Abstract

A novel tunable frequency selective surface (FSS) with dual-degrees of freedom (DOF) is presented, and firstly applied to broadband absorber. Based on a simple prototype unit cell resonator, an approach for achieving multi-resonances is studied. A unit cell pattern with gradient edges is discussed, and variable resistor and variable capacitor are introduced to fully utilize its characteristic of multi-resonances. Bias line is designed to provide bias voltage respectively for two variable devices and provide two operational DOF for FSS. Simulation and measurement results both show that the tunable FSS absorber with dual-DOF has wideband absorption with the reflectivity below −10 dB in 1−5 GHz and with a total thickness of about 10 mm.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comprehensive study of terahertz metamaterial absorber by applying a hybrid approach on its circuit analogue

Mohammad Parvinnezhad Hokmabadi, Muliang Zhu, Patrick Kung, and Seongsin M. Kim
Opt. Mater. Express 5(8) 1772-1783 (2015)

Design and analysis of perfect terahertz metamaterial absorber by a novel dynamic circuit model

Mohammad Parvinnezhad Hokmabadi, David S. Wilbert, Patrick Kung, and Seongsin M. Kim
Opt. Express 21(14) 16455-16465 (2013)

Broadband metamaterial absorber based on coupling resistive frequency selective surface

LiangKui Sun, HaiFeng Cheng, YongJiang Zhou, and Jun Wang
Opt. Express 20(4) 4675-4680 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Tennant and B. Chambers, “Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface,” Smart Mater. Struct. 13(1), 122–125 (2004).
    [Crossref]
  2. J. C. Liu, C. Y. Liu, C. P. Kuei, C. Y. Wu, and Y. S. Hong, “Design and analysis of broadband microwave absorber utilizing FSS screen constructed with circular fractal configurations,” Microw. Opt. Technol. Lett. 48(3), 449–453 (2006).
    [Crossref]
  3. L. K. Sun, H. F. Cheng, Y. J. Zhou, and J. Wang, “Broadband metamaterial absorber based on coupling resistive frequency selective surface,” Opt. Express 20(4), 4675–4680 (2012).
    [Crossref] [PubMed]
  4. W. Ma, Y. Z. Wen, and X. M. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21(25), 30724–30730 (2013).
    [Crossref] [PubMed]
  5. G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115(17), 17E523 (2014).
    [Crossref]
  6. Q. Chen, J. J. Jiang, X. X. Xu, L. Zhang, L. Miao, and S. W. Bie, “A thin and broadband tunable radar absorber using active frequency selective surface,” in 2012 IEEE Antennas And Propagation Society International Symposium (IEEE, 2012).
    [Crossref]
  7. M. Yoo and S. Lim, “Polarization-independent and ultrawideband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer,” IEEE Trans. Antenn. Propag. 62(5), 2652–2658 (2014).
    [Crossref]
  8. B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 26(2), 111–114 (2014).
    [Crossref]
  9. Y. Z. Wen, W. Ma, J. Bailey, G. Matmon, X. M. Yu, and G. Aeppli, “Planar broadband and high absorption metamaterial using single nested resonator at terahertz frequencies,” Opt. Lett. 39(6), 1589–1592 (2014).
    [Crossref] [PubMed]
  10. B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Metamaterial-based low-conductivity alloy perfect absorber,” J. Lightwave Technol. 32(12), 2293–2298 (2014).
    [Crossref]
  11. W. C. Li, X. J. Qiao, Y. Luo, F. X. Qin, and H. X. Peng, “Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism,” Appl. Phys., A Mater. Sci. Process. 115(1), 229–234 (2014).
    [Crossref]
  12. X. X. Xu, J. J. Jiang, S. W. Bie, Q. Chen, C. K. Zhang, and L. Miao, “Optimal design of electromagnetic absorbers using visualization method for wideband potential applications,” J. Electromagn. Waves Appl. 26(8–9), 1215–1225 (2012).
    [Crossref]
  13. M. Li, S. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Antennas Wirel. Propag. Lett. 11, 748–751 (2012).
    [Crossref]
  14. W. R. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
    [Crossref]
  15. B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
    [Crossref]
  16. C. Mias, “Varactor tunable frequency selective absorber,” Electron. Lett. 39(14), 1060–1062 (2003).
    [Crossref]
  17. P. S. Taylor, E. A. Parker, and J. C. Batchelor, “An active annular ring frequency selective surface,” IEEE Trans. Antenn. Propag. 59(9), 3265–3271 (2011).
    [Crossref]
  18. B. Sanz-Izquierdo, E. A. Parker, and J. C. Batchelor, “Dual-band tunable screen using complementary split ring resonators,” IEEE Trans. Antenn. Propag. 58(11), 3761–3765 (2010).
    [Crossref]
  19. G. M. Coutts, R. R. Mansour, and S. K. Chaudhuri, “Microelectromechanical systems tunable frequency-selective surfaces and electromagnetic-bandgap structures on rigid-flex substrates,” IEEE Trans. Microw. Theory Tech. 56(7), 1737–1746 (2008).
    [Crossref]
  20. L. Boccia, I. Russo, G. Amendola, and G. Di Massa, “Tunable frequency-selective surfaces for beam-steering applications,” Electron. Lett. 45(24), 1213–1214 (2009).
    [Crossref]
  21. F. Costa, A. Monorchio, and G. P. Vastante, “Tunable high-impedance surface with a reduced number of varactors,” IEEE Antennas Wirel. Propag. Lett. 10, 11–13 (2011).
    [Crossref]
  22. A. Fallahi, A. Yahaghi, H. Benedickter, H. Abiri, M. Shahabadi, and C. Hafner, “Thin wideband radar absorbers,” IEEE Trans. Antenn. Propag. 58(12), 4051–4058 (2010).
    [Crossref]

2014 (6)

G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115(17), 17E523 (2014).
[Crossref]

M. Yoo and S. Lim, “Polarization-independent and ultrawideband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer,” IEEE Trans. Antenn. Propag. 62(5), 2652–2658 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 26(2), 111–114 (2014).
[Crossref]

W. C. Li, X. J. Qiao, Y. Luo, F. X. Qin, and H. X. Peng, “Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism,” Appl. Phys., A Mater. Sci. Process. 115(1), 229–234 (2014).
[Crossref]

Y. Z. Wen, W. Ma, J. Bailey, G. Matmon, X. M. Yu, and G. Aeppli, “Planar broadband and high absorption metamaterial using single nested resonator at terahertz frequencies,” Opt. Lett. 39(6), 1589–1592 (2014).
[Crossref] [PubMed]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Metamaterial-based low-conductivity alloy perfect absorber,” J. Lightwave Technol. 32(12), 2293–2298 (2014).
[Crossref]

2013 (2)

W. R. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[Crossref]

W. Ma, Y. Z. Wen, and X. M. Yu, “Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators,” Opt. Express 21(25), 30724–30730 (2013).
[Crossref] [PubMed]

2012 (3)

X. X. Xu, J. J. Jiang, S. W. Bie, Q. Chen, C. K. Zhang, and L. Miao, “Optimal design of electromagnetic absorbers using visualization method for wideband potential applications,” J. Electromagn. Waves Appl. 26(8–9), 1215–1225 (2012).
[Crossref]

M. Li, S. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Antennas Wirel. Propag. Lett. 11, 748–751 (2012).
[Crossref]

L. K. Sun, H. F. Cheng, Y. J. Zhou, and J. Wang, “Broadband metamaterial absorber based on coupling resistive frequency selective surface,” Opt. Express 20(4), 4675–4680 (2012).
[Crossref] [PubMed]

2011 (2)

P. S. Taylor, E. A. Parker, and J. C. Batchelor, “An active annular ring frequency selective surface,” IEEE Trans. Antenn. Propag. 59(9), 3265–3271 (2011).
[Crossref]

F. Costa, A. Monorchio, and G. P. Vastante, “Tunable high-impedance surface with a reduced number of varactors,” IEEE Antennas Wirel. Propag. Lett. 10, 11–13 (2011).
[Crossref]

2010 (3)

A. Fallahi, A. Yahaghi, H. Benedickter, H. Abiri, M. Shahabadi, and C. Hafner, “Thin wideband radar absorbers,” IEEE Trans. Antenn. Propag. 58(12), 4051–4058 (2010).
[Crossref]

B. Sanz-Izquierdo, E. A. Parker, and J. C. Batchelor, “Dual-band tunable screen using complementary split ring resonators,” IEEE Trans. Antenn. Propag. 58(11), 3761–3765 (2010).
[Crossref]

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

2009 (1)

L. Boccia, I. Russo, G. Amendola, and G. Di Massa, “Tunable frequency-selective surfaces for beam-steering applications,” Electron. Lett. 45(24), 1213–1214 (2009).
[Crossref]

2008 (1)

G. M. Coutts, R. R. Mansour, and S. K. Chaudhuri, “Microelectromechanical systems tunable frequency-selective surfaces and electromagnetic-bandgap structures on rigid-flex substrates,” IEEE Trans. Microw. Theory Tech. 56(7), 1737–1746 (2008).
[Crossref]

2006 (1)

J. C. Liu, C. Y. Liu, C. P. Kuei, C. Y. Wu, and Y. S. Hong, “Design and analysis of broadband microwave absorber utilizing FSS screen constructed with circular fractal configurations,” Microw. Opt. Technol. Lett. 48(3), 449–453 (2006).
[Crossref]

2004 (1)

A. Tennant and B. Chambers, “Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface,” Smart Mater. Struct. 13(1), 122–125 (2004).
[Crossref]

2003 (1)

C. Mias, “Varactor tunable frequency selective absorber,” Electron. Lett. 39(14), 1060–1062 (2003).
[Crossref]

Abiri, H.

A. Fallahi, A. Yahaghi, H. Benedickter, H. Abiri, M. Shahabadi, and C. Hafner, “Thin wideband radar absorbers,” IEEE Trans. Antenn. Propag. 58(12), 4051–4058 (2010).
[Crossref]

Aeppli, G.

Amendola, G.

L. Boccia, I. Russo, G. Amendola, and G. Di Massa, “Tunable frequency-selective surfaces for beam-steering applications,” Electron. Lett. 45(24), 1213–1214 (2009).
[Crossref]

Bai, Y. Y.

M. Li, S. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Antennas Wirel. Propag. Lett. 11, 748–751 (2012).
[Crossref]

Bailey, J.

Batchelor, J. C.

P. S. Taylor, E. A. Parker, and J. C. Batchelor, “An active annular ring frequency selective surface,” IEEE Trans. Antenn. Propag. 59(9), 3265–3271 (2011).
[Crossref]

B. Sanz-Izquierdo, E. A. Parker, and J. C. Batchelor, “Dual-band tunable screen using complementary split ring resonators,” IEEE Trans. Antenn. Propag. 58(11), 3761–3765 (2010).
[Crossref]

Benedickter, H.

A. Fallahi, A. Yahaghi, H. Benedickter, H. Abiri, M. Shahabadi, and C. Hafner, “Thin wideband radar absorbers,” IEEE Trans. Antenn. Propag. 58(12), 4051–4058 (2010).
[Crossref]

Bie, S. W.

X. X. Xu, J. J. Jiang, S. W. Bie, Q. Chen, C. K. Zhang, and L. Miao, “Optimal design of electromagnetic absorbers using visualization method for wideband potential applications,” J. Electromagn. Waves Appl. 26(8–9), 1215–1225 (2012).
[Crossref]

Q. Chen, J. J. Jiang, X. X. Xu, L. Zhang, L. Miao, and S. W. Bie, “A thin and broadband tunable radar absorber using active frequency selective surface,” in 2012 IEEE Antennas And Propagation Society International Symposium (IEEE, 2012).
[Crossref]

Boccia, L.

L. Boccia, I. Russo, G. Amendola, and G. Di Massa, “Tunable frequency-selective surfaces for beam-steering applications,” Electron. Lett. 45(24), 1213–1214 (2009).
[Crossref]

Chambers, B.

A. Tennant and B. Chambers, “Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface,” Smart Mater. Struct. 13(1), 122–125 (2004).
[Crossref]

Chaudhuri, S. K.

G. M. Coutts, R. R. Mansour, and S. K. Chaudhuri, “Microelectromechanical systems tunable frequency-selective surfaces and electromagnetic-bandgap structures on rigid-flex substrates,” IEEE Trans. Microw. Theory Tech. 56(7), 1737–1746 (2008).
[Crossref]

Chen, Q.

X. X. Xu, J. J. Jiang, S. W. Bie, Q. Chen, C. K. Zhang, and L. Miao, “Optimal design of electromagnetic absorbers using visualization method for wideband potential applications,” J. Electromagn. Waves Appl. 26(8–9), 1215–1225 (2012).
[Crossref]

Q. Chen, J. J. Jiang, X. X. Xu, L. Zhang, L. Miao, and S. W. Bie, “A thin and broadband tunable radar absorber using active frequency selective surface,” in 2012 IEEE Antennas And Propagation Society International Symposium (IEEE, 2012).
[Crossref]

Cheng, H. F.

Costa, F.

F. Costa, A. Monorchio, and G. P. Vastante, “Tunable high-impedance surface with a reduced number of varactors,” IEEE Antennas Wirel. Propag. Lett. 10, 11–13 (2011).
[Crossref]

Coutts, G. M.

G. M. Coutts, R. R. Mansour, and S. K. Chaudhuri, “Microelectromechanical systems tunable frequency-selective surfaces and electromagnetic-bandgap structures on rigid-flex substrates,” IEEE Trans. Microw. Theory Tech. 56(7), 1737–1746 (2008).
[Crossref]

Di Massa, G.

L. Boccia, I. Russo, G. Amendola, and G. Di Massa, “Tunable frequency-selective surfaces for beam-steering applications,” Electron. Lett. 45(24), 1213–1214 (2009).
[Crossref]

Fallahi, A.

A. Fallahi, A. Yahaghi, H. Benedickter, H. Abiri, M. Shahabadi, and C. Hafner, “Thin wideband radar absorbers,” IEEE Trans. Antenn. Propag. 58(12), 4051–4058 (2010).
[Crossref]

Feng, Y. J.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Fu, J. H.

G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115(17), 17E523 (2014).
[Crossref]

Gu, X. M.

G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115(17), 17E523 (2014).
[Crossref]

Hafner, C.

A. Fallahi, A. Yahaghi, H. Benedickter, H. Abiri, M. Shahabadi, and C. Hafner, “Thin wideband radar absorbers,” IEEE Trans. Antenn. Propag. 58(12), 4051–4058 (2010).
[Crossref]

Hong, Y. S.

J. C. Liu, C. Y. Liu, C. P. Kuei, C. Y. Wu, and Y. S. Hong, “Design and analysis of broadband microwave absorber utilizing FSS screen constructed with circular fractal configurations,” Microw. Opt. Technol. Lett. 48(3), 449–453 (2006).
[Crossref]

Huang, C.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Huang, W. Q.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 26(2), 111–114 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Metamaterial-based low-conductivity alloy perfect absorber,” J. Lightwave Technol. 32(12), 2293–2298 (2014).
[Crossref]

Jiang, J. J.

X. X. Xu, J. J. Jiang, S. W. Bie, Q. Chen, C. K. Zhang, and L. Miao, “Optimal design of electromagnetic absorbers using visualization method for wideband potential applications,” J. Electromagn. Waves Appl. 26(8–9), 1215–1225 (2012).
[Crossref]

Q. Chen, J. J. Jiang, X. X. Xu, L. Zhang, L. Miao, and S. W. Bie, “A thin and broadband tunable radar absorber using active frequency selective surface,” in 2012 IEEE Antennas And Propagation Society International Symposium (IEEE, 2012).
[Crossref]

Jiang, T. A.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Kuei, C. P.

J. C. Liu, C. Y. Liu, C. P. Kuei, C. Y. Wu, and Y. S. Hong, “Design and analysis of broadband microwave absorber utilizing FSS screen constructed with circular fractal configurations,” Microw. Opt. Technol. Lett. 48(3), 449–453 (2006).
[Crossref]

Li, M.

M. Li, S. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Antennas Wirel. Propag. Lett. 11, 748–751 (2012).
[Crossref]

Li, W. C.

W. C. Li, X. J. Qiao, Y. Luo, F. X. Qin, and H. X. Peng, “Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism,” Appl. Phys., A Mater. Sci. Process. 115(1), 229–234 (2014).
[Crossref]

Li, X. F.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Metamaterial-based low-conductivity alloy perfect absorber,” J. Lightwave Technol. 32(12), 2293–2298 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 26(2), 111–114 (2014).
[Crossref]

Lim, S.

M. Yoo and S. Lim, “Polarization-independent and ultrawideband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer,” IEEE Trans. Antenn. Propag. 62(5), 2652–2658 (2014).
[Crossref]

Liu, C. Y.

J. C. Liu, C. Y. Liu, C. P. Kuei, C. Y. Wu, and Y. S. Hong, “Design and analysis of broadband microwave absorber utilizing FSS screen constructed with circular fractal configurations,” Microw. Opt. Technol. Lett. 48(3), 449–453 (2006).
[Crossref]

Liu, J. C.

J. C. Liu, C. Y. Liu, C. P. Kuei, C. Y. Wu, and Y. S. Hong, “Design and analysis of broadband microwave absorber utilizing FSS screen constructed with circular fractal configurations,” Microw. Opt. Technol. Lett. 48(3), 449–453 (2006).
[Crossref]

Liu, X. X.

G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115(17), 17E523 (2014).
[Crossref]

Luo, Y.

W. C. Li, X. J. Qiao, Y. Luo, F. X. Qin, and H. X. Peng, “Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism,” Appl. Phys., A Mater. Sci. Process. 115(1), 229–234 (2014).
[Crossref]

Lv, Y. L.

G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115(17), 17E523 (2014).
[Crossref]

Ma, W.

Mansour, R. R.

G. M. Coutts, R. R. Mansour, and S. K. Chaudhuri, “Microelectromechanical systems tunable frequency-selective surfaces and electromagnetic-bandgap structures on rigid-flex substrates,” IEEE Trans. Microw. Theory Tech. 56(7), 1737–1746 (2008).
[Crossref]

Matmon, G.

Miao, L.

X. X. Xu, J. J. Jiang, S. W. Bie, Q. Chen, C. K. Zhang, and L. Miao, “Optimal design of electromagnetic absorbers using visualization method for wideband potential applications,” J. Electromagn. Waves Appl. 26(8–9), 1215–1225 (2012).
[Crossref]

Q. Chen, J. J. Jiang, X. X. Xu, L. Zhang, L. Miao, and S. W. Bie, “A thin and broadband tunable radar absorber using active frequency selective surface,” in 2012 IEEE Antennas And Propagation Society International Symposium (IEEE, 2012).
[Crossref]

Mias, C.

C. Mias, “Varactor tunable frequency selective absorber,” Electron. Lett. 39(14), 1060–1062 (2003).
[Crossref]

Monorchio, A.

F. Costa, A. Monorchio, and G. P. Vastante, “Tunable high-impedance surface with a reduced number of varactors,” IEEE Antennas Wirel. Propag. Lett. 10, 11–13 (2011).
[Crossref]

Parker, E. A.

P. S. Taylor, E. A. Parker, and J. C. Batchelor, “An active annular ring frequency selective surface,” IEEE Trans. Antenn. Propag. 59(9), 3265–3271 (2011).
[Crossref]

B. Sanz-Izquierdo, E. A. Parker, and J. C. Batchelor, “Dual-band tunable screen using complementary split ring resonators,” IEEE Trans. Antenn. Propag. 58(11), 3761–3765 (2010).
[Crossref]

Peng, H. X.

W. C. Li, X. J. Qiao, Y. Luo, F. X. Qin, and H. X. Peng, “Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism,” Appl. Phys., A Mater. Sci. Process. 115(1), 229–234 (2014).
[Crossref]

Qiao, X. J.

W. C. Li, X. J. Qiao, Y. Luo, F. X. Qin, and H. X. Peng, “Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism,” Appl. Phys., A Mater. Sci. Process. 115(1), 229–234 (2014).
[Crossref]

Qin, F. X.

W. C. Li, X. J. Qiao, Y. Luo, F. X. Qin, and H. X. Peng, “Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism,” Appl. Phys., A Mater. Sci. Process. 115(1), 229–234 (2014).
[Crossref]

Russo, I.

L. Boccia, I. Russo, G. Amendola, and G. Di Massa, “Tunable frequency-selective surfaces for beam-steering applications,” Electron. Lett. 45(24), 1213–1214 (2009).
[Crossref]

Sanz-Izquierdo, B.

B. Sanz-Izquierdo, E. A. Parker, and J. C. Batchelor, “Dual-band tunable screen using complementary split ring resonators,” IEEE Trans. Antenn. Propag. 58(11), 3761–3765 (2010).
[Crossref]

Shahabadi, M.

A. Fallahi, A. Yahaghi, H. Benedickter, H. Abiri, M. Shahabadi, and C. Hafner, “Thin wideband radar absorbers,” IEEE Trans. Antenn. Propag. 58(12), 4051–4058 (2010).
[Crossref]

Sonkusale, S.

W. R. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[Crossref]

Sun, L. K.

Taylor, P. S.

P. S. Taylor, E. A. Parker, and J. C. Batchelor, “An active annular ring frequency selective surface,” IEEE Trans. Antenn. Propag. 59(9), 3265–3271 (2011).
[Crossref]

Tennant, A.

A. Tennant and B. Chambers, “Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface,” Smart Mater. Struct. 13(1), 122–125 (2004).
[Crossref]

Vastante, G. P.

F. Costa, A. Monorchio, and G. P. Vastante, “Tunable high-impedance surface with a reduced number of varactors,” IEEE Antennas Wirel. Propag. Lett. 10, 11–13 (2011).
[Crossref]

Wang, B. X.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 26(2), 111–114 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Metamaterial-based low-conductivity alloy perfect absorber,” J. Lightwave Technol. 32(12), 2293–2298 (2014).
[Crossref]

Wang, B. Z.

M. Li, S. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Antennas Wirel. Propag. Lett. 11, 748–751 (2012).
[Crossref]

Wang, G. Z.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 26(2), 111–114 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Metamaterial-based low-conductivity alloy perfect absorber,” J. Lightwave Technol. 32(12), 2293–2298 (2014).
[Crossref]

Wang, J.

Wang, L. L.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 26(2), 111–114 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Metamaterial-based low-conductivity alloy perfect absorber,” J. Lightwave Technol. 32(12), 2293–2298 (2014).
[Crossref]

Wen, Y. Z.

Wu, C. Y.

J. C. Liu, C. Y. Liu, C. P. Kuei, C. Y. Wu, and Y. S. Hong, “Design and analysis of broadband microwave absorber utilizing FSS screen constructed with circular fractal configurations,” Microw. Opt. Technol. Lett. 48(3), 449–453 (2006).
[Crossref]

Wu, Q.

G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115(17), 17E523 (2014).
[Crossref]

Xiao, S.

M. Li, S. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Antennas Wirel. Propag. Lett. 11, 748–751 (2012).
[Crossref]

Xu, W. R.

W. R. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[Crossref]

Xu, X. X.

X. X. Xu, J. J. Jiang, S. W. Bie, Q. Chen, C. K. Zhang, and L. Miao, “Optimal design of electromagnetic absorbers using visualization method for wideband potential applications,” J. Electromagn. Waves Appl. 26(8–9), 1215–1225 (2012).
[Crossref]

Q. Chen, J. J. Jiang, X. X. Xu, L. Zhang, L. Miao, and S. W. Bie, “A thin and broadband tunable radar absorber using active frequency selective surface,” in 2012 IEEE Antennas And Propagation Society International Symposium (IEEE, 2012).
[Crossref]

Yahaghi, A.

A. Fallahi, A. Yahaghi, H. Benedickter, H. Abiri, M. Shahabadi, and C. Hafner, “Thin wideband radar absorbers,” IEEE Trans. Antenn. Propag. 58(12), 4051–4058 (2010).
[Crossref]

Yang, G. H.

G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115(17), 17E523 (2014).
[Crossref]

Yoo, M.

M. Yoo and S. Lim, “Polarization-independent and ultrawideband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer,” IEEE Trans. Antenn. Propag. 62(5), 2652–2658 (2014).
[Crossref]

Yu, X. M.

Zhai, X.

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 26(2), 111–114 (2014).
[Crossref]

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Metamaterial-based low-conductivity alloy perfect absorber,” J. Lightwave Technol. 32(12), 2293–2298 (2014).
[Crossref]

Zhang, C. K.

X. X. Xu, J. J. Jiang, S. W. Bie, Q. Chen, C. K. Zhang, and L. Miao, “Optimal design of electromagnetic absorbers using visualization method for wideband potential applications,” J. Electromagn. Waves Appl. 26(8–9), 1215–1225 (2012).
[Crossref]

Zhang, L.

Q. Chen, J. J. Jiang, X. X. Xu, L. Zhang, L. Miao, and S. W. Bie, “A thin and broadband tunable radar absorber using active frequency selective surface,” in 2012 IEEE Antennas And Propagation Society International Symposium (IEEE, 2012).
[Crossref]

Zhao, J. M.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Zhou, Y. J.

Zhu, B.

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Appl. Phys. Lett. (2)

W. R. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[Crossref]

B. Zhu, Y. J. Feng, J. M. Zhao, C. Huang, and T. A. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97(5), 051906 (2010).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

W. C. Li, X. J. Qiao, Y. Luo, F. X. Qin, and H. X. Peng, “Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism,” Appl. Phys., A Mater. Sci. Process. 115(1), 229–234 (2014).
[Crossref]

Electron. Lett. (2)

C. Mias, “Varactor tunable frequency selective absorber,” Electron. Lett. 39(14), 1060–1062 (2003).
[Crossref]

L. Boccia, I. Russo, G. Amendola, and G. Di Massa, “Tunable frequency-selective surfaces for beam-steering applications,” Electron. Lett. 45(24), 1213–1214 (2009).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

F. Costa, A. Monorchio, and G. P. Vastante, “Tunable high-impedance surface with a reduced number of varactors,” IEEE Antennas Wirel. Propag. Lett. 10, 11–13 (2011).
[Crossref]

M. Li, S. Xiao, Y. Y. Bai, and B. Z. Wang, “An ultrathin and broadband radar absorber using resistive FSS,” IEEE Antennas Wirel. Propag. Lett. 11, 748–751 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

B. X. Wang, L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, “Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber,” IEEE Photon. Technol. Lett. 26(2), 111–114 (2014).
[Crossref]

IEEE Trans. Antenn. Propag. (4)

M. Yoo and S. Lim, “Polarization-independent and ultrawideband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer,” IEEE Trans. Antenn. Propag. 62(5), 2652–2658 (2014).
[Crossref]

A. Fallahi, A. Yahaghi, H. Benedickter, H. Abiri, M. Shahabadi, and C. Hafner, “Thin wideband radar absorbers,” IEEE Trans. Antenn. Propag. 58(12), 4051–4058 (2010).
[Crossref]

P. S. Taylor, E. A. Parker, and J. C. Batchelor, “An active annular ring frequency selective surface,” IEEE Trans. Antenn. Propag. 59(9), 3265–3271 (2011).
[Crossref]

B. Sanz-Izquierdo, E. A. Parker, and J. C. Batchelor, “Dual-band tunable screen using complementary split ring resonators,” IEEE Trans. Antenn. Propag. 58(11), 3761–3765 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

G. M. Coutts, R. R. Mansour, and S. K. Chaudhuri, “Microelectromechanical systems tunable frequency-selective surfaces and electromagnetic-bandgap structures on rigid-flex substrates,” IEEE Trans. Microw. Theory Tech. 56(7), 1737–1746 (2008).
[Crossref]

J. Appl. Phys. (1)

G. H. Yang, X. X. Liu, Y. L. Lv, J. H. Fu, Q. Wu, and X. M. Gu, “Broadband polarization-insensitive absorber based on gradient structure metamaterial,” J. Appl. Phys. 115(17), 17E523 (2014).
[Crossref]

J. Electromagn. Waves Appl. (1)

X. X. Xu, J. J. Jiang, S. W. Bie, Q. Chen, C. K. Zhang, and L. Miao, “Optimal design of electromagnetic absorbers using visualization method for wideband potential applications,” J. Electromagn. Waves Appl. 26(8–9), 1215–1225 (2012).
[Crossref]

J. Lightwave Technol. (1)

Microw. Opt. Technol. Lett. (1)

J. C. Liu, C. Y. Liu, C. P. Kuei, C. Y. Wu, and Y. S. Hong, “Design and analysis of broadband microwave absorber utilizing FSS screen constructed with circular fractal configurations,” Microw. Opt. Technol. Lett. 48(3), 449–453 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Smart Mater. Struct. (1)

A. Tennant and B. Chambers, “Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface,” Smart Mater. Struct. 13(1), 122–125 (2004).
[Crossref]

Other (1)

Q. Chen, J. J. Jiang, X. X. Xu, L. Zhang, L. Miao, and S. W. Bie, “A thin and broadband tunable radar absorber using active frequency selective surface,” in 2012 IEEE Antennas And Propagation Society International Symposium (IEEE, 2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Three-dimensional sketch of the absorber.
Fig. 2
Fig. 2 Prototype unit cell pattern before optimization. (a) Schematic structure of unit cell pattern. (b) Distribution of electric field on the FSS pattern at 3.24 GHz. (c) Simulation reflectivity as function of frequency. Ws = 4 mm, Ls = 20 mm, Wl = 2 mm, Gs = 2 mm, R = 1000 Ω.
Fig. 3
Fig. 3 Prototype unit cell pattern after optimization. (a) Schematic structure of unit cell pattern. (b) Simulation reflectivity as function of frequency. (c) Distribution of electric field on the FSS pattern at 3.3 GHz. (d) Distribution of electric field on the FSS pattern at 4.5 GHz. Ws = 13.07 mm, Ls = 35 mm, Wl = 7.67 mm, Gs = 2.5 mm, R = 140 Ω.
Fig. 4
Fig. 4 Contour map of fitness values as function of Ws and Wl.
Fig. 5
Fig. 5 Unit cell pattern of the broadband absorber with gradational edges. (a) Schematic structure of unit cell pattern. (b) Simulation reflectivity of FSS with different resistance and capacitance. (c)−(e) Distribution of electric field on the FSS pattern at 1.2 GHz, 2.6 GHz and 4.0 GHz.
Fig. 6
Fig. 6 Fabricated sample of the broadband tunable absorber with dual-DOF and distribution of its bias lines. (a) Photo of 180 mm × 180 mm sample. (b) Magnified picture of the unit cell pattern.
Fig. 7
Fig. 7 Measurement reflectivity of the broadband tunable absorber with dual-DOF. (a)−(d) Comparison between simulation and measurement in different working states. (e) Measurement reflectivity.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Fitness=α n N +β η | P n | +μ | P m | N

Metrics