Abstract

We experimentally showed that the π/2-period oscillation of an ablation area with laser polarization direction can be observed in GaAs, ZnSe, MgO and LiF with cubic crystal by a femtosecond laser (800 nm, 100 fs) and that the modulation in the ablation area can be controlled by the laser fluence. While the polarization dependence is sustained in a wide range of laser fluences for a narrow band-gap crystal, it is strongly suppressed with a slight augmentation of laser fluence in a wide band-gap material. The polarization-dependent ablation is explained by the crystal’s orientation-dependent reduced-electron mass and the resultant contrasting nonlinear absorptions with slightly different reduced electron mass. The interplay between photoionization and avalanche ionization is discussed to interpret the influence of laser fluence on polarization-dependent ablation. Based on Keldysh’s theory, polarization-dependent ablation occurs in a mixed regime between tunneling and multiphoton ionization.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transient optical properties of dielectrics and semiconductors excited by an ultrashort laser pulse

E. G. Gamaly and A. V. Rode
J. Opt. Soc. Am. B 31(11) C36-C43 (2014)

Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon

Lan Jiang, Weina Han, Xiaowei Li, Qingsong Wang, Fantong Meng, and Yongfeng Lu
Opt. Lett. 39(11) 3114-3117 (2014)

Polarization-induced size control and ablation dynamics of Ge nanostructures formed by a femtosecond laser

Min Ah Seo, Dai Sik Kim, Hyun Sun Kim, and Sae Chae Jeoung
Opt. Express 14(8) 3694-3699 (2006)

References

  • View by:
  • |
  • |
  • |

  1. H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
    [Crossref]
  2. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  3. S. Gross, M. Alberich, A. Arriola, M. J. Withford, and A. Fuerbach, “Fabrication of fully integrated antiresonant reflecting optical waveguides using the femtosecond laser direct-write technique,” Opt. Lett. 38(11), 1872–1874 (2013).
    [Crossref] [PubMed]
  4. L. Jiang, P. J. Liu, X. L. Yan, N. Leng, C. C. Xu, H. Xiao, and Y. F. Lu, “High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains,” Opt. Lett. 37(14), 2781–2783 (2012).
    [Crossref] [PubMed]
  5. C. Hosokawa, S. N. Kudoh, M. Suzuki, A. Kiyohara, Y. Hosokawa, K. Okano, H. Masuhara, and T. Taguchi, “Micro-channel fabrication by femtosecond laser to arrange neuronal cells on multi-electrode arrays,” Appl. Phys., A Mater. Sci. Process. 101(2), 423–428 (2010).
    [Crossref]
  6. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
    [Crossref]
  7. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006).
    [Crossref]
  8. D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, “Midinfrared optical breakdown in transparent dielectrics,” Phys. Rev. Lett. 91(10), 107601 (2003).
    [Crossref] [PubMed]
  9. M. Gertsvolf, H. Jean-Ruel, P. P. Rajeev, D. D. Klug, D. M. Rayner, and P. B. Corkum, “Orientation-dependent multiphoton ionization in wide band gap crystals,” Phys. Rev. Lett. 101(24), 243001 (2008).
    [Crossref] [PubMed]
  10. K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO Micro/Nanowire,” Nano Lett. 12(2), 833–838 (2012).
    [Crossref] [PubMed]
  11. A. Lehmann, C. Bradac, and R. P. Mildren, “Two-photon polarization-selective etching of emergent nano-structures on diamond surfaces,” Nat Commun 5, 3341 (2014).
    [Crossref] [PubMed]
  12. W. N. Han, L. Jiang, X. W. Li, Q. S. Wang, F. T. Meng, and Y. F. Lu, “Dependence of femtosecond laser induced periodic surface structure on Si (100) crystal orientation,” Opt. Lett. 39(11), 3114–3117 (2014).
    [Crossref] [PubMed]
  13. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [Crossref] [PubMed]
  14. Y. Gan and J. K. Chen, “A hybrid method for integrated atomistic-continuum simulation of ultrashort-pulsed laser interaction with semiconductors,” Comput. Phys. Commun. 183(2), 278–284 (2012).
    [Crossref]
  15. H. Zhang, D. M. Krol, J. I. Dijkhuis, and D. van Oosten, “Self-scattering effects in femtosecond laser nanoablation,” Opt. Lett. 38(23), 5032–5035 (2013).
    [Crossref] [PubMed]
  16. M. Yang, Q. Wu, Z. D. Chen, B. Zhang, B. Q. Tang, J. H. Yao, I. Drevensek-Olenik, and J. J. Xu, “Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse,” Opt. Lett. 39(2), 343–346 (2014).
    [PubMed]
  17. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20(5), 1307–1314 (1965).
  18. H. Dachraoui, C. Oberer, and U. Heinzmann, “Femtosecond crystallographic experiment in wide-bandgap LiF crystal,” Opt. Express 19(3), 2797–2804 (2011).
    [Crossref] [PubMed]
  19. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
    [Crossref]
  20. C. S. Wang and B. M. Klein, “First-principles electronic structure of Si, Ge, GaP, GaAs, ZnS, and ZnSe.I. Self-consistent energy bands, charge densities, and effective masses,” Phys. Rev. B 24(6), 3393–3416 (1981).
    [Crossref]
  21. J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 036412 (2005).
    [Crossref] [PubMed]
  22. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7(5), 196–198 (1982).
    [Crossref] [PubMed]
  23. D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B 68(6), 064114 (2003).
    [Crossref]

2014 (4)

2013 (2)

2012 (3)

L. Jiang, P. J. Liu, X. L. Yan, N. Leng, C. C. Xu, H. Xiao, and Y. F. Lu, “High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains,” Opt. Lett. 37(14), 2781–2783 (2012).
[Crossref] [PubMed]

Y. Gan and J. K. Chen, “A hybrid method for integrated atomistic-continuum simulation of ultrashort-pulsed laser interaction with semiconductors,” Comput. Phys. Commun. 183(2), 278–284 (2012).
[Crossref]

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO Micro/Nanowire,” Nano Lett. 12(2), 833–838 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

C. Hosokawa, S. N. Kudoh, M. Suzuki, A. Kiyohara, Y. Hosokawa, K. Okano, H. Masuhara, and T. Taguchi, “Micro-channel fabrication by femtosecond laser to arrange neuronal cells on multi-electrode arrays,” Appl. Phys., A Mater. Sci. Process. 101(2), 423–428 (2010).
[Crossref]

2009 (1)

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

2008 (1)

M. Gertsvolf, H. Jean-Ruel, P. P. Rajeev, D. D. Klug, D. M. Rayner, and P. B. Corkum, “Orientation-dependent multiphoton ionization in wide band gap crystals,” Phys. Rev. Lett. 101(24), 243001 (2008).
[Crossref] [PubMed]

2006 (1)

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006).
[Crossref]

2005 (1)

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 036412 (2005).
[Crossref] [PubMed]

2003 (2)

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B 68(6), 064114 (2003).
[Crossref]

D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, “Midinfrared optical breakdown in transparent dielectrics,” Phys. Rev. Lett. 91(10), 107601 (2003).
[Crossref] [PubMed]

2001 (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

1998 (1)

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

1982 (1)

1981 (1)

C. S. Wang and B. M. Klein, “First-principles electronic structure of Si, Ge, GaP, GaAs, ZnS, and ZnSe.I. Self-consistent energy bands, charge densities, and effective masses,” Phys. Rev. B 24(6), 3393–3416 (1981).
[Crossref]

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20(5), 1307–1314 (1965).

Alberich, M.

Arriola, A.

Bradac, C.

A. Lehmann, C. Bradac, and R. P. Mildren, “Two-photon polarization-selective etching of emergent nano-structures on diamond surfaces,” Nat Commun 5, 3341 (2014).
[Crossref] [PubMed]

Branz, H. M.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Chen, F.

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Chen, H. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006).
[Crossref]

Chen, J.

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO Micro/Nanowire,” Nano Lett. 12(2), 833–838 (2012).
[Crossref] [PubMed]

Chen, J. K.

Y. Gan and J. K. Chen, “A hybrid method for integrated atomistic-continuum simulation of ultrashort-pulsed laser interaction with semiconductors,” Comput. Phys. Commun. 183(2), 278–284 (2012).
[Crossref]

Chen, Z. D.

Cheng, Z.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Corkum, P. B.

M. Gertsvolf, H. Jean-Ruel, P. P. Rajeev, D. D. Klug, D. M. Rayner, and P. B. Corkum, “Orientation-dependent multiphoton ionization in wide band gap crystals,” Phys. Rev. Lett. 101(24), 243001 (2008).
[Crossref] [PubMed]

Dachraoui, H.

Dijkhuis, J. I.

Drevensek-Olenik, I.

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Feng, D. H.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006).
[Crossref]

Fuerbach, A.

Gan, Y.

Y. Gan and J. K. Chen, “A hybrid method for integrated atomistic-continuum simulation of ultrashort-pulsed laser interaction with semiconductors,” Comput. Phys. Commun. 183(2), 278–284 (2012).
[Crossref]

Gertsvolf, M.

M. Gertsvolf, H. Jean-Ruel, P. P. Rajeev, D. D. Klug, D. M. Rayner, and P. B. Corkum, “Orientation-dependent multiphoton ionization in wide band gap crystals,” Phys. Rev. Lett. 101(24), 243001 (2008).
[Crossref] [PubMed]

Gross, S.

Hafizi, B.

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 036412 (2005).
[Crossref] [PubMed]

Han, W. N.

He, X. K.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006).
[Crossref]

Heinzmann, U.

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Hosokawa, C.

C. Hosokawa, S. N. Kudoh, M. Suzuki, A. Kiyohara, Y. Hosokawa, K. Okano, H. Masuhara, and T. Taguchi, “Micro-channel fabrication by femtosecond laser to arrange neuronal cells on multi-electrode arrays,” Appl. Phys., A Mater. Sci. Process. 101(2), 423–428 (2010).
[Crossref]

Hosokawa, Y.

C. Hosokawa, S. N. Kudoh, M. Suzuki, A. Kiyohara, Y. Hosokawa, K. Okano, H. Masuhara, and T. Taguchi, “Micro-channel fabrication by femtosecond laser to arrange neuronal cells on multi-electrode arrays,” Appl. Phys., A Mater. Sci. Process. 101(2), 423–428 (2010).
[Crossref]

Huang, M.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006).
[Crossref]

Ivanov, D. S.

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B 68(6), 064114 (2003).
[Crossref]

Jean-Ruel, H.

M. Gertsvolf, H. Jean-Ruel, P. P. Rajeev, D. D. Klug, D. M. Rayner, and P. B. Corkum, “Orientation-dependent multiphoton ionization in wide band gap crystals,” Phys. Rev. Lett. 101(24), 243001 (2008).
[Crossref] [PubMed]

Jia, T. Q.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006).
[Crossref]

Jiang, L.

Kautek, W.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20(5), 1307–1314 (1965).

Kiyohara, A.

C. Hosokawa, S. N. Kudoh, M. Suzuki, A. Kiyohara, Y. Hosokawa, K. Okano, H. Masuhara, and T. Taguchi, “Micro-channel fabrication by femtosecond laser to arrange neuronal cells on multi-electrode arrays,” Appl. Phys., A Mater. Sci. Process. 101(2), 423–428 (2010).
[Crossref]

Klein, B. M.

C. S. Wang and B. M. Klein, “First-principles electronic structure of Si, Ge, GaP, GaAs, ZnS, and ZnSe.I. Self-consistent energy bands, charge densities, and effective masses,” Phys. Rev. B 24(6), 3393–3416 (1981).
[Crossref]

Klug, D. D.

M. Gertsvolf, H. Jean-Ruel, P. P. Rajeev, D. D. Klug, D. M. Rayner, and P. B. Corkum, “Orientation-dependent multiphoton ionization in wide band gap crystals,” Phys. Rev. Lett. 101(24), 243001 (2008).
[Crossref] [PubMed]

Krausz, F.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Krol, D. M.

Krüger, J.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Kudoh, S. N.

C. Hosokawa, S. N. Kudoh, M. Suzuki, A. Kiyohara, Y. Hosokawa, K. Okano, H. Masuhara, and T. Taguchi, “Micro-channel fabrication by femtosecond laser to arrange neuronal cells on multi-electrode arrays,” Appl. Phys., A Mater. Sci. Process. 101(2), 423–428 (2010).
[Crossref]

Kuroda, H.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006).
[Crossref]

Lee, H.

D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, “Midinfrared optical breakdown in transparent dielectrics,” Phys. Rev. Lett. 91(10), 107601 (2003).
[Crossref] [PubMed]

Lehmann, A.

A. Lehmann, C. Bradac, and R. P. Mildren, “Two-photon polarization-selective etching of emergent nano-structures on diamond surfaces,” Nat Commun 5, 3341 (2014).
[Crossref] [PubMed]

Leng, N.

Lenzner, M.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Li, C. B.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006).
[Crossref]

Li, R. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006).
[Crossref]

Li, X. W.

Li, X. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006).
[Crossref]

Liu, J. M.

Liu, P. J.

Lu, P. X.

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO Micro/Nanowire,” Nano Lett. 12(2), 833–838 (2012).
[Crossref] [PubMed]

Lu, Y. F.

Manheimer, W.

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 036412 (2005).
[Crossref] [PubMed]

Masuhara, H.

C. Hosokawa, S. N. Kudoh, M. Suzuki, A. Kiyohara, Y. Hosokawa, K. Okano, H. Masuhara, and T. Taguchi, “Micro-channel fabrication by femtosecond laser to arrange neuronal cells on multi-electrode arrays,” Appl. Phys., A Mater. Sci. Process. 101(2), 423–428 (2010).
[Crossref]

Mazur, E.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Meier, D. L.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Meng, F. T.

Mildren, R. P.

A. Lehmann, C. Bradac, and R. P. Mildren, “Two-photon polarization-selective etching of emergent nano-structures on diamond surfaces,” Nat Commun 5, 3341 (2014).
[Crossref] [PubMed]

Mourou, G.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Oberer, C.

Okano, K.

C. Hosokawa, S. N. Kudoh, M. Suzuki, A. Kiyohara, Y. Hosokawa, K. Okano, H. Masuhara, and T. Taguchi, “Micro-channel fabrication by femtosecond laser to arrange neuronal cells on multi-electrode arrays,” Appl. Phys., A Mater. Sci. Process. 101(2), 423–428 (2010).
[Crossref]

Page, M. R.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Peñano, J. R.

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 036412 (2005).
[Crossref] [PubMed]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Rajeev, P. P.

M. Gertsvolf, H. Jean-Ruel, P. P. Rajeev, D. D. Klug, D. M. Rayner, and P. B. Corkum, “Orientation-dependent multiphoton ionization in wide band gap crystals,” Phys. Rev. Lett. 101(24), 243001 (2008).
[Crossref] [PubMed]

Rayner, D. M.

M. Gertsvolf, H. Jean-Ruel, P. P. Rajeev, D. D. Klug, D. M. Rayner, and P. B. Corkum, “Orientation-dependent multiphoton ionization in wide band gap crystals,” Phys. Rev. Lett. 101(24), 243001 (2008).
[Crossref] [PubMed]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Sartania, S.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Schwettman, H. A.

D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, “Midinfrared optical breakdown in transparent dielectrics,” Phys. Rev. Lett. 91(10), 107601 (2003).
[Crossref] [PubMed]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Simanovskii, D. M.

D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, “Midinfrared optical breakdown in transparent dielectrics,” Phys. Rev. Lett. 91(10), 107601 (2003).
[Crossref] [PubMed]

Spielmann, Ch.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Sprangle, P.

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 036412 (2005).
[Crossref] [PubMed]

Stradins, P.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Sun, H. Y.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006).
[Crossref]

Suzuki, M.

C. Hosokawa, S. N. Kudoh, M. Suzuki, A. Kiyohara, Y. Hosokawa, K. Okano, H. Masuhara, and T. Taguchi, “Micro-channel fabrication by femtosecond laser to arrange neuronal cells on multi-electrode arrays,” Appl. Phys., A Mater. Sci. Process. 101(2), 423–428 (2010).
[Crossref]

Taguchi, T.

C. Hosokawa, S. N. Kudoh, M. Suzuki, A. Kiyohara, Y. Hosokawa, K. Okano, H. Masuhara, and T. Taguchi, “Micro-channel fabrication by femtosecond laser to arrange neuronal cells on multi-electrode arrays,” Appl. Phys., A Mater. Sci. Process. 101(2), 423–428 (2010).
[Crossref]

Tang, B. Q.

Tao, Y. T.

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO Micro/Nanowire,” Nano Lett. 12(2), 833–838 (2012).
[Crossref] [PubMed]

van Oosten, D.

Vázquez de Aldana, J. R.

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Wang, C. S.

C. S. Wang and B. M. Klein, “First-principles electronic structure of Si, Ge, GaP, GaAs, ZnS, and ZnSe.I. Self-consistent energy bands, charge densities, and effective masses,” Phys. Rev. B 24(6), 3393–3416 (1981).
[Crossref]

Wang, K.

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO Micro/Nanowire,” Nano Lett. 12(2), 833–838 (2012).
[Crossref] [PubMed]

Wang, Q. S.

Wang, X. F.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006).
[Crossref]

Wang, Z. L.

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO Micro/Nanowire,” Nano Lett. 12(2), 833–838 (2012).
[Crossref] [PubMed]

Welch, A. J.

D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, “Midinfrared optical breakdown in transparent dielectrics,” Phys. Rev. Lett. 91(10), 107601 (2003).
[Crossref] [PubMed]

Withford, M. J.

Wu, Q.

Xiao, H.

Xu, C. C.

Xu, J. J.

Xu, S. Z.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006).
[Crossref]

Xu, Z. Z.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006).
[Crossref]

Yan, X. L.

Yang, M.

Yao, J. H.

Yost, V. E.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Yuan, H. C.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Yuan, L. Y.

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO Micro/Nanowire,” Nano Lett. 12(2), 833–838 (2012).
[Crossref] [PubMed]

Zhang, B.

Zhang, H.

Zhao, F. L.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006).
[Crossref]

Zhigilei, L. V.

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B 68(6), 064114 (2003).
[Crossref]

Zhou, J.

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO Micro/Nanowire,” Nano Lett. 12(2), 833–838 (2012).
[Crossref] [PubMed]

Zigler, A.

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 036412 (2005).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95(12), 123501 (2009).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

C. Hosokawa, S. N. Kudoh, M. Suzuki, A. Kiyohara, Y. Hosokawa, K. Okano, H. Masuhara, and T. Taguchi, “Micro-channel fabrication by femtosecond laser to arrange neuronal cells on multi-electrode arrays,” Appl. Phys., A Mater. Sci. Process. 101(2), 423–428 (2010).
[Crossref]

Comput. Phys. Commun. (1)

Y. Gan and J. K. Chen, “A hybrid method for integrated atomistic-continuum simulation of ultrashort-pulsed laser interaction with semiconductors,” Comput. Phys. Commun. 183(2), 278–284 (2012).
[Crossref]

Laser Photonics Rev. (1)

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Nano Lett. (1)

K. Wang, J. Zhou, L. Y. Yuan, Y. T. Tao, J. Chen, P. X. Lu, and Z. L. Wang, “Anisotropic third-order optical nonlinearity of a single ZnO Micro/Nanowire,” Nano Lett. 12(2), 833–838 (2012).
[Crossref] [PubMed]

Nat Commun (1)

A. Lehmann, C. Bradac, and R. P. Mildren, “Two-photon polarization-selective etching of emergent nano-structures on diamond surfaces,” Nat Commun 5, 3341 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. B (3)

C. S. Wang and B. M. Klein, “First-principles electronic structure of Si, Ge, GaP, GaAs, ZnS, and ZnSe.I. Self-consistent energy bands, charge densities, and effective masses,” Phys. Rev. B 24(6), 3393–3416 (1981).
[Crossref]

D. S. Ivanov and L. V. Zhigilei, “Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films,” Phys. Rev. B 68(6), 064114 (2003).
[Crossref]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, X. X. Li, S. Z. Xu, H. Y. Sun, D. H. Feng, C. B. Li, X. F. Wang, R. X. Li, Z. Z. Xu, X. K. He, and H. Kuroda, “Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals,” Phys. Rev. B 73(5), 054105 (2006).
[Crossref]

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 036412 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, “Midinfrared optical breakdown in transparent dielectrics,” Phys. Rev. Lett. 91(10), 107601 (2003).
[Crossref] [PubMed]

M. Gertsvolf, H. Jean-Ruel, P. P. Rajeev, D. D. Klug, D. M. Rayner, and P. B. Corkum, “Orientation-dependent multiphoton ionization in wide band gap crystals,” Phys. Rev. Lett. 101(24), 243001 (2008).
[Crossref] [PubMed]

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Sov. Phys. JETP (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20(5), 1307–1314 (1965).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of femtosecond laser ablation experimental system. (b) The definition for the polarization angle, θ. E0 is the initial incident laser polarization orientation along with 010-crystal axis of samples.
Fig. 2
Fig. 2 (a)-(d) SEM images of ablation craters after irradiation with 20 femtosecond laser pulses in ZnSe at different polarization angles: (a) θ = 0°, (b) θ = 50°, (c) θ = 90°, and (d) θ = 140°, respectively. The laser fluence is 0.29J/cm2. (e) The partial enlarged drawing to distinctly describe the cross-grating structure. The polarization orientation of the incident laser (E) is indicated by the arrow. (f) The normalized ablation areas as a function of polarization angle (θ) at laser fluences of 0.29J/cm2, 0.33J/cm2, 0.40 J/cm2, 0.44 J/cm2 and 0.51 J/cm2, where the normalized ablation areas are ablation areas A/average ablation areas A0. The inset image shows the cubic structure with two symmetry axes, -M and -K, at a crystal face of <100>.
Fig. 3
Fig. 3 The normalized ablation areas as a function of polarization angle (θ) in GaAs, ZnSe, MgO and LiF. Each of the ablation craters included 20 femtosecond pulses. The corresponding fluences were 0.12J/cm2, 0.33J/cm2, 0.89J/cm2 and 1.75 J/cm2, respectively.
Fig. 4
Fig. 4 The oscillation amplitude as a function of laser fluence in GaAs, ZnSe, MgO and LiF. The direction of the arrow points to the increasing direction of the ablated-material band-gap. The ablation threshold (Fth) is defined along the crystal x axis (polarization angle: θ = 0°).
Fig. 5
Fig. 5 The photoionization (PI) rate as a function of laser intensity at different reduced mass (m*) in LiF (a) and ZnSe (b). The range of laser peak intensity marked with a shaded border is closely related to the laser fluences and can be calculated by I=F/( τ p π/4ln(2) ) [23]. The direction of the arrow points to the dominant ionization mode based on Keldysh’s PI theory.

Metrics