Abstract

We present experiments and analysis on enhanced transmission due to dielectric layer deposited on a metal film perforated with two-dimensional periodic array of subwavelength holes. The Si3N4 overlayer is applied on the perforated gold film (PGF) fabricated on GaAs substrate in order to boost the transmission of light at the surface plasmon polariton (SPP) resonance wavelengths in the mid- and long-wave IR regions, which is used as the antireflection (AR) coating layer between two dissimilar media (air and PGF/GaAs). It is experimentally shown that the transmission through the perforated gold film with 1.8 µm (2.0 µm) pitch at the first-order (second-order) SPP resonance wavelengths can be increased up to 83% (110%) by using a 750 nm (550 nm) thick Si3N4 layer. The SPP resonance leads to a dispersive resonant effective permeability (μeff ≠ 1) and thereby the refractive index matching condition for the conventional AR coating on the surface of a dielectric material cannot be applied to the resonant PGF structure. We develop and demonstrate the concept of AR condition based on the effective parameters of PGF. In addition, the maximum transmission (zero reflection) condition is analyzed numerically by using a three-layer model and a transfer matrix method is employed to determine the total reflection and transmission. The numerically calculated total reflection agrees very well with the reflection obtained by 3D full electromagnetic simulations of the entire structure. Destructive interference conditions for amplitude and phase to get zero reflection are well satisfied.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Subwavelength single layer absorption resonance antireflection coatings

S.P. Huber, R.W.E. van de Kruijs, A.E. Yakshin, E. Zoethout, K.-J. Boller, and F. Bijkerk
Opt. Express 22(1) 490-497 (2014)

Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings

Seung Jae Oh, Sameer Chhajed, David J. Poxson, Jaehee Cho, E. Fred Schubert, Sung Ju Tark, Donghwan Kim, and Jong Kyu Kim
Opt. Express 21(S1) A157-A166 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  3. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7–8), 163–182 (1944).
    [Crossref]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  5. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  6. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [Crossref] [PubMed]
  7. P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. 8(2), 197–220 (2014).
    [Crossref]
  8. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
    [Crossref]
  9. A. Rogalski, “History of infrared detectors,” Opto-Electron. Rev. 20(3), 279–308 (2012).
    [Crossref]
  10. S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
    [Crossref] [PubMed]
  11. C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
    [Crossref] [PubMed]
  12. S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
    [Crossref] [PubMed]
  13. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
    [Crossref]
  14. C. Zhang, H. Chang, F. Zhao, and X. Hu, “Design principle of Au grating couplers for quantum-well infrared photodetectors,” Opt. Lett. 38(20), 4037–4039 (2013).
    [Crossref] [PubMed]
  15. S. Kalchmair, R. Gansch, S. I. Ahn, A. M. Andrews, H. Detz, T. Zederbauer, E. Mujagić, P. Reininger, G. Lasser, W. Schrenk, and G. Strasser, “Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator,” Opt. Express 20(5), 5622–5628 (2012).
    [Crossref] [PubMed]
  16. Z. Ku, W.-Y. Jang, J. Zhou, J. O. Kim, A. V. Barve, S. Silva, S. Krishna, S. R. J. Brueck, R. Nelson, A. Urbas, S. Kang, and S. J. Lee, “Analysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors,” Opt. Express 21(4), 4709–4716 (2013).
    [Crossref] [PubMed]
  17. F. Mao, J. Xie, S. Xiao, S. Komiyama, W. Lu, L. Zhou, and Z. An, “Plasmonic light harvesting for multicolor infrared thermal detection,” Opt. Express 21(1), 295–304 (2013).
    [Crossref] [PubMed]
  18. R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Phys. D Appl. Phys. 46(1), 015102 (2013).
    [Crossref]
  19. D. W. Peters, P. S. Davids, J. K. Kim, D. Leonhardt, T. E. Beechem, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
    [Crossref]
  20. Y. D. Sharma, Y. C. Jun, J. O. Kim, I. Brener, and S. Krishna, “Polarization-dependent photocurrent enhancement in metamaterial-coupled quantum dots-in-a-well infrared detector,” Opt. Commun. 312, 31–34 (2014).
    [Crossref]
  21. F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of plasmonic perfect absorbers for quantum-well infrared photodetection,” Plasmonics 9(6), 1397–1400 (2014), doi:.
    [Crossref]
  22. A. Kabiri, E. Girgis, and F. Capasso, “Buried Nanoantenna Arrays: Versatile Antireflection Coating,” Nano Lett. 13(12), 6040–6047 (2013).
    [Crossref] [PubMed]
  23. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
    [Crossref] [PubMed]
  24. W. R. Knolle and J. W. Osenbach, “The structure of plasma-deposited silicon nitride films determined by infrared spectroscopy,” J. Appl. Phys. 58(3), 1248 (1985).
    [Crossref]
  25. J. Zhou, H.-T. Chen, T. Koschny, A. K. Azad, A. J. Taylor, C. M. Soukoulis, and J. F. O’Hara, “Application of metasurface description for multilayered metamaterials and an alternative theory for metamaterial perfect absorber,” arXiv:1111.0343v1 (2011).
  26. H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
    [Crossref] [PubMed]
  27. C. S. T. Microwave Studio, 2013, < www.cst.com >.
  28. M. Born and E. Wolf, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light (Cambridge University, 1999).
  29. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [Crossref]

2014 (4)

P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. 8(2), 197–220 (2014).
[Crossref]

D. W. Peters, P. S. Davids, J. K. Kim, D. Leonhardt, T. E. Beechem, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

Y. D. Sharma, Y. C. Jun, J. O. Kim, I. Brener, and S. Krishna, “Polarization-dependent photocurrent enhancement in metamaterial-coupled quantum dots-in-a-well infrared detector,” Opt. Commun. 312, 31–34 (2014).
[Crossref]

F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of plasmonic perfect absorbers for quantum-well infrared photodetection,” Plasmonics 9(6), 1397–1400 (2014), doi:.
[Crossref]

2013 (5)

2012 (3)

2011 (1)

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

2010 (2)

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

2009 (3)

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
[Crossref] [PubMed]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

2007 (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

1998 (2)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1985 (1)

W. R. Knolle and J. W. Osenbach, “The structure of plasma-deposited silicon nitride films determined by infrared spectroscopy,” J. Appl. Phys. 58(3), 1248 (1985).
[Crossref]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7–8), 163–182 (1944).
[Crossref]

Ahn, S. I.

Aleksandrova, A.

An, Z.

Andrews, A. M.

Antoszewski, J.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

Azad, A. K.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Barve, A.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

Barve, A. V.

Beechem, T. E.

D. W. Peters, P. S. Davids, J. K. Kim, D. Leonhardt, T. E. Beechem, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

Berini, P.

P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. 8(2), 197–220 (2014).
[Crossref]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7–8), 163–182 (1944).
[Crossref]

Brener, I.

Y. D. Sharma, Y. C. Jun, J. O. Kim, I. Brener, and S. Krishna, “Polarization-dependent photocurrent enhancement in metamaterial-coupled quantum dots-in-a-well infrared detector,” Opt. Commun. 312, 31–34 (2014).
[Crossref]

Brueck, S. R. J.

Bur, J. A.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Capasso, F.

A. Kabiri, E. Girgis, and F. Capasso, “Buried Nanoantenna Arrays: Versatile Antireflection Coating,” Nano Lett. 13(12), 6040–6047 (2013).
[Crossref] [PubMed]

Chang, C.-C.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Chang, H.

F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of plasmonic perfect absorbers for quantum-well infrared photodetection,” Plasmonics 9(6), 1397–1400 (2014), doi:.
[Crossref]

C. Zhang, H. Chang, F. Zhao, and X. Hu, “Design principle of Au grating couplers for quantum-well infrared photodetectors,” Opt. Lett. 38(20), 4037–4039 (2013).
[Crossref] [PubMed]

Chashnikova, M.

Chen, F.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Chen, H.-T.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Davids, P. S.

D. W. Peters, P. S. Davids, J. K. Kim, D. Leonhardt, T. E. Beechem, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Detz, H.

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Faraone, L.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

Fedosenko, O.

Flores, Y.

Gansch, R.

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).

Girgis, E.

A. Kabiri, E. Girgis, and F. Capasso, “Buried Nanoantenna Arrays: Versatile Antireflection Coating,” Nano Lett. 13(12), 6040–6047 (2013).
[Crossref] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).

Gruska, B.

Gu, G.

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Phys. D Appl. Phys. 46(1), 015102 (2013).
[Crossref]

Howell, S. W.

D. W. Peters, P. S. Davids, J. K. Kim, D. Leonhardt, T. E. Beechem, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

Hu, X.

F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of plasmonic perfect absorbers for quantum-well infrared photodetection,” Plasmonics 9(6), 1397–1400 (2014), doi:.
[Crossref]

C. Zhang, H. Chang, F. Zhao, and X. Hu, “Design principle of Au grating couplers for quantum-well infrared photodetectors,” Opt. Lett. 38(20), 4037–4039 (2013).
[Crossref] [PubMed]

Huang, D.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Jang, W.-Y.

Jun, Y. C.

Y. D. Sharma, Y. C. Jun, J. O. Kim, I. Brener, and S. Krishna, “Polarization-dependent photocurrent enhancement in metamaterial-coupled quantum dots-in-a-well infrared detector,” Opt. Commun. 312, 31–34 (2014).
[Crossref]

Kabiri, A.

A. Kabiri, E. Girgis, and F. Capasso, “Buried Nanoantenna Arrays: Versatile Antireflection Coating,” Nano Lett. 13(12), 6040–6047 (2013).
[Crossref] [PubMed]

Kalchmair, S.

Kang, S.

Kim, J. K.

D. W. Peters, P. S. Davids, J. K. Kim, D. Leonhardt, T. E. Beechem, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

Kim, J. O.

Kim, Y.-S.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Kischkat, J.

Klinkmüller, M.

Knolle, W. R.

W. R. Knolle and J. W. Osenbach, “The structure of plasma-deposited silicon nitride films determined by infrared spectroscopy,” J. Appl. Phys. 58(3), 1248 (1985).
[Crossref]

Komiyama, S.

Krishna, S.

Y. D. Sharma, Y. C. Jun, J. O. Kim, I. Brener, and S. Krishna, “Polarization-dependent photocurrent enhancement in metamaterial-coupled quantum dots-in-a-well infrared detector,” Opt. Commun. 312, 31–34 (2014).
[Crossref]

Z. Ku, W.-Y. Jang, J. Zhou, J. O. Kim, A. V. Barve, S. Silva, S. Krishna, S. R. J. Brueck, R. Nelson, A. Urbas, S. Kang, and S. J. Lee, “Analysis of subwavelength metal hole array structure for the enhancement of back-illuminated quantum dot infrared photodetectors,” Opt. Express 21(4), 4709–4716 (2013).
[Crossref] [PubMed]

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express 17(25), 23160–23168 (2009).
[Crossref] [PubMed]

Ku, Z.

Lasser, G.

Lee, S. C.

Lee, S. J.

Leonhardt, D.

D. W. Peters, P. S. Davids, J. K. Kim, D. Leonhardt, T. E. Beechem, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Lin, S.-Y.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Liu, R.

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Phys. D Appl. Phys. 46(1), 015102 (2013).
[Crossref]

Lu, W.

Lu, X.

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Phys. D Appl. Phys. 46(1), 015102 (2013).
[Crossref]

Machulik, S.

Mao, F.

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Masselink, W. T.

Monastyrskyi, G.

Montoya, J.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

Montoya, J. A.

D. W. Peters, P. S. Davids, J. K. Kim, D. Leonhardt, T. E. Beechem, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

Mujagic, E.

Nelson, R.

Noh, S. K.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

O’Hara, J. F.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Ohta, T.

D. W. Peters, P. S. Davids, J. K. Kim, D. Leonhardt, T. E. Beechem, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

Osenbach, J. W.

W. R. Knolle and J. W. Osenbach, “The structure of plasma-deposited silicon nitride films determined by infrared spectroscopy,” J. Appl. Phys. 58(3), 1248 (1985).
[Crossref]

Painter, O.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Peters, D. W.

D. W. Peters, P. S. Davids, J. K. Kim, D. Leonhardt, T. E. Beechem, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

Peters, S.

Reininger, P.

Reisinger, A.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

Rogalski, A.

A. Rogalski, “History of infrared detectors,” Opto-Electron. Rev. 20(3), 279–308 (2012).
[Crossref]

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

Rosenberg, J.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Schrenk, W.

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Semtsiv, M.

Sharma, Y. D.

Y. D. Sharma, Y. C. Jun, J. O. Kim, I. Brener, and S. Krishna, “Polarization-dependent photocurrent enhancement in metamaterial-coupled quantum dots-in-a-well infrared detector,” Opt. Commun. 312, 31–34 (2014).
[Crossref]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

Shenoi, R. V.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Silva, S.

Smith, D. R.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Soukoulis, C. M.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Strasser, G.

Sundaram, M.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

Taylor, A. J.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).

Urbas, A.

Vaillancourt, J.

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Phys. D Appl. Phys. 46(1), 015102 (2013).
[Crossref]

Vandervelde, T. E.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

Vasinajindakaw, P.

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Phys. D Appl. Phys. 46(1), 015102 (2013).
[Crossref]

Wendt, J. R.

D. W. Peters, P. S. Davids, J. K. Kim, D. Leonhardt, T. E. Beechem, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Xiao, S.

Xie, J.

Zederbauer, T.

Zhang, C.

F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of plasmonic perfect absorbers for quantum-well infrared photodetection,” Plasmonics 9(6), 1397–1400 (2014), doi:.
[Crossref]

C. Zhang, H. Chang, F. Zhao, and X. Hu, “Design principle of Au grating couplers for quantum-well infrared photodetectors,” Opt. Lett. 38(20), 4037–4039 (2013).
[Crossref] [PubMed]

Zhao, F.

F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of plasmonic perfect absorbers for quantum-well infrared photodetection,” Plasmonics 9(6), 1397–1400 (2014), doi:.
[Crossref]

C. Zhang, H. Chang, F. Zhao, and X. Hu, “Design principle of Au grating couplers for quantum-well infrared photodetectors,” Opt. Lett. 38(20), 4037–4039 (2013).
[Crossref] [PubMed]

Zhou, J.

Zhou, L.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett. 95(16), 161101 (2009).
[Crossref]

J. Appl. Phys. (2)

W. R. Knolle and J. W. Osenbach, “The structure of plasma-deposited silicon nitride films determined by infrared spectroscopy,” J. Appl. Phys. 58(3), 1248 (1985).
[Crossref]

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[Crossref]

J. Phys. D Appl. Phys. (1)

R. Liu, P. Vasinajindakaw, G. Gu, J. Vaillancourt, and X. Lu, “Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves,” J. Phys. D Appl. Phys. 46(1), 015102 (2013).
[Crossref]

Laser Photon. Rev. (1)

P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photon. Rev. 8(2), 197–220 (2014).
[Crossref]

Nano Lett. (2)

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A surface plasmon enhanced infrared photodetector based on InAs quantum dots,” Nano Lett. 10(5), 1704–1709 (2010).
[Crossref] [PubMed]

A. Kabiri, E. Girgis, and F. Capasso, “Buried Nanoantenna Arrays: Versatile Antireflection Coating,” Nano Lett. 13(12), 6040–6047 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun. 2, 286 (2011).
[Crossref] [PubMed]

Nature (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. D. Sharma, Y. C. Jun, J. O. Kim, I. Brener, and S. Krishna, “Polarization-dependent photocurrent enhancement in metamaterial-coupled quantum dots-in-a-well infrared detector,” Opt. Commun. 312, 31–34 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opto-Electron. Rev. (1)

A. Rogalski, “History of infrared detectors,” Opto-Electron. Rev. 20(3), 279–308 (2012).
[Crossref]

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7–8), 163–182 (1944).
[Crossref]

Phys. Rev. B (2)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Phys. Rev. Lett. (2)

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105(7), 073901 (2010).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Plasmonics (1)

F. Zhao, C. Zhang, H. Chang, and X. Hu, “Design of plasmonic perfect absorbers for quantum-well infrared photodetection,” Plasmonics 9(6), 1397–1400 (2014), doi:.
[Crossref]

Proc. SPIE (1)

D. W. Peters, P. S. Davids, J. K. Kim, D. Leonhardt, T. E. Beechem, S. W. Howell, T. Ohta, J. R. Wendt, and J. A. Montoya, “Application of plasmonic subwavelength structuring to enhance infrared detection,” Proc. SPIE 8994, 899419 (2014).
[Crossref]

Other (3)

J. Zhou, H.-T. Chen, T. Koschny, A. K. Azad, A. J. Taylor, C. M. Soukoulis, and J. F. O’Hara, “Application of metasurface description for multilayered metamaterials and an alternative theory for metamaterial perfect absorber,” arXiv:1111.0343v1 (2011).

C. S. T. Microwave Studio, 2013, < www.cst.com >.

M. Born and E. Wolf, Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light (Cambridge University, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic view of structures and dimensions for (a) PGF and (b) Si3N4:PGF. The pitch p and Si3N4 thickness td are varied from 1.8 µm to 3.2 µm with a step of 0.2 µm and from 150 nm to 750 nm with a step of 200 nm, respectively. The circular aperture size (d) and Au thickness (tm) are fixed at 0.5·p and 50 nm, respectively. The scanning electron microscope (SEM) images (side view) of (c) PGF structure with p = 2.6 µm and (d) Si3N4:PGF structure with p = 1.8 µm; td = 750 nm. Insets show the tilted SEM images.
Fig. 2
Fig. 2 FTIR-measured normal incidence transmission spectra of PGF (Gray) and Si3N4:PGF (Color) samples with variable pitches (p = 1.8 – 3.2 µm) and thicknesses of Si3N4 layer, (a) td = 150 nm, (b) td = 350 nm, (c) td = 550 nm and (d) td = 750 nm.
Fig. 3
Fig. 3 Transmission enhancement factor as a function of the periodicity (p) for different thickness of Si3N4 layer (td) placed on top of PGFs at (a) the first-order and (b) the second-order SPP resonance wavelengths.
Fig. 4
Fig. 4 (a) Numerical reflection (red line) and transmission (blue line) for the structure with p = 1.8 µm and td = 750 nm obtained from 3D full field EM simulation of the whole structure (all three layers together) while circles show the calculated reflection (red) and transmission (blue) using a three-layer model. Black line represents the transmission without Si3N4 coating layer. (b) The amplitude of r12 and r23, i.e. |r12| (red line) and |r23| (blue line). Magenta dashed line is drawn at the first SPP resonance. (c) The phase terms in Eq. (4), θ (black) = ϕ r 12 ϕ r 23 +2β , where ϕ r 12 and ϕ r 23 are the phase of r12 (red) and r23 (blue), respectively and the propagation phase in the silicon nitride coating layer is 2β (green).
Fig. 5
Fig. 5 The effective impedance of Si3N4 coating layer (Z2: gray) and PGF (√Z3: black), and the amplitude of r12 (|r12|: light blue) and r23 (|r23|: blue). The resonance region is highlighted.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r= r 12 + r 23 exp( 2iβ ) 1+ r 12 r 23 exp( 2iβ ) ,t= t 12 t 23 exp( iβ ) 1+ r 12 r 23 exp( 2iβ )
| r 12 |=| r 23 |
θ= ϕ r 12 ϕ r 23 +2β=( 2m+1 )π,| m |=0,1,2,

Metrics