[Crossref]

G. Tsiminis, Y. Wang, A. L. Kanibolotsky, A. R. Inigo, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted organic semiconductor laser pumped by a light-emitting diode,” Adv. Mater. 25(20), 2826–2830 (2013).
[Crossref] [PubMed]

Y. Wang, G. Tsiminis, A. L. Kanibolotsky, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators,” Opt. Express 21(12), 14362–14367 (2013).
[Crossref] [PubMed]

Kaschke, J.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Kasukawa, A.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Kemp, A. J.

A. J. Maclean, R. B. Birch, P. W. Roth, A. J. Kemp, and D. Burns, “Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders,” J. Opt. Soc. Am. B 26(12), 2228–2236 (2009).

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

Kessener, Y. A. R. R.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1–2), 89–96 (1995).
[Crossref]

Kimoto, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

King, T. A.

Kise, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Klinkhammer, S.

Kolew, A.

Kowalsky, W.

M. Lehnhardt, T. Riedl, U. Scherf, T. Rabe, and W. Kowalsky, “Room temperature lifetime of triplet excitons in fluorescent host/guest systems,” Org. Electron. 12(3), 1346–1351 (2011).
[Crossref]

Kozlov, V. G.

V. G. Kozlov, V. Bulovic, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett. 71(18), 2575 (1997).
[Crossref]

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[Crossref]

Krasnikov, V. V.

H.-J. Brouwer, V. V. Krasnikov, A. Hilberer, J. Wildeman, and G. Hadziioannou, “Novel high efficiency copolymer laser dye in the blue wavelength region,” Appl. Phys. Lett. 66(25), 3404 (1995).
[Crossref]

Kringel, U.

J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48-49, 352–358 (1991).
[Crossref]

Kristensen, A.

Kumar, D. N.

Kytin, V. G.

I. G. Kytina, V. G. Kytin, and K. Lips, “High power polymer dye laser with imporoved stability,” Appl. Phys. Lett. 84(24), 4902 (2004).
[Crossref]

Kytina, I. G.

I. G. Kytina, V. G. Kytin, and K. Lips, “High power polymer dye laser with imporoved stability,” Appl. Phys. Lett. 84(24), 4902 (2004).
[Crossref]

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Lehnhardt, M.

M. Lehnhardt, T. Riedl, U. Scherf, T. Rabe, and W. Kowalsky, “Room temperature lifetime of triplet excitons in fluorescent host/guest systems,” Org. Electron. 12(3), 1346–1351 (2011).
[Crossref]

Lemmer, U.

Lesnyak, V.

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
[Crossref]

Lips, K.

I. G. Kytina, V. G. Kytin, and K. Lips, “High power polymer dye laser with imporoved stability,” Appl. Phys. Lett. 84(24), 4902 (2004).
[Crossref]

Liu, X.

Maclean, A. J.

Madigan, C. F.

A. Rose, Z. G. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref] [PubMed]

Mappes, T.

McKinnie, I. T.

Mechau, N.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Merino, S.

V. Navarro-Fuster, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, M. A. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[Crossref]

Miura, A.

K. Naito and A. Miura, “Molecular design for nonpolymeric organic dye glasses with thermal stability: relations between thermodynamic parameters and amorphous properties,” J. Phys. Chem. 97(23), 6240–6248 (1993).
[Crossref]

Moratti, S. C.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1–2), 89–96 (1995).
[Crossref]

Morawska, P. O.

Y. Wang, P. O. Morawska, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “LED pumped polymer laser sensor for explosives,” Laser Photonics Rev. 7(6), L71–L76 (2013).
[Crossref]

Mukaihara, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Naito, K.

K. Naito and A. Miura, “Molecular design for nonpolymeric organic dye glasses with thermal stability: relations between thermodynamic parameters and amorphous properties,” J. Phys. Chem. 97(23), 6240–6248 (1993).
[Crossref]

Nasu, H.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Navarro-Fuster, V.

V. Navarro-Fuster, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, M. A. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[Crossref]

Nomura, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Oike, M.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Peros, D.

J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48-49, 352–358 (1991).
[Crossref]

Phillips, R. T.

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1–2), 89–96 (1995).
[Crossref]

Prasad, P. N.

Qi, X.

X. Qi and S. R. Forrest, “Thermal analysis of high intensity organic light-emitting diodes based on a transmission matrix approach,” J. Appl. Phys. 110(12), 124516 (2011).
[Crossref]

Quintana, J. A.

V. Navarro-Fuster, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, M. A. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[Crossref]

Rabbani-Haghighi, H.

H. Rabbani-Haghighi, S. Forget, A. Siove, and S. Chénais, “Analytical study of vertical external-cavity surface-emitting organic lasers,” Eur. Phys. J. Appl. Phys. 56(3), 34108 (2011).
[Crossref]

H. Rabbani-Haghighi, S. Forget, S. Chénais, and A. Siove, “Highly efficient, diffraction-limited laser emission from a Vertical External-Cavity Surface-emitting Organic Laser,” Opt. Lett. 35(12), 1968–1970 (2010).
[Crossref] [PubMed]

Rabe, T.

M. Lehnhardt, T. Riedl, U. Scherf, T. Rabe, and W. Kowalsky, “Room temperature lifetime of triplet excitons in fluorescent host/guest systems,” Org. Electron. 12(3), 1346–1351 (2011).
[Crossref]

Rahn, M. D.

Resch-Genger, U.

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
[Crossref]

Retolaza, A.

V. Navarro-Fuster, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, M. A. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[Crossref]

Richardson, S.

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91(26), 261104 (2007).
[Crossref]

Riedl, T.

M. Lehnhardt, T. Riedl, U. Scherf, T. Rabe, and W. Kowalsky, “Room temperature lifetime of triplet excitons in fluorescent host/guest systems,” Org. Electron. 12(3), 1346–1351 (2011).
[Crossref]

Rose, A.

A. Rose, Z. G. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref] [PubMed]

Roth, P. W.

Sakata, H.

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic–inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).
[Crossref]

Samuel, I. D. W.

Y. Wang, G. Tsiminis, A. L. Kanibolotsky, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators,” Opt. Express 21(12), 14362–14367 (2013).
[Crossref] [PubMed]

Y. Wang, P. O. Morawska, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “LED pumped polymer laser sensor for explosives,” Laser Photonics Rev. 7(6), L71–L76 (2013).
[Crossref]

G. Tsiminis, Y. Wang, A. L. Kanibolotsky, A. R. Inigo, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted organic semiconductor laser pumped by a light-emitting diode,” Adv. Mater. 25(20), 2826–2830 (2013).
[Crossref] [PubMed]

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91(26), 261104 (2007).
[Crossref]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref] [PubMed]

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1–2), 89–96 (1995).
[Crossref]

Scherf, U.

M. Lehnhardt, T. Riedl, U. Scherf, T. Rabe, and W. Kowalsky, “Room temperature lifetime of triplet excitons in fluorescent host/guest systems,” Org. Electron. 12(3), 1346–1351 (2011).
[Crossref]

Sharpe, J. C.

Shen, Y.

Shinagawa, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Shkunov, M.

S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, “Ring microlasers from conducting polymers,” Phys. Rev. B 56(8), R4363–R4366 (1997).
[Crossref]

Siove, A.

H. Rabbani-Haghighi, S. Forget, A. Siove, and S. Chénais, “Analytical study of vertical external-cavity surface-emitting organic lasers,” Eur. Phys. J. Appl. Phys. 56(3), 34108 (2011).
[Crossref]

H. Rabbani-Haghighi, S. Forget, S. Chénais, and A. Siove, “Highly efficient, diffraction-limited laser emission from a Vertical External-Cavity Surface-emitting Organic Laser,” Opt. Lett. 35(12), 1968–1970 (2010).
[Crossref] [PubMed]

Skabara, P. J.

Y. Wang, G. Tsiminis, A. L. Kanibolotsky, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators,” Opt. Express 21(12), 14362–14367 (2013).
[Crossref] [PubMed]

Y. Wang, P. O. Morawska, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “LED pumped polymer laser sensor for explosives,” Laser Photonics Rev. 7(6), L71–L76 (2013).
[Crossref]

G. Tsiminis, Y. Wang, A. L. Kanibolotsky, A. R. Inigo, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted organic semiconductor laser pumped by a light-emitting diode,” Adv. Mater. 25(20), 2826–2830 (2013).
[Crossref] [PubMed]

Smith, G. J.

Smith, S. A.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

Spieles, M.

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
[Crossref]

Stefanou, P.

Sudau, K.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Swager, T. M.

A. Rose, Z. G. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref] [PubMed]

Takagi, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Takaki, K.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

Takeuchi, H.

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic–inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).
[Crossref]

Talhavini, M.

M. Talhavini and T. D. Z. Atvars, “Dye-polymer interactions controlling the kinetics of fluorescein photobleaching reactions in poly(vinyl alcohol),” J. Photochem. Photobiol. Chem. 114(1), 65–73 (1998).
[Crossref]

Thiel, E.

Tomiki, M.

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic–inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).
[Crossref]

Trabadelo, V.

V. Navarro-Fuster, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, M. A. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[Crossref]

Tsiminis, G.

G. Tsiminis, Y. Wang, A. L. Kanibolotsky, A. R. Inigo, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted organic semiconductor laser pumped by a light-emitting diode,” Adv. Mater. 25(20), 2826–2830 (2013).
[Crossref] [PubMed]

Y. Wang, G. Tsiminis, A. L. Kanibolotsky, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators,” Opt. Express 21(12), 14362–14367 (2013).
[Crossref] [PubMed]

Turnbull, G. A.

Y. Wang, G. Tsiminis, A. L. Kanibolotsky, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators,” Opt. Express 21(12), 14362–14367 (2013).
[Crossref] [PubMed]

G. Tsiminis, Y. Wang, A. L. Kanibolotsky, A. R. Inigo, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted organic semiconductor laser pumped by a light-emitting diode,” Adv. Mater. 25(20), 2826–2830 (2013).
[Crossref] [PubMed]

Y. Wang, P. O. Morawska, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “LED pumped polymer laser sensor for explosives,” Laser Photonics Rev. 7(6), L71–L76 (2013).
[Crossref]

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref] [PubMed]

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91(26), 261104 (2007).
[Crossref]

Valentine, G. J.

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

Valouch, S.

Vanderheiden, S.

Vannahme, C.

Vardeny, Z. V.

S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, “Ring microlasers from conducting polymers,” Phys. Rev. B 56(8), R4363–R4366 (1997).
[Crossref]

Villalvilla, J. M.

V. Navarro-Fuster, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, M. A. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[Crossref]

Wadsworth, W. J.

Wang, B. H.

Wang, Y.

Y. Wang, G. Tsiminis, A. L. Kanibolotsky, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted polymer lasers with threshold below 100 W/cm2 using mixed-order distributed feedback resonators,” Opt. Express 21(12), 14362–14367 (2013).
[Crossref] [PubMed]

Y. Wang, P. O. Morawska, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “LED pumped polymer laser sensor for explosives,” Laser Photonics Rev. 7(6), L71–L76 (2013).
[Crossref]

G. Tsiminis, Y. Wang, A. L. Kanibolotsky, A. R. Inigo, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted organic semiconductor laser pumped by a light-emitting diode,” Adv. Mater. 25(20), 2826–2830 (2013).
[Crossref] [PubMed]

Wegener, M.

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Wildeman, J.

H.-J. Brouwer, V. V. Krasnikov, A. Hilberer, J. Wildeman, and G. Hadziioannou, “Novel high efficiency copolymer laser dye in the blue wavelength region,” Appl. Phys. Lett. 66(25), 3404 (1995).
[Crossref]

Woggon, T.

Woolhouse, A. D.

Yamashita, K.

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic–inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).
[Crossref]

Yoshino, K.

S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, “Ring microlasers from conducting polymers,” Phys. Rev. B 56(8), R4363–R4366 (1997).
[Crossref]

Zhang, Y. F.

Y. F. Zhang and S. R. Forrest, “Existence of continuous-wave threshold for organic semiconductor lasers,” Phys. Rev. B 84(24), 241301 (2011).
[Crossref]

Zhu, Z. G.

A. Rose, Z. G. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref] [PubMed]

Adv. Mater. (1)

G. Tsiminis, Y. Wang, A. L. Kanibolotsky, A. R. Inigo, P. J. Skabara, I. D. W. Samuel, and G. A. Turnbull, “Nanoimprinted organic semiconductor laser pumped by a light-emitting diode,” Adv. Mater. 25(20), 2826–2830 (2013).
[Crossref] [PubMed]

Anal. Chem. (1)

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (2)

S. Chenais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B 79(2), 221–224 (2004).
[Crossref]

H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic–inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).
[Crossref]

Appl. Phys. Express (1)

X. Liu, S. Klinkhammer, K. Sudau, N. Mechau, C. Vannahme, J. Kaschke, T. Mappes, M. Wegener, and U. Lemmer, “Ink-jet-printed organic semiconductor distributed feedback laser,” Appl. Phys. Express 5(7), 072101 (2012).
[Crossref]

Appl. Phys. Lett. (5)

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samuel, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91(26), 261104 (2007).
[Crossref]

H.-J. Brouwer, V. V. Krasnikov, A. Hilberer, J. Wildeman, and G. Hadziioannou, “Novel high efficiency copolymer laser dye in the blue wavelength region,” Appl. Phys. Lett. 66(25), 3404 (1995).
[Crossref]

V. G. Kozlov, V. Bulovic, and S. R. Forrest, “Temperature independent performance of organic semiconductor lasers,” Appl. Phys. Lett. 71(18), 2575 (1997).
[Crossref]

I. G. Kytina, V. G. Kytin, and K. Lips, “High power polymer dye laser with imporoved stability,” Appl. Phys. Lett. 84(24), 4902 (2004).
[Crossref]

V. Navarro-Fuster, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, M. A. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, “Highly photostable organic distributed feedback laser emitting at 573 nm,” Appl. Phys. Lett. 97(17), 171104 (2010).
[Crossref]

Chem. Phys. Lett. (1)

N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1–2), 89–96 (1995).
[Crossref]

Chem. Rev. (1)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007).
[Crossref] [PubMed]

Eur. Phys. J. Appl. Phys. (1)

H. Rabbani-Haghighi, S. Forget, A. Siove, and S. Chénais, “Analytical study of vertical external-cavity surface-emitting organic lasers,” Eur. Phys. J. Appl. Phys. 56(3), 34108 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach,” IEEE J. Quantum Electron. 41(2), 148–155 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[Crossref]

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent Advances in DFB Lasers for Ultradense WDM Applications,” IEEE J. Sel. Top. Quantum Electron. 10(2), 312–320 (2004).
[Crossref]

J. Appl. Phys. (1)

X. Qi and S. R. Forrest, “Thermal analysis of high intensity organic light-emitting diodes based on a transmission matrix approach,” J. Appl. Phys. 110(12), 124516 (2011).
[Crossref]

J. Lumin. (1)

J. Arden, G. Deltau, V. Huth, U. Kringel, D. Peros, and K. H. Drexhage, “Fluorescence and lasing properties of rhodamine dyes,” J. Lumin. 48-49, 352–358 (1991).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. Chem. (1)

M. Talhavini and T. D. Z. Atvars, “Dye-polymer interactions controlling the kinetics of fluorescein photobleaching reactions in poly(vinyl alcohol),” J. Photochem. Photobiol. Chem. 114(1), 65–73 (1998).
[Crossref]

J. Phys. Chem. (1)

K. Naito and A. Miura, “Molecular design for nonpolymeric organic dye glasses with thermal stability: relations between thermodynamic parameters and amorphous properties,” J. Phys. Chem. 97(23), 6240–6248 (1993).
[Crossref]

Laser Photonics Rev. (1)

Y. Wang, P. O. Morawska, A. L. Kanibolotsky, P. J. Skabara, G. A. Turnbull, and I. D. W. Samuel, “LED pumped polymer laser sensor for explosives,” Laser Photonics Rev. 7(6), L71–L76 (2013).
[Crossref]

Nat. Photonics (1)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Nature (2)

A. Rose, Z. G. Zhu, C. F. Madigan, T. M. Swager, and V. Bulović, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434(7035), 876–879 (2005).
[Crossref] [PubMed]

V. G. Kozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389(6649), 362–364 (1997).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Org. Electron. (1)

M. Lehnhardt, T. Riedl, U. Scherf, T. Rabe, and W. Kowalsky, “Room temperature lifetime of triplet excitons in fluorescent host/guest systems,” Org. Electron. 12(3), 1346–1351 (2011).
[Crossref]

Phys. Rev. B (2)

Y. F. Zhang and S. R. Forrest, “Existence of continuous-wave threshold for organic semiconductor lasers,” Phys. Rev. B 84(24), 241301 (2011).
[Crossref]

S. V. Frolov, M. Shkunov, Z. V. Vardeny, and K. Yoshino, “Ring microlasers from conducting polymers,” Phys. Rev. B 56(8), R4363–R4366 (1997).
[Crossref]

Polym. Int. (1)

S. Chénais and S. Forget, “Recent advances in solid-state organic lasers,” Polym. Int. 61(3), 390–406 (2012).
[Crossref]

Prog. Quantum Electron. (1)

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[Crossref]

Other (6)

W. Koechner, Solid State Laser Engineering (Springer, 2006).

Visolas, “VISOLAS Laser Piano,” (Visolas, 2014), http://visolas.de/en// .

S. Chenais and S. Forget, Organic Solid State Lasers (Springer‐Verlag, 2013).

H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids (Oxford University, 1959).

R. Kappes, Laser Heating of Polymers, PhD dissertation, (Johannes Gutenberg-Universität, 2012).

Y. Zhu and A. Bui, “Thermal modeling of PMMA microfluidic separation chips,” in Technical Proceedings of the 2006 NSTI Nanotechnology Conference and Trade Show (Nanotech 2006), pp. 655–658.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of the experimental set-up.
Fig. 2
Fig. 2 Comparisons between temperature profile and pump beam profile on VECSOL chip. (a) Pump spot. (b) Thermal image. (c) Detected radial temperature rise ΔT on the surface of VECSOL chip. Pump beam has a Gaussian profile with FWHM of ~300 µm.
Fig. 3
Fig. 3 (a) Data measured during a photodegradation test of a VECSOL laser: normalized output pulse energy (open circle) and normalized absorbance of pump (open triangle), measured temperature difference ΔT between the center of pump spot and background (solid line). Inset: Measured lasing spectra (b) Temperature rise in the first 150 pump pulses. A train of 40 µJ pulses at a repetition rate of 100 Hz was used.
Fig. 4
Fig. 4 Temperature rise at the center of pump spot on the surface of VECSOL chip: (a) versus pump energy.(b) versus repetition rate.
Fig. 5
Fig. 5 Photodegradation test of a Rhodamine 640:PMMA VECSOL. Normalized intensity versus the number of pump pulses at different repetition rates with pulse energy of ~20 µJ.
Fig. 6
Fig. 6 (a) Schematic drawing of the geometry used for VECSOL thermal simulation. The pump is incident onto the gain medium through the substrate. (b) Temperature distribution along the thickness of the PMMA layer (at center of pump spot r = 0), from t = 20 ns to t = 1 ms.
Fig. 7
Fig. 7 Temperature rise versus number of pulses on surface of VECSOL chip at center of pump spot. The time-averaged temperature displayed is calculated between each pulse and is added as a guide for the eye.
Fig. 8
Fig. 8 Temperature rise in the dye doped PMMA layer in a VECSOL configuration as described in section 2: (a) versus pump intensity at different repetition rates; (b) versus average pump intensity.
Fig. 9
Fig. 9 Temperature rise in polymeric active layers of OSSLs in different architectures. (a) Organic micro-cavity laser (OVCSEL) with a peak pump intensity of 10 kW/cm2, identical to the structure used in [12] (b) Organic DFB laser with peak pump intensity of 1 kW/cm2, identical to the structure used in [41]. The arrow represents the repetition rate at which these lasers have been operated in [12, 41]. The insets show the simplified device configuration used for modelling (thicknesses are reported in Table 1)
Fig. 10
Fig. 10 Temperature rise ΔT in polymeric active layers of OSSLs under CW operation. (a) Temperature rise ΔT versus time in the Organic DFB laser under pump intensity of 2.4 kW/cm2, identical to the structure used in [20]. The insets show the simplified device configuration used for modelling. (b) Temperature rise ΔT versus thermal conductivity of grating layer.

Tables (1)

Tables Icon

Table 1 Thermal and Optical Properties Values and Layer Thicknesses Used in the Thermal Simulations

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ρC T t =k[ 2 T r 2 + 1 r T r + 2 T z 2 ]+Q
Q( r,z,t )=( 1R ) η h α ( E/ τ p ) ( πω²/2 ) exp( 2r² ω² )exp( αz )H( t )
η h =1-Φ λ pump λ laser
kT= h(T amb T)+ σε(T amb 4 T 4 )
δ=e dn dT [T(r=0)T(r=ω)]=e dn dT ΔT
f th ~ ω 2 2δ = ω 2 2e dn dT ΔT
dλ dT =2 Λ m d n eff dT

Metrics