Abstract

A new type of dissipative solitons - dissipative Raman solitons - are revealed on the basis of numerical study of the generalized complex nonlinear Ginzburg-Landau equation. The stimulated Raman scattering significantly affects the energy scalability of the dissipative solitons, causing splitting to multiple pulses. We show, that an appropriate increase of the group-delay dispersion can suppress the multipulsing instability due to formation of the dissipative Raman soliton, which is chirped, has a Stokes-shifted spectrum, and chaotic modulation on its trailing edge. The strong perturbation of a soliton envelope caused by the stimulated Raman scattering confines the energy scalability preventing the so-called dissipative soliton resonance. We show, that in practical implementations, a spectral filter can extend the stability regions of high-energy pulses.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering

A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski
Opt. Express 21(18) 20556-20564 (2013)

Feedback-controlled Raman dissipative solitons in a fiber laser

Denis S. Kharenko, Anastasia E. Bednyakova, Evgeniy V. Podivilov, Mikhail P. Fedoruk, Alexander Apolonski, and Sergey A. Babin
Opt. Express 23(2) 1857-1862 (2015)

Energy scalability of mode-locked oscillators: a completely analytical approach to analysis

V. L. Kalashnikov and A. Apolonski
Opt. Express 18(25) 25757-25770 (2010)

References

  • View by:
  • |
  • |
  • |

  1. N. N. Akhmediev and A. Ankiewicz, eds., Dissipative Solitons (Springer, 2005).
    [Crossref]
  2. E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” J. Exper. Theor. Phys. Lett. 82, 467–471 (2005).
    [Crossref]
  3. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
    [Crossref]
  4. V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79, 043829 (2009).
    [Crossref]
  5. Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nature Photon. 6, 84–92 (2012).
    [Crossref]
  6. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
    [Crossref]
  7. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
    [Crossref]
  8. A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett. 29, 1366–1368 (2004).
    [Crossref] [PubMed]
  9. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
    [Crossref]
  10. W. H. Renninger and F. W. Wise, “Fundamental limits to mode-locked lasers: toward terawatt peak powers,” IEEE J. Sel. Top. Quantum Electron. 21, 1–8 (2015).
    [Crossref]
  11. T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nature Photon. 2, 599–604 (2008).
    [Crossref]
  12. Y. Liu, S. Tschuch, A. Rudenko, M. Dürr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, “Strong-field double ionization of Ar below the recollision threshold,” Phys. Rev. Lett. 101, 053001 (2008).
    [Crossref] [PubMed]
  13. E. Seres, J. Seres, and Ch. Spielmann, “Extreme ultraviolet light source based on intracavity high harmonic generation in a mode locked Ti:sapphire oscillator with 9.4 MHz repetition rate,” Opt. Express 20, 6185–6190 (2012).
    [Crossref] [PubMed]
  14. G. Sciaini and R. J. D. Miller, “Femtosecond electron diffraction: heralding the era of atomically resolved dynamics,” Rep. Prog. Phys. 74, 096101 (2011).
    [Crossref]
  15. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225 (2008).
    [Crossref]
  16. A. A. Lanin, V. Fedotov, D. A. Sidorov-Biryukov, L. V. Doronina-Amitonova, O. I. Ivashkina, M. A. Zots, Chi-Kuang Sun, F. Ö. Ilday, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery,” Appl. Phys. Lett. 100, 101104 (2012).
    [Crossref]
  17. V. L. Kalashnikov, “Chirped-pulse oscillators: route to the energy-scalable femtosecond pulses,” Solid State Laser, Amin H. Al-Khursan, ed. (InTech, 2012), pp. 145–184.
  18. S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521, 135–204 (2012).
    [Crossref]
  19. E. Sorokin, N. Tolstik, V. L. Kalashnikov, and I. T. Sorokina, “Chaotic chirped-pulse oscillators,” Opt. Express 21, 29567–29577 (2013).
    [Crossref]
  20. V. L. Kalashnikov and A. Apolonski, “Energy scalability of mode-locked oscillators: a completely analytical approach to analysis,” Opt. Express 18, 25757–25770 (2010).
    [Crossref] [PubMed]
  21. E. Ding, Ph. Grelu, and J. N. Kutz, “Dissipative soliton resonance in a passively mode-locked fiber laser,” Opt. Lett. 36, 1146–1148 (2011).
    [Crossref] [PubMed]
  22. V. L. Kalashnikov, “Dissipative solitons in presence of quantum noise,” Chaotic Model. Simul. 1, 29–37 (2014).
  23. A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering,” Opt. Express 21, 20556–20564 (2013).
    [Crossref] [PubMed]
  24. G. Agrawal, Nonlinear Fiber Optics (Elsevier, 2013).
  25. H. A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer, 2000).
    [Crossref]
  26. R. Paschotta, “Noise of mode-locked lasers Part II: timing jitter and other fluctuations,” Appl. Phys. B 79, 163–173 (2004).
    [Crossref]
  27. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005).
  28. A. Ankiewicz and N. Akhmediev, “Moving fronts for complex Ginzburg-Landau equation with Raman term,” Phys. Rev. E 58, 6723–6727 (1998).
    [Crossref]
  29. V. L. Kalashnikov, E. Sorokin, S. Naumov, and I. T. Sorokina, “Spectral properties of the Kerr-lens mode-locked Cr4+:YAG laser,” J. Opt. Soc. Am. B 20, 2084–2092 (2003).
    [Crossref]
  30. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Multipulse operation and limits of the Kerr-lens mode locking stability,” IEEE J. Quantum Electron. 39, 323–336 (2003).
    [Crossref]
  31. L. Zhu, A. J. Verhoef, K. G. Jespersen, V. L. Kalashnikov, L. Grüner-Nielsen, D. Lorenc, A. Baltuska, and A. Fernandez, “Generation of high fidelity 62-fs, 7-nJ pulses at 1035 nm from a net normal-dispersion Yb-fiber laser with anomalous dispersion higher-order-mode fiber,” Opt. Express 21, 16255–16262 (2013).
    [Crossref] [PubMed]
  32. D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, “20 nJ 200 fs all-fiber highly-chirped dissipative soliton oscillator,” Opt. Lett. 19, 4104–4106 (2012).
    [Crossref]
  33. S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
    [Crossref] [PubMed]

2015 (1)

W. H. Renninger and F. W. Wise, “Fundamental limits to mode-locked lasers: toward terawatt peak powers,” IEEE J. Sel. Top. Quantum Electron. 21, 1–8 (2015).
[Crossref]

2014 (2)

V. L. Kalashnikov, “Dissipative solitons in presence of quantum noise,” Chaotic Model. Simul. 1, 29–37 (2014).

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (5)

D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, “20 nJ 200 fs all-fiber highly-chirped dissipative soliton oscillator,” Opt. Lett. 19, 4104–4106 (2012).
[Crossref]

E. Seres, J. Seres, and Ch. Spielmann, “Extreme ultraviolet light source based on intracavity high harmonic generation in a mode locked Ti:sapphire oscillator with 9.4 MHz repetition rate,” Opt. Express 20, 6185–6190 (2012).
[Crossref] [PubMed]

A. A. Lanin, V. Fedotov, D. A. Sidorov-Biryukov, L. V. Doronina-Amitonova, O. I. Ivashkina, M. A. Zots, Chi-Kuang Sun, F. Ö. Ilday, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery,” Appl. Phys. Lett. 100, 101104 (2012).
[Crossref]

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521, 135–204 (2012).
[Crossref]

Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nature Photon. 6, 84–92 (2012).
[Crossref]

2011 (2)

G. Sciaini and R. J. D. Miller, “Femtosecond electron diffraction: heralding the era of atomically resolved dynamics,” Rep. Prog. Phys. 74, 096101 (2011).
[Crossref]

E. Ding, Ph. Grelu, and J. N. Kutz, “Dissipative soliton resonance in a passively mode-locked fiber laser,” Opt. Lett. 36, 1146–1148 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79, 043829 (2009).
[Crossref]

2008 (5)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225 (2008).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nature Photon. 2, 599–604 (2008).
[Crossref]

Y. Liu, S. Tschuch, A. Rudenko, M. Dürr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, “Strong-field double ionization of Ar below the recollision threshold,” Phys. Rev. Lett. 101, 053001 (2008).
[Crossref] [PubMed]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[Crossref]

2006 (1)

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
[Crossref]

2005 (2)

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” J. Exper. Theor. Phys. Lett. 82, 467–471 (2005).
[Crossref]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

2004 (2)

2003 (2)

V. L. Kalashnikov, E. Sorokin, S. Naumov, and I. T. Sorokina, “Spectral properties of the Kerr-lens mode-locked Cr4+:YAG laser,” J. Opt. Soc. Am. B 20, 2084–2092 (2003).
[Crossref]

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Multipulse operation and limits of the Kerr-lens mode locking stability,” IEEE J. Quantum Electron. 39, 323–336 (2003).
[Crossref]

1998 (1)

A. Ankiewicz and N. Akhmediev, “Moving fronts for complex Ginzburg-Landau equation with Raman term,” Phys. Rev. E 58, 6723–6727 (1998).
[Crossref]

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Elsevier, 2013).

Agrawal, G. P.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005).

Akhmediev, N.

Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nature Photon. 6, 84–92 (2012).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[Crossref]

A. Ankiewicz and N. Akhmediev, “Moving fronts for complex Ginzburg-Landau equation with Raman term,” Phys. Rev. E 58, 6723–6727 (1998).
[Crossref]

Ankiewicz, A.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[Crossref]

A. Ankiewicz and N. Akhmediev, “Moving fronts for complex Ginzburg-Landau equation with Raman term,” Phys. Rev. E 58, 6723–6727 (1998).
[Crossref]

Anokhin, K. V.

A. A. Lanin, V. Fedotov, D. A. Sidorov-Biryukov, L. V. Doronina-Amitonova, O. I. Ivashkina, M. A. Zots, Chi-Kuang Sun, F. Ö. Ilday, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery,” Appl. Phys. Lett. 100, 101104 (2012).
[Crossref]

Apolonski, A.

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref] [PubMed]

A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering,” Opt. Express 21, 20556–20564 (2013).
[Crossref] [PubMed]

V. L. Kalashnikov and A. Apolonski, “Energy scalability of mode-locked oscillators: a completely analytical approach to analysis,” Opt. Express 18, 25757–25770 (2010).
[Crossref] [PubMed]

V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79, 043829 (2009).
[Crossref]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
[Crossref]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett. 29, 1366–1368 (2004).
[Crossref] [PubMed]

Apolonski, A. A.

D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, “20 nJ 200 fs all-fiber highly-chirped dissipative soliton oscillator,” Opt. Lett. 19, 4104–4106 (2012).
[Crossref]

Babin, S. A.

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref] [PubMed]

A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering,” Opt. Express 21, 20556–20564 (2013).
[Crossref] [PubMed]

D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, “20 nJ 200 fs all-fiber highly-chirped dissipative soliton oscillator,” Opt. Lett. 19, 4104–4106 (2012).
[Crossref]

Baer, C. R. E.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nature Photon. 2, 599–604 (2008).
[Crossref]

Bale, B. G.

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521, 135–204 (2012).
[Crossref]

Baltuska, A.

Bednyakova, A. E.

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref] [PubMed]

A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering,” Opt. Express 21, 20556–20564 (2013).
[Crossref] [PubMed]

Chang, W.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[Crossref]

Chernykh, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
[Crossref]

Chong, A.

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]

Ding, E.

Dombi, P.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

Doronina-Amitonova, L. V.

A. A. Lanin, V. Fedotov, D. A. Sidorov-Biryukov, L. V. Doronina-Amitonova, O. I. Ivashkina, M. A. Zots, Chi-Kuang Sun, F. Ö. Ilday, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery,” Appl. Phys. Lett. 100, 101104 (2012).
[Crossref]

Dürr, M.

Y. Liu, S. Tschuch, A. Rudenko, M. Dürr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, “Strong-field double ionization of Ar below the recollision threshold,” Phys. Rev. Lett. 101, 053001 (2008).
[Crossref] [PubMed]

Fedoruk, M. P.

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref] [PubMed]

A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering,” Opt. Express 21, 20556–20564 (2013).
[Crossref] [PubMed]

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521, 135–204 (2012).
[Crossref]

Fedotov, A. B.

A. A. Lanin, V. Fedotov, D. A. Sidorov-Biryukov, L. V. Doronina-Amitonova, O. I. Ivashkina, M. A. Zots, Chi-Kuang Sun, F. Ö. Ilday, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery,” Appl. Phys. Lett. 100, 101104 (2012).
[Crossref]

Fedotov, V.

A. A. Lanin, V. Fedotov, D. A. Sidorov-Biryukov, L. V. Doronina-Amitonova, O. I. Ivashkina, M. A. Zots, Chi-Kuang Sun, F. Ö. Ilday, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery,” Appl. Phys. Lett. 100, 101104 (2012).
[Crossref]

Fernandez, A.

Fuji, T.

Fürbach, A.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225 (2008).
[Crossref]

Gingras, G.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nature Photon. 2, 599–604 (2008).
[Crossref]

Graf, R.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

Grelu, Ph.

Grüner-Nielsen, L.

Hashimoto, S.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nature Photon. 2, 599–604 (2008).
[Crossref]

Haus, H. A.

H. A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer, 2000).
[Crossref]

Headley, C.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005).

Ilday, F. Ö.

A. A. Lanin, V. Fedotov, D. A. Sidorov-Biryukov, L. V. Doronina-Amitonova, O. I. Ivashkina, M. A. Zots, Chi-Kuang Sun, F. Ö. Ilday, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery,” Appl. Phys. Lett. 100, 101104 (2012).
[Crossref]

Ivashkina, O. I.

A. A. Lanin, V. Fedotov, D. A. Sidorov-Biryukov, L. V. Doronina-Amitonova, O. I. Ivashkina, M. A. Zots, Chi-Kuang Sun, F. Ö. Ilday, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery,” Appl. Phys. Lett. 100, 101104 (2012).
[Crossref]

Jespersen, K. G.

Kalashnikov, V. L.

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref] [PubMed]

V. L. Kalashnikov, “Dissipative solitons in presence of quantum noise,” Chaotic Model. Simul. 1, 29–37 (2014).

L. Zhu, A. J. Verhoef, K. G. Jespersen, V. L. Kalashnikov, L. Grüner-Nielsen, D. Lorenc, A. Baltuska, and A. Fernandez, “Generation of high fidelity 62-fs, 7-nJ pulses at 1035 nm from a net normal-dispersion Yb-fiber laser with anomalous dispersion higher-order-mode fiber,” Opt. Express 21, 16255–16262 (2013).
[Crossref] [PubMed]

A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering,” Opt. Express 21, 20556–20564 (2013).
[Crossref] [PubMed]

E. Sorokin, N. Tolstik, V. L. Kalashnikov, and I. T. Sorokina, “Chaotic chirped-pulse oscillators,” Opt. Express 21, 29567–29577 (2013).
[Crossref]

V. L. Kalashnikov and A. Apolonski, “Energy scalability of mode-locked oscillators: a completely analytical approach to analysis,” Opt. Express 18, 25757–25770 (2010).
[Crossref] [PubMed]

V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79, 043829 (2009).
[Crossref]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
[Crossref]

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” J. Exper. Theor. Phys. Lett. 82, 467–471 (2005).
[Crossref]

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Multipulse operation and limits of the Kerr-lens mode locking stability,” IEEE J. Quantum Electron. 39, 323–336 (2003).
[Crossref]

V. L. Kalashnikov, E. Sorokin, S. Naumov, and I. T. Sorokina, “Spectral properties of the Kerr-lens mode-locked Cr4+:YAG laser,” J. Opt. Soc. Am. B 20, 2084–2092 (2003).
[Crossref]

V. L. Kalashnikov, “Chirped-pulse oscillators: route to the energy-scalable femtosecond pulses,” Solid State Laser, Amin H. Al-Khursan, ed. (InTech, 2012), pp. 145–184.

Keller, U.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nature Photon. 2, 599–604 (2008).
[Crossref]

Kharenko, D. S.

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref] [PubMed]

A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering,” Opt. Express 21, 20556–20564 (2013).
[Crossref] [PubMed]

D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, “20 nJ 200 fs all-fiber highly-chirped dissipative soliton oscillator,” Opt. Lett. 19, 4104–4106 (2012).
[Crossref]

Krausz, F.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett. 29, 1366–1368 (2004).
[Crossref] [PubMed]

Kutz, J. N.

Lanin, A. A.

A. A. Lanin, V. Fedotov, D. A. Sidorov-Biryukov, L. V. Doronina-Amitonova, O. I. Ivashkina, M. A. Zots, Chi-Kuang Sun, F. Ö. Ilday, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery,” Appl. Phys. Lett. 100, 101104 (2012).
[Crossref]

Liu, Y.

Y. Liu, S. Tschuch, A. Rudenko, M. Dürr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, “Strong-field double ionization of Ar below the recollision threshold,” Phys. Rev. Lett. 101, 053001 (2008).
[Crossref] [PubMed]

Lorenc, D.

Marchese, S. V.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nature Photon. 2, 599–604 (2008).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225 (2008).
[Crossref]

Miller, R. J. D.

G. Sciaini and R. J. D. Miller, “Femtosecond electron diffraction: heralding the era of atomically resolved dynamics,” Rep. Prog. Phys. 74, 096101 (2011).
[Crossref]

Morgner, U.

Y. Liu, S. Tschuch, A. Rudenko, M. Dürr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, “Strong-field double ionization of Ar below the recollision threshold,” Phys. Rev. Lett. 101, 053001 (2008).
[Crossref] [PubMed]

Moshammer, R.

Y. Liu, S. Tschuch, A. Rudenko, M. Dürr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, “Strong-field double ionization of Ar below the recollision threshold,” Phys. Rev. Lett. 101, 053001 (2008).
[Crossref] [PubMed]

Naumov, S.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

V. L. Kalashnikov, E. Sorokin, S. Naumov, and I. T. Sorokina, “Spectral properties of the Kerr-lens mode-locked Cr4+:YAG laser,” J. Opt. Soc. Am. B 20, 2084–2092 (2003).
[Crossref]

Paschotta, R.

R. Paschotta, “Noise of mode-locked lasers Part II: timing jitter and other fluctuations,” Appl. Phys. B 79, 163–173 (2004).
[Crossref]

Podivilov, E.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
[Crossref]

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” J. Exper. Theor. Phys. Lett. 82, 467–471 (2005).
[Crossref]

Podivilov, E. V.

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref] [PubMed]

A. E. Bednyakova, S. A. Babin, D. S. Kharenko, E. V. Podivilov, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering,” Opt. Express 21, 20556–20564 (2013).
[Crossref] [PubMed]

D. S. Kharenko, E. V. Podivilov, A. A. Apolonski, and S. A. Babin, “20 nJ 200 fs all-fiber highly-chirped dissipative soliton oscillator,” Opt. Lett. 19, 4104–4106 (2012).
[Crossref]

Poppe, A.

Renninger, W. H.

W. H. Renninger and F. W. Wise, “Fundamental limits to mode-locked lasers: toward terawatt peak powers,” IEEE J. Sel. Top. Quantum Electron. 21, 1–8 (2015).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]

Rudenko, A.

Y. Liu, S. Tschuch, A. Rudenko, M. Dürr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, “Strong-field double ionization of Ar below the recollision threshold,” Phys. Rev. Lett. 101, 053001 (2008).
[Crossref] [PubMed]

Sciaini, G.

G. Sciaini and R. J. D. Miller, “Femtosecond electron diffraction: heralding the era of atomically resolved dynamics,” Rep. Prog. Phys. 74, 096101 (2011).
[Crossref]

Seres, E.

Seres, J.

Sidorov-Biryukov, D. A.

A. A. Lanin, V. Fedotov, D. A. Sidorov-Biryukov, L. V. Doronina-Amitonova, O. I. Ivashkina, M. A. Zots, Chi-Kuang Sun, F. Ö. Ilday, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery,” Appl. Phys. Lett. 100, 101104 (2012).
[Crossref]

Siegel, M.

Y. Liu, S. Tschuch, A. Rudenko, M. Dürr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, “Strong-field double ionization of Ar below the recollision threshold,” Phys. Rev. Lett. 101, 053001 (2008).
[Crossref] [PubMed]

Sorokin, E.

Sorokina, I. T.

Soto-Crespo, J. M.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[Crossref]

Spielmann, Ch.

Südmeyer, T.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nature Photon. 2, 599–604 (2008).
[Crossref]

Sun, Chi-Kuang

A. A. Lanin, V. Fedotov, D. A. Sidorov-Biryukov, L. V. Doronina-Amitonova, O. I. Ivashkina, M. A. Zots, Chi-Kuang Sun, F. Ö. Ilday, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery,” Appl. Phys. Lett. 100, 101104 (2012).
[Crossref]

Tolstik, N.

Tschuch, S.

Y. Liu, S. Tschuch, A. Rudenko, M. Dürr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, “Strong-field double ionization of Ar below the recollision threshold,” Phys. Rev. Lett. 101, 053001 (2008).
[Crossref] [PubMed]

Turitsyn, S. K.

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521, 135–204 (2012).
[Crossref]

Ullrich, J.

Y. Liu, S. Tschuch, A. Rudenko, M. Dürr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, “Strong-field double ionization of Ar below the recollision threshold,” Phys. Rev. Lett. 101, 053001 (2008).
[Crossref] [PubMed]

Verhoef, A. J.

Wise, F. W.

W. H. Renninger and F. W. Wise, “Fundamental limits to mode-locked lasers: toward terawatt peak powers,” IEEE J. Sel. Top. Quantum Electron. 21, 1–8 (2015).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]

Witzel, B.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nature Photon. 2, 599–604 (2008).
[Crossref]

Zheltikov, A. M.

A. A. Lanin, V. Fedotov, D. A. Sidorov-Biryukov, L. V. Doronina-Amitonova, O. I. Ivashkina, M. A. Zots, Chi-Kuang Sun, F. Ö. Ilday, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery,” Appl. Phys. Lett. 100, 101104 (2012).
[Crossref]

Zhu, L.

Zots, M. A.

A. A. Lanin, V. Fedotov, D. A. Sidorov-Biryukov, L. V. Doronina-Amitonova, O. I. Ivashkina, M. A. Zots, Chi-Kuang Sun, F. Ö. Ilday, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery,” Appl. Phys. Lett. 100, 101104 (2012).
[Crossref]

Appl. Phys. B (2)

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
[Crossref]

R. Paschotta, “Noise of mode-locked lasers Part II: timing jitter and other fluctuations,” Appl. Phys. B 79, 163–173 (2004).
[Crossref]

Appl. Phys. Lett. (1)

A. A. Lanin, V. Fedotov, D. A. Sidorov-Biryukov, L. V. Doronina-Amitonova, O. I. Ivashkina, M. A. Zots, Chi-Kuang Sun, F. Ö. Ilday, A. B. Fedotov, K. V. Anokhin, and A. M. Zheltikov, “Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery,” Appl. Phys. Lett. 100, 101104 (2012).
[Crossref]

Chaotic Model. Simul. (1)

V. L. Kalashnikov, “Dissipative solitons in presence of quantum noise,” Chaotic Model. Simul. 1, 29–37 (2014).

IEEE J. Quantum Electron. (1)

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Multipulse operation and limits of the Kerr-lens mode locking stability,” IEEE J. Quantum Electron. 39, 323–336 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. H. Renninger and F. W. Wise, “Fundamental limits to mode-locked lasers: toward terawatt peak powers,” IEEE J. Sel. Top. Quantum Electron. 21, 1–8 (2015).
[Crossref]

J. Exper. Theor. Phys. Lett. (1)

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” J. Exper. Theor. Phys. Lett. 82, 467–471 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

S. A. Babin, E. V. Podivilov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, V. L. Kalashnikov, and A. Apolonski, “Multicolour nonlinearly bound chirped dissipative solitons,” Nat. Commun. 5, 4653 (2014).
[Crossref] [PubMed]

Nature Photon. (3)

Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nature Photon. 6, 84–92 (2012).
[Crossref]

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nature Photon. 2, 599–604 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photon. 2, 219–225 (2008).
[Crossref]

New J. Phys. (1)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rep. (1)

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521, 135–204 (2012).
[Crossref]

Phys. Rev. A (3)

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]

V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79, 043829 (2009).
[Crossref]

Phys. Rev. E (1)

A. Ankiewicz and N. Akhmediev, “Moving fronts for complex Ginzburg-Landau equation with Raman term,” Phys. Rev. E 58, 6723–6727 (1998).
[Crossref]

Phys. Rev. Lett. (1)

Y. Liu, S. Tschuch, A. Rudenko, M. Dürr, M. Siegel, U. Morgner, R. Moshammer, and J. Ullrich, “Strong-field double ionization of Ar below the recollision threshold,” Phys. Rev. Lett. 101, 053001 (2008).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

G. Sciaini and R. J. D. Miller, “Femtosecond electron diffraction: heralding the era of atomically resolved dynamics,” Rep. Prog. Phys. 74, 096101 (2011).
[Crossref]

Other (5)

N. N. Akhmediev and A. Ankiewicz, eds., Dissipative Solitons (Springer, 2005).
[Crossref]

G. Agrawal, Nonlinear Fiber Optics (Elsevier, 2013).

H. A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer, 2000).
[Crossref]

V. L. Kalashnikov, “Chirped-pulse oscillators: route to the energy-scalable femtosecond pulses,” Solid State Laser, Amin H. Al-Khursan, ed. (InTech, 2012), pp. 145–184.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Elsevier, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Master diagram for a CDS. Black solid curve corresponds to the stability threshold in absence of the noise and SRS. The stability thresholds in the presence of the quantum noise only (Γ = 10−10/γ, fR = 0) and noise with SRS (Γ = 10−10/γ, fR =0.22) are shown by the red dashed and the blue dashed-dot curves, respectively. Spectral filter parameter α corresponds to ≈40 nm (α =366 fs2) at 1 μm central wavelength and to ≈20 nm (α =1460 fs2) for the magenta dotted curve. κ = 0.1γ, ζ = 0.05γ.
Fig. 2
Fig. 2 Wigner function of CDSs in absence (a) and presence (b) of the quantum noise and SRS. The CDS temporal and spectral profiles are shown as the corresponding axis-projections. The top wavelength shift scale corresponds to an Yb:fiber laser centered around 1070 nm. The parameters along the trajectory 2 in Fig. 1 are C =0.59, E* =111.
Fig. 3
Fig. 3 Averaged CDS spectra along the trajectory 1 in Fig. 1. Spectral power profiles are averaged over z = 1000 round-trips.
Fig. 4
Fig. 4 Wigner function of double CDSs in the presence of the quantum noise and SRS. The CDS temporal and spectral profiles are shown as the corresponding axis-projections. The spectrum is modulated by the interferenge fringes with 100% visibility, which are not resolved. The top wavelength shift scale corresponds to an Yb:fiber laser centered around 1070 nm. The parameters along the trajectory 2 in Fig. 1 are C =0.037, E* =111.
Fig. 5
Fig. 5 Wigner function of a chirped DRS. The DRS temporal and spectral profiles are shown as the corresponding axis-projections. The top wavelength shift scale corresponds to an Yb:fiber laser centered around 1070 nm. The parameters along the trajectory 2 in Fig. 1 are C =0.021, E* =111.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2 α γ β κ { 2 / 3 , E 2 , E 0
a ( z , t ) z = i [ β 2 2 t 2 γ | a | 2 ] a + [ σ + α 2 t 2 + κ ( 1 ζ | a | 2 ) | a | 2 ] a ,
s ( z , t ) s * ( z , t ) = Γ δ ( z z ) δ ( t t ) ,
h ( t ) = T 1 2 + T 2 2 T 1 T 2 2 exp ( t T 2 ) sin ( t T 1 ) ,
a ( z , t ) z = i [ β 2 2 t 2 ( 1 f R ) γ | a | 2 ] a ( z , t ) + [ σ + α 2 t 2 + κ ( 1 ζ | a | 2 ) | a | 2 ] a ( z , t ) i γ f R a ( z , t ) t d t h ( t t ) | a ( z , t ) | 2 + s ( z , t ) .

Metrics