Abstract

We present our experiments on refractometric sensing with ultrahigh-Q, crystalline, birefringent magnesium fluoride (MgF2) whispering gallery mode resonators. The difference to fused silica which is most commonly used for sensing experiments is the small refractive index of MgF2 which is very close to that of water. Compared to fused silica this leads to more than 50% longer evanescent fields and a 4.25 times larger sensitivity. Moreover the birefringence amplifies the sensitivity difference between TM and TE type modes which will enhance sensing experiments based on difference frequency measurements. We estimate the performance of our resonators and compare them with fused silica theoretically and present experimental data showing the interferometrically measured evanescent field decay and the sensitivity of mm-sized MgF2 whispering gallery mode resonators immersed in water. These data show reasonable agreement with the developed theory. Furthermore, we observe stable Q factors in water well above 1 × 108.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultimate resolution for refractometric sensing with whispering gallery mode microcavities

J.W. Silverstone, S. McFarlane, C.P.K. Manchee, and A. Meldrum
Opt. Express 20(8) 8284-8295 (2012)

Lasing of whispering gallery modes in optofluidic microcapillaries

Alexandre François, Nicolas Riesen, Kirsty Gardner, Tanya M. Monro, and Al Meldrum
Opt. Express 24(12) 12466-12477 (2016)

Whispering gallery mode sensors

Matthew R. Foreman, Jon D. Swaim, and Frank Vollmer
Adv. Opt. Photon. 7(2) 168-240 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
    [Crossref]
  2. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillarie,” Opt. Express 15, 12011–12016 (2007).
    [Crossref] [PubMed]
  3. G. Guan, S. Arnold, and V. Otugen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA Journal 44, 2385–2389 (2006).
    [Crossref]
  4. T. Ioppolo, M. Kozhevnikov, V. Stepaniuk, M. V. Ötügen, and V. Sheverev, “Micro-optical force sensor concept based on whispering gallery mode resonators,” Appl. Opt. 47, 3009–3014 (2008).
    [Crossref] [PubMed]
  5. T. Weigel, C. Esen, G. Schweiger, and A. Ostendorf, “Whispering gallery mode pressure sensing,” Proc. SPIE 8439, 84390T (2012).
    [Crossref]
  6. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008). PMID: .
    [Crossref] [PubMed]
  7. H.-C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor - analysis for adsorption of rodlike bacteria,” Opt. Express 15, 17410–17423 (2007). PMID: .
    [Crossref] [PubMed]
  8. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
    [Crossref] [PubMed]
  9. V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
    [Crossref] [PubMed]
  10. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref] [PubMed]
  11. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
    [Crossref] [PubMed]
  12. H. K. Hunt, C. Soteropulos, and A. M. Armani, “Bioconjugation strategies for microtoroidal optical resonators,” Sensors 10, 9317–9336 (2010).
    [Crossref] [PubMed]
  13. J. Lutti, W. Langbein, and P. Borri, “A monolithic optical sensor based on whispering-gallery modes in polystyrene microspheres,” Appl. Phys. Lett. 93, 151103 (2008).
    [Crossref]
  14. J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
    [Crossref]
  15. W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator,” Opt. Lett. 36, 2290–2292 (2011).
    [Crossref] [PubMed]
  16. H. Tavernier, P. Salzenstein, K. Volyanskiy, Y. Chembo, and L. Larger, “Magnesium fluoride whispering gallery mode disk-resonators for microwave photonics applications,” IEEE Photon. Technol. Lett. 22, 1629–1631 (2010).
  17. S. Schiller and R. L. Byer, “High-resolution spectroscopy of whispering gallery modes in large dielectric spheres,” Opt. Lett. 16, 1138–1140 (1991).
    [Crossref] [PubMed]
  18. A. N. Oraevsky, “Whispering-gallery waves,” Quant. Electron 32, 377–400 (2002).
    [Crossref]
  19. M. Gorodetsky and A. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12, 33–39 (2006).
    [Crossref]
  20. Y. A. Demchenko and M. L. Gorodetsky, “Analytical estimates of eigenfrequencies, dispersion, and field distribution in whispering gallery resonators,” J. Opt. Soc. Am. B 30, 3056–3063 (2013).
    [Crossref]
  21. I. Breunig, B. Sturman, F. Sedlmeir, H. G. L. Schwefel, and K. Buse, “Whispering gallery modes at the rim of an axisymmetric optical resonator: Analytical versus numerical description and comparison with experiment,” Opt. Express 21, 30683–30692 (2013).
    [Crossref]
  22. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, eds., NIST Handbook of Mathematical Functions (Cambridge University Press, New York, NY, 2010).
  23. G. Schunk, J. U. Fürst, M. Förtsch, D. V. Strekalov, U. Vogl, F. Sedlmeir, H. G. L. Schwefel, G. Leuchs, and C. Marquardt, “Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern,” Opt. Express 22 (25), 30795–30806 (2014).
  24. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23, 1980 (1984).
    [Crossref] [PubMed]
  25. M. L. Gorodetsky and I. S. Grudinin, “Fundamental thermal fluctuations in microspheres,” J. Opt. Soc. Am. B 21, 697–705 (2004).
    [Crossref]
  26. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, and L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. stabilization,” J. Opt. Soc. Am. B 24, 2988–2997 (2007).
    [Crossref]
  27. T. Le, A. Savchenkov, N. Yu, L. Maleki, and W. H. Steier, “Optical resonant sensors: a method to reduce the effect of thermal drift,” Appl. Opt. 48, 458–463 (2009).
    [Crossref] [PubMed]
  28. B. Little, J.-P. Laine, and H. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into micro-sphere resonators,” J. Lightwave Technol. 17, 704–715 (1999).
    [Crossref]
  29. I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
    [Crossref]
  30. S. P. Vyatchanin, M. L. Gorodetskii, and V. S. Il’chenko, “Tunable narrow-band optical filters with modes of the whispering gallery type,” J. Appl. Spectrosc. 56, 182–187 (1992).
    [Crossref]
  31. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
    [Crossref]
  32. J. V. Herráez and R. Belda, “Refractive indices, densities and excess molar volumes of monoalcohols + water,” J. Solution Chem. 35, 1315–1328 (2006).
    [Crossref]
  33. F. Sedlmeir, M. Hauer, J. U. Fürst, G. Leuchs, and H. G. L. Schwefel, “Experimental characterization of an uniaxial angle cut whispering gallery mode resonator,” Opt. Express 21, 23942–23949 (2013).
    [Crossref] [PubMed]

2014 (2)

2013 (4)

2012 (1)

T. Weigel, C. Esen, G. Schweiger, and A. Ostendorf, “Whispering gallery mode pressure sensing,” Proc. SPIE 8439, 84390T (2012).
[Crossref]

2011 (2)

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
[Crossref]

W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator,” Opt. Lett. 36, 2290–2292 (2011).
[Crossref] [PubMed]

2010 (2)

H. Tavernier, P. Salzenstein, K. Volyanskiy, Y. Chembo, and L. Larger, “Magnesium fluoride whispering gallery mode disk-resonators for microwave photonics applications,” IEEE Photon. Technol. Lett. 22, 1629–1631 (2010).

H. K. Hunt, C. Soteropulos, and A. M. Armani, “Bioconjugation strategies for microtoroidal optical resonators,” Sensors 10, 9317–9336 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (4)

J. Lutti, W. Langbein, and P. Borri, “A monolithic optical sensor based on whispering-gallery modes in polystyrene microspheres,” Appl. Phys. Lett. 93, 151103 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008). PMID: .
[Crossref] [PubMed]

T. Ioppolo, M. Kozhevnikov, V. Stepaniuk, M. V. Ötügen, and V. Sheverev, “Micro-optical force sensor concept based on whispering gallery mode resonators,” Appl. Opt. 47, 3009–3014 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (4)

M. Gorodetsky and A. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12, 33–39 (2006).
[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

J. V. Herráez and R. Belda, “Refractive indices, densities and excess molar volumes of monoalcohols + water,” J. Solution Chem. 35, 1315–1328 (2006).
[Crossref]

G. Guan, S. Arnold, and V. Otugen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA Journal 44, 2385–2389 (2006).
[Crossref]

2005 (1)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

2004 (1)

2003 (1)

2002 (1)

A. N. Oraevsky, “Whispering-gallery waves,” Quant. Electron 32, 377–400 (2002).
[Crossref]

2000 (1)

1999 (1)

1992 (1)

S. P. Vyatchanin, M. L. Gorodetskii, and V. S. Il’chenko, “Tunable narrow-band optical filters with modes of the whispering gallery type,” J. Appl. Spectrosc. 56, 182–187 (1992).
[Crossref]

1991 (1)

1984 (1)

Alnis, J.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
[Crossref]

Andrés, M. V.

Armani, A. M.

H. K. Hunt, C. Soteropulos, and A. M. Armani, “Bioconjugation strategies for microtoroidal optical resonators,” Sensors 10, 9317–9336 (2010).
[Crossref] [PubMed]

Arnold, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008). PMID: .
[Crossref] [PubMed]

H.-C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor - analysis for adsorption of rodlike bacteria,” Opt. Express 15, 17410–17423 (2007). PMID: .
[Crossref] [PubMed]

G. Guan, S. Arnold, and V. Otugen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA Journal 44, 2385–2389 (2006).
[Crossref]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref] [PubMed]

Barbre, C.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

Belda, R.

J. V. Herráez and R. Belda, “Refractive indices, densities and excess molar volumes of monoalcohols + water,” J. Solution Chem. 35, 1315–1328 (2006).
[Crossref]

Borri, P.

J. Lutti, W. Langbein, and P. Borri, “A monolithic optical sensor based on whispering-gallery modes in polystyrene microspheres,” Appl. Phys. Lett. 93, 151103 (2008).
[Crossref]

Breunig, I.

Buse, K.

Byer, R. L.

Chembo, Y.

H. Tavernier, P. Salzenstein, K. Volyanskiy, Y. Chembo, and L. Larger, “Magnesium fluoride whispering gallery mode disk-resonators for microwave photonics applications,” IEEE Photon. Technol. Lett. 22, 1629–1631 (2010).

Dantham, V. R.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

Demchenko, Y. A.

Díez, A.

Dodge, M. J.

Esen, C.

T. Weigel, C. Esen, G. Schweiger, and A. Ostendorf, “Whispering gallery mode pressure sensing,” Proc. SPIE 8439, 84390T (2012).
[Crossref]

Fan, X.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

Fomin, A.

M. Gorodetsky and A. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12, 33–39 (2006).
[Crossref]

Foreman, M. R.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref] [PubMed]

Förtsch, M.

Fürst, J. U.

Gimeno, B.

Gorodetskii, M. L.

S. P. Vyatchanin, M. L. Gorodetskii, and V. S. Il’chenko, “Tunable narrow-band optical filters with modes of the whispering gallery type,” J. Appl. Spectrosc. 56, 182–187 (1992).
[Crossref]

Gorodetsky, M.

M. Gorodetsky and A. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12, 33–39 (2006).
[Crossref]

Gorodetsky, M. L.

Grudinin, I. S.

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

M. L. Gorodetsky and I. S. Grudinin, “Fundamental thermal fluctuations in microspheres,” J. Opt. Soc. Am. B 21, 697–705 (2004).
[Crossref]

Guan, G.

G. Guan, S. Arnold, and V. Otugen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA Journal 44, 2385–2389 (2006).
[Crossref]

Hänsch, T. W.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
[Crossref]

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

Hauer, M.

Haus, H.

Herráez, J. V.

J. V. Herráez and R. Belda, “Refractive indices, densities and excess molar volumes of monoalcohols + water,” J. Solution Chem. 35, 1315–1328 (2006).
[Crossref]

Hofer, J.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
[Crossref]

Holler, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

Hunt, H. K.

H. K. Hunt, C. Soteropulos, and A. M. Armani, “Bioconjugation strategies for microtoroidal optical resonators,” Sensors 10, 9317–9336 (2010).
[Crossref] [PubMed]

Il’chenko, V. S.

S. P. Vyatchanin, M. L. Gorodetskii, and V. S. Il’chenko, “Tunable narrow-band optical filters with modes of the whispering gallery type,” J. Appl. Spectrosc. 56, 182–187 (1992).
[Crossref]

Ilchenko, V. S.

Ioppolo, T.

Keng, D.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008). PMID: .
[Crossref] [PubMed]

Khoshsima, M.

Kippenberg, T. J.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
[Crossref]

Kolchenko, V.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

Kozhevnikov, M.

Laine, J.-P.

Langbein, W.

J. Lutti, W. Langbein, and P. Borri, “A monolithic optical sensor based on whispering-gallery modes in polystyrene microspheres,” Appl. Phys. Lett. 93, 151103 (2008).
[Crossref]

Larger, L.

H. Tavernier, P. Salzenstein, K. Volyanskiy, Y. Chembo, and L. Larger, “Magnesium fluoride whispering gallery mode disk-resonators for microwave photonics applications,” IEEE Photon. Technol. Lett. 22, 1629–1631 (2010).

Le, T.

Leuchs, G.

Liang, W.

Libchaber, A.

Little, B.

Lutti, J.

J. Lutti, W. Langbein, and P. Borri, “A monolithic optical sensor based on whispering-gallery modes in polystyrene microspheres,” Appl. Phys. Lett. 93, 151103 (2008).
[Crossref]

Maleki, L.

Marquardt, C.

Matsko, A. B.

Oraevsky, A. N.

A. N. Oraevsky, “Whispering-gallery waves,” Quant. Electron 32, 377–400 (2002).
[Crossref]

Ostendorf, A.

T. Weigel, C. Esen, G. Schweiger, and A. Ostendorf, “Whispering gallery mode pressure sensing,” Proc. SPIE 8439, 84390T (2012).
[Crossref]

Otugen, V.

G. Guan, S. Arnold, and V. Otugen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA Journal 44, 2385–2389 (2006).
[Crossref]

Ötügen, M. V.

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

Pryamikov, A. D.

Ren, H.-C.

Salzenstein, P.

H. Tavernier, P. Salzenstein, K. Volyanskiy, Y. Chembo, and L. Larger, “Magnesium fluoride whispering gallery mode disk-resonators for microwave photonics applications,” IEEE Photon. Technol. Lett. 22, 1629–1631 (2010).

Savchenkov, A.

Savchenkov, A. A.

Schiller, S.

Schliesser, A.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
[Crossref]

Schunk, G.

Schwefel, H. G. L.

Schweiger, G.

T. Weigel, C. Esen, G. Schweiger, and A. Ostendorf, “Whispering gallery mode pressure sensing,” Proc. SPIE 8439, 84390T (2012).
[Crossref]

Sedlmeir, F.

Seidel, D.

Sheverev, V.

Soteropulos, C.

H. K. Hunt, C. Soteropulos, and A. M. Armani, “Bioconjugation strategies for microtoroidal optical resonators,” Sensors 10, 9317–9336 (2010).
[Crossref] [PubMed]

Steier, W. H.

Stepaniuk, V.

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

Strekalov, D. V.

Sturman, B.

Tavernier, H.

H. Tavernier, P. Salzenstein, K. Volyanskiy, Y. Chembo, and L. Larger, “Magnesium fluoride whispering gallery mode disk-resonators for microwave photonics applications,” IEEE Photon. Technol. Lett. 22, 1629–1631 (2010).

Teraoka, I.

Vogl, U.

Vollmer, F.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008). PMID: .
[Crossref] [PubMed]

H.-C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor - analysis for adsorption of rodlike bacteria,” Opt. Express 15, 17410–17423 (2007). PMID: .
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

Volyanskiy, K.

H. Tavernier, P. Salzenstein, K. Volyanskiy, Y. Chembo, and L. Larger, “Magnesium fluoride whispering gallery mode disk-resonators for microwave photonics applications,” IEEE Photon. Technol. Lett. 22, 1629–1631 (2010).

Vyatchanin, S. P.

S. P. Vyatchanin, M. L. Gorodetskii, and V. S. Il’chenko, “Tunable narrow-band optical filters with modes of the whispering gallery type,” J. Appl. Spectrosc. 56, 182–187 (1992).
[Crossref]

Wang, C. Y.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
[Crossref]

Weigel, T.

T. Weigel, C. Esen, G. Schweiger, and A. Ostendorf, “Whispering gallery mode pressure sensing,” Proc. SPIE 8439, 84390T (2012).
[Crossref]

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

Yu, N.

Zamora, V.

AIAA Journal (1)

G. Guan, S. Arnold, and V. Otugen, “Temperature measurements using a microoptical sensor based on whispering gallery modes,” AIAA Journal 44, 2385–2389 (2006).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87, 201107 (2005).
[Crossref]

J. Lutti, W. Langbein, and P. Borri, “A monolithic optical sensor based on whispering-gallery modes in polystyrene microspheres,” Appl. Phys. Lett. 93, 151103 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Gorodetsky and A. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12, 33–39 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. Tavernier, P. Salzenstein, K. Volyanskiy, Y. Chembo, and L. Larger, “Magnesium fluoride whispering gallery mode disk-resonators for microwave photonics applications,” IEEE Photon. Technol. Lett. 22, 1629–1631 (2010).

J. Appl. Spectrosc. (1)

S. P. Vyatchanin, M. L. Gorodetskii, and V. S. Il’chenko, “Tunable narrow-band optical filters with modes of the whispering gallery type,” J. Appl. Spectrosc. 56, 182–187 (1992).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (4)

J. Solution Chem. (1)

J. V. Herráez and R. Belda, “Refractive indices, densities and excess molar volumes of monoalcohols + water,” J. Solution Chem. 35, 1315–1328 (2006).
[Crossref]

Nano Lett. (1)

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933–939 (2014).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. A (2)

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, and T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804 (2011).
[Crossref]

I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A 74, 063806 (2006).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering-gallery mode,” Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008). PMID: .
[Crossref] [PubMed]

Proc. SPIE (1)

T. Weigel, C. Esen, G. Schweiger, and A. Ostendorf, “Whispering gallery mode pressure sensing,” Proc. SPIE 8439, 84390T (2012).
[Crossref]

Quant. Electron (1)

A. N. Oraevsky, “Whispering-gallery waves,” Quant. Electron 32, 377–400 (2002).
[Crossref]

Sensors (1)

H. K. Hunt, C. Soteropulos, and A. M. Armani, “Bioconjugation strategies for microtoroidal optical resonators,” Sensors 10, 9317–9336 (2010).
[Crossref] [PubMed]

Other (1)

F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, eds., NIST Handbook of Mathematical Functions (Cambridge University Press, New York, NY, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) shows the dependence of the sensitivity (wavelength change of the modes over refractive index unit (RIU) change) on the bulk index of the used resonator material. The resonator radius was assumed to be R = 1 mm and we only consider fundamental modes (q = 1). TM and TE modes have slightly different sensitivities due to different boundary conditions, but both increase when the resonator index comes closer to the index of the surrounding (which is assumed to be water, ns = 1.329 at 795 nm). The refractive indices of MgF2 and fused silica are marked by dashed lines. It is apparent that the birefringence of MgF2 causes a stronger dispersion between TM and TE as compared to the isotropic cases such as fused silica. b) shows the sensitivities of MgF2 and fused silica resonators against their radius. The linearity in the double logarithmic plot indicates that MgF2 resonators can always be 4.25 times larger to reach the same sensitivity as fused silica ones. Moreover the ratio between TM and TE sensitivities stays constant (namely 1.49 for MgF2 and 1.17 for fused silica).
Fig. 2
Fig. 2 a) shows the setup used to characterize the two MgF2 z-cut resonators (optical axis points along the z-direction). They can be mounted from above within a basin which itself is mounted onto a piezostage movable along the x-direction. One of the walls of the basin is a SF11 prism which is used for coupling a tunable laser around 795 nm to TM and TE modes simultaneously by using 45° polarized light. The reflected light is separated via a polarizing beam splitter and sent to two photodiodes to enable tracing of TM and TE spectra at the same time. A mirror which is part of a Michelson type interferometer is attached to the backside of the basin to measure the displacement of the prism with respect to the resonator. The results of this measurement are shown in b): we plot the normalized coupling contrast of two (different) TM modes of the large resonator (R = 2.91 mm) in air and water against the traveling distance of the coupling prism. The minima correspond to critical coupling, which is, as expected, farther away from the resonator when immersed in water as the evanescent field is significantly longer. From these data we extract the evanescent field decay length for air (water) κ−1 = 134(382) nm by fitting equation (4) to the data.
Fig. 3
Fig. 3 shows exemplary overview spectra of different TM modes of the large resonator in air and immersed in water after readjusting coupling. Qualitatively, modal density and coupling efficiency remains the same in water. Also shown are linewidth measurements of (two different) TM modes before and after immersing the resonator. The loaded Q factor was derived from the linewidth acquired by Lorentzian fits while the resonator was critically coupled. The measured linewidth in air was limited by the linewidth of the used laser system.
Fig. 4
Fig. 4 The plot shows the measured wavelength change of TM and TE modes against refractive index change of the surrounding water for the large (R = 2.91 mm) and the small (R = 1.19 mm) resonator. Linear fits, indicated by the straight lines, were used to extract the sensitivities, which are for TM(TE): 1.10(0.73) nm/RIU (large resonator) and 3.26(2.19) nm/RIU (small resonator). The dashed lines correspond to the expected responses derived from Eqs. (1) and (2) for the different cases. One can see that the sensitivity of the small resonator is about 15% above the theoretically predicted trend.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n s λ l , q ( TE ) = λ 2 2 π R n s ( n r 2 n s 2 ) 3 / 2 [ 1 ζ q 2 1 / 3 n r 2 n r 2 n s 2 ( l + 1 2 ) 2 / 3 ] ,
n s λ l , q ( TM ) = λ 2 2 π R n s n r 2 ( n r 2 n s 2 ) 3 / 2 [ 2 n r 2 n s 2 ζ q 2 1 / 3 2 n r 6 + n r 4 n s 2 4 n r 2 n s 4 + 2 n s 6 n r 2 ( n r 2 n s 2 ) ( l + 1 2 ) 2 / 3 ] ,
E ( r ) e κ r with κ 2 π λ 0 n eff 2 n s 2
= ( 1 Are 2 κ d 1 + re 2 κ d ) 2 ,

Metrics