Abstract

This study presents an band-alignment tailoring of a vertically aligned InAs/GaAs(Sb) quantum dot (QD) structure and the extension of the carrier lifetime therein by rapid thermal annealing (RTA). Arrhenius analysis indicates a larger activation energy and thermal stability that results from the suppression of In-Ga intermixing and preservation of the QD heterostructure in an annealed vertically aligned InAs/GaAsSb QD structure. Power-dependent and time-resolved photoluminescence were utilized to demonstrate the extended carrier lifetime from 4.7 to 9.4 ns and elucidate the mechanisms of the antimony aggregation resulting in a band-alignment tailoring from straddling to staggered gap after the RTA process. The significant extension in the carrier lifetime of the columnar InAs/GaAsSb dot structure make the great potential in improving QD intermediate-band solar cell application.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm

Wei-Sheng Liu, Hsin-Lun Tseng, and Po-Chen Kuo
Opt. Express 22(16) 18860-18869 (2014)

InAs/GaAsSb quantum dot solar cells

Sabina Hatch, Jiang Wu, Kimberly Sablon, Phu Lam, Mingchu Tang, Qi Jiang, and Huiyun Liu
Opt. Express 22(S3) A679-A685 (2014)

GaAsSb spacer effect in quasi-type-II InAs coupled-QDs for intraband absorption enhancement

David Jui-Yang Feng, Yen-Ju Lin, Yun-Cheng Ku, Han-Yun Jhang, Tzy-Rong Lin, and Mao-Kuen Kuo
Opt. Mater. Express 7(4) 1351-1364 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diode,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
    [Crossref]
  2. W.-S. Liu, “Enhancing device characteristics of 1.3 μm emitting InAs/GaAs quantum dot lasers through dot-height uniformity study,” J. Alloy. Comp. 571, 153–158 (2013).
    [Crossref]
  3. D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
    [Crossref]
  4. S.-F. Tang, S.-Y. Lin, and S.-C. Lee, “Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 78(17), 2428–2450 (2001).
    [Crossref]
  5. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
    [Crossref]
  6. W.-S. Liu, H.-M. Wu, F.-H. Tsao, T.-L. Hsu, and J.-I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Sol. Energy Mater. Sol. Cells 105, 237–241 (2012).
    [Crossref]
  7. T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
    [Crossref]
  8. R. Oshima, A. Takata, and Y. Okada, “Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells,” Appl. Phys. Lett. 93(8), 083111 (2008).
    [Crossref]
  9. F. Heinrichsdorff, Ch. Ribbat, M. Grundmann, and D. Bimberg, “High-power quantum-dot lasers at 1100 nm,” Appl. Phys. Lett. 76(5), 556–558 (2000).
    [Crossref]
  10. P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett. 77(2), 262–264 (2000).
    [Crossref]
  11. J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
    [Crossref]
  12. G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris., “Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs,” Phys. Rev. Lett. 76(6), 952–955 (1996).
    [Crossref] [PubMed]
  13. F. Heinrichsdorff, M.-H. Mao, N. Kirstaedter, A. Krost, D. Bimberg, A. O. Kosogov, and P. Werner, “Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 71(1), 22–24 (1997).
    [Crossref]
  14. O. G. Schmidt, N. Kirstaedter, N. N. Ledentsov, M. H. Mao, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, “Prevention of gain saturation by multi-layer quantum dot lasers,” Electron. Lett. 32(14), 1302–1304 (1996).
    [Crossref]
  15. D. Pan, E. Towe, and S. Kennerly, “A five-period normal-incidence (In, Ga)As/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 75(18), 2719–2721 (1999).
    [Crossref]
  16. Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
    [Crossref]
  17. A. Luque and A. Martí, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
    [Crossref]
  18. A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, E. Cánovas, P. G. Linares, and A. Luque, “Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell,” Phys. Rev. Lett. 97(24), 247701 (2006).
    [Crossref] [PubMed]
  19. A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
    [Crossref]
  20. W.-S. Liu, Y.-T. Wang, W.-Y. Qiu, and C. Fang, “Carrier Dynamics of a Type-II Vertically Aligned InAs Quantum Dot Structure with a GaAsSb Strain-Reducing Layer,” Appl. Phys. Express 6(8), 085001 (2013).
    [Crossref]
  21. B. Ilahi, L. Sfaxi, F. Hassen, L. Bouzaîene, H. Maaref, B. Salem, G. Bremond, and O. Marty, “Spacer layer thickness effects on the photoluminescence properties of InAs/GaAs quantum dot superlattices,” Phys. Status. Solidi.A 199(3), 457–463 (2003).
    [Crossref]
  22. C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. J. Chua, “Origins of high radiative efficiency and wideband emission from InAs quantum dots,” Appl. Phys. Lett. 91(19), 191901 (2007).
    [Crossref]
  23. D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “Effect of antimony on the density of InAs/Sb:GaAs (1 0 0) quantum dots grown by metalorganic chemical-vapor deposition,” J. Cryst. Growth 298, 548–552 (2007).
    [Crossref]
  24. W.-S. Liu, H.-L. Tseng, and P.-C. Kuo, “Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm,” Opt. Express 22(16), 18860–18869 (2014).
    [Crossref]
  25. W.-S. Liu, D. M. T. Kuo, J.-I. Chyi, W.-Y. Chen, H.-S. Chang, and T.-M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).
    [Crossref]
  26. W.-S. Liu, H.-M. Wu, Y.-A. Liao, J.-I. Chyi, W.-Y. Chen, and T.-M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
    [Crossref]
  27. Y.-A. Liao, W.-T. Hsu, P.-C. Chiu, J.-I. Chyi, and W.-H. Chang, “Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots,” Appl. Phys. Lett. 94(5), 053101 (2009).
    [Crossref]
  28. J. M. Ulloa, J. M. Llorens, B. Alén, D. F. Reyes, D. L. Sales, D. González, and A. Hierro, “High efficient luminescence in type-II GaAsSb-capped InAs quantum dots upon annealing,” Appl. Phys. Lett. 101(25), 253112 (2012).
    [Crossref]
  29. G. X. Shi, P. Jin, B. Xu, C. M. Li, C. X. Cui, Y. L. Wang, X. L. Ye, J. Wu, and Z. G. Wang, “Thermal annealing effect on InAs/InGaAs quantum dots grown by atomic layer molecular beam epitaxy,” J. Cryst. Growth 269(2-4), 181–186 (2004).
    [Crossref]
  30. S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335–3337 (1998).
    [Crossref]
  31. J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
    [Crossref]
  32. J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guzmán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
    [Crossref]
  33. J. M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, J. Kotthaus, and P. M. Petroff, “Intermixing and shape changes during the formation of InAs self-assembled quantum dots,” Appl. Phys. Lett. 71(14), 2014–2016 (1997).
    [Crossref]
  34. P. D. Siverns, S. Malik, G. McPherson, D. Childs, C. Roberts, R. Murray, B. A. Joyce, and H. Davock, “Scanning transmission-electron microscopy study of InAs/GaAs quantum dots,” Phys. Rev. B 58(16), R10127 (1998).
    [Crossref]
  35. T. M. Hsu, Y. S. Lan, W.-H. Chang, N. T. Yeh, and J.-I. Chyi, “Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 76(6), 691–693 (2000).
    [Crossref]
  36. S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335 (1998).
    [Crossref]
  37. Z. Zaâboub, B. Ilahi, L. Sfaxi, and H. Maaref, “Thermal-induced intermixing effects on the optical properties of long wavelength low density InAs/GaAs quantum dots,” Mat. Sci. Eng. C-Mater. 28, 1002–1005 (2008).
  38. S. Malik, C. Roberts, R. Murray, and M. Pate, “Tuning self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 71(14), 1987–1989 (1997).
    [Crossref]
  39. R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys. Rev. B 58(8), R4262–R4265 (1998).
    [Crossref]
  40. Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B Condens. Matter 54(16), 11528–11531 (1996).
    [Crossref] [PubMed]
  41. C. E. Pryor and M. E. Pistol, “Band-edge diagrams for strained III–V semiconductor quantum wells, wires, and dots,” Phys. Rev. B 72(20), 205311 (2005).
    [Crossref]
  42. W.-H. Chang, Y.-A. Liao, W.-T. Hsu, M.-C. Lee, P.-C. Chiu, and J.-I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
    [Crossref]
  43. T. Sugaya, T. Amano, M. Mori, and S. Niki, “Miniband formation in InGaAs quantum dot superlattice,” Appl. Phys. Lett. 97(4), 043112 (2010).
    [Crossref]
  44. Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, “Vertically Self-Organized InAs Quantum Box Islands on GaAs(100),” Phys. Rev. Lett. 75(13), 2542–2545 (1995).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

W.-S. Liu, “Enhancing device characteristics of 1.3 μm emitting InAs/GaAs quantum dot lasers through dot-height uniformity study,” J. Alloy. Comp. 571, 153–158 (2013).
[Crossref]

W.-S. Liu, Y.-T. Wang, W.-Y. Qiu, and C. Fang, “Carrier Dynamics of a Type-II Vertically Aligned InAs Quantum Dot Structure with a GaAsSb Strain-Reducing Layer,” Appl. Phys. Express 6(8), 085001 (2013).
[Crossref]

2012 (2)

J. M. Ulloa, J. M. Llorens, B. Alén, D. F. Reyes, D. L. Sales, D. González, and A. Hierro, “High efficient luminescence in type-II GaAsSb-capped InAs quantum dots upon annealing,” Appl. Phys. Lett. 101(25), 253112 (2012).
[Crossref]

W.-S. Liu, H.-M. Wu, F.-H. Tsao, T.-L. Hsu, and J.-I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Sol. Energy Mater. Sol. Cells 105, 237–241 (2012).
[Crossref]

2011 (2)

T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
[Crossref]

W.-S. Liu, H.-M. Wu, Y.-A. Liao, J.-I. Chyi, W.-Y. Chen, and T.-M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[Crossref]

2010 (2)

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guzmán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[Crossref]

T. Sugaya, T. Amano, M. Mori, and S. Niki, “Miniband formation in InGaAs quantum dot superlattice,” Appl. Phys. Lett. 97(4), 043112 (2010).
[Crossref]

2009 (1)

Y.-A. Liao, W.-T. Hsu, P.-C. Chiu, J.-I. Chyi, and W.-H. Chang, “Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots,” Appl. Phys. Lett. 94(5), 053101 (2009).
[Crossref]

2008 (3)

Z. Zaâboub, B. Ilahi, L. Sfaxi, and H. Maaref, “Thermal-induced intermixing effects on the optical properties of long wavelength low density InAs/GaAs quantum dots,” Mat. Sci. Eng. C-Mater. 28, 1002–1005 (2008).

R. Oshima, A. Takata, and Y. Okada, “Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells,” Appl. Phys. Lett. 93(8), 083111 (2008).
[Crossref]

W.-H. Chang, Y.-A. Liao, W.-T. Hsu, M.-C. Lee, P.-C. Chiu, and J.-I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[Crossref]

2007 (5)

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[Crossref]

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[Crossref]

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[Crossref]

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. J. Chua, “Origins of high radiative efficiency and wideband emission from InAs quantum dots,” Appl. Phys. Lett. 91(19), 191901 (2007).
[Crossref]

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “Effect of antimony on the density of InAs/Sb:GaAs (1 0 0) quantum dots grown by metalorganic chemical-vapor deposition,” J. Cryst. Growth 298, 548–552 (2007).
[Crossref]

2006 (2)

W.-S. Liu, D. M. T. Kuo, J.-I. Chyi, W.-Y. Chen, H.-S. Chang, and T.-M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).
[Crossref]

A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, E. Cánovas, P. G. Linares, and A. Luque, “Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell,” Phys. Rev. Lett. 97(24), 247701 (2006).
[Crossref] [PubMed]

2005 (2)

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

C. E. Pryor and M. E. Pistol, “Band-edge diagrams for strained III–V semiconductor quantum wells, wires, and dots,” Phys. Rev. B 72(20), 205311 (2005).
[Crossref]

2004 (1)

G. X. Shi, P. Jin, B. Xu, C. M. Li, C. X. Cui, Y. L. Wang, X. L. Ye, J. Wu, and Z. G. Wang, “Thermal annealing effect on InAs/InGaAs quantum dots grown by atomic layer molecular beam epitaxy,” J. Cryst. Growth 269(2-4), 181–186 (2004).
[Crossref]

2003 (2)

B. Ilahi, L. Sfaxi, F. Hassen, L. Bouzaîene, H. Maaref, B. Salem, G. Bremond, and O. Marty, “Spacer layer thickness effects on the photoluminescence properties of InAs/GaAs quantum dot superlattices,” Phys. Status. Solidi.A 199(3), 457–463 (2003).
[Crossref]

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[Crossref]

2002 (1)

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

2001 (1)

S.-F. Tang, S.-Y. Lin, and S.-C. Lee, “Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 78(17), 2428–2450 (2001).
[Crossref]

2000 (3)

F. Heinrichsdorff, Ch. Ribbat, M. Grundmann, and D. Bimberg, “High-power quantum-dot lasers at 1100 nm,” Appl. Phys. Lett. 76(5), 556–558 (2000).
[Crossref]

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett. 77(2), 262–264 (2000).
[Crossref]

T. M. Hsu, Y. S. Lan, W.-H. Chang, N. T. Yeh, and J.-I. Chyi, “Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 76(6), 691–693 (2000).
[Crossref]

1999 (2)

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diode,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[Crossref]

D. Pan, E. Towe, and S. Kennerly, “A five-period normal-incidence (In, Ga)As/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 75(18), 2719–2721 (1999).
[Crossref]

1998 (4)

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335 (1998).
[Crossref]

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335–3337 (1998).
[Crossref]

P. D. Siverns, S. Malik, G. McPherson, D. Childs, C. Roberts, R. Murray, B. A. Joyce, and H. Davock, “Scanning transmission-electron microscopy study of InAs/GaAs quantum dots,” Phys. Rev. B 58(16), R10127 (1998).
[Crossref]

R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys. Rev. B 58(8), R4262–R4265 (1998).
[Crossref]

1997 (4)

S. Malik, C. Roberts, R. Murray, and M. Pate, “Tuning self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 71(14), 1987–1989 (1997).
[Crossref]

J. M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, J. Kotthaus, and P. M. Petroff, “Intermixing and shape changes during the formation of InAs self-assembled quantum dots,” Appl. Phys. Lett. 71(14), 2014–2016 (1997).
[Crossref]

A. Luque and A. Martí, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

F. Heinrichsdorff, M.-H. Mao, N. Kirstaedter, A. Krost, D. Bimberg, A. O. Kosogov, and P. Werner, “Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 71(1), 22–24 (1997).
[Crossref]

1996 (3)

O. G. Schmidt, N. Kirstaedter, N. N. Ledentsov, M. H. Mao, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, “Prevention of gain saturation by multi-layer quantum dot lasers,” Electron. Lett. 32(14), 1302–1304 (1996).
[Crossref]

G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris., “Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs,” Phys. Rev. Lett. 76(6), 952–955 (1996).
[Crossref] [PubMed]

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B Condens. Matter 54(16), 11528–11531 (1996).
[Crossref] [PubMed]

1995 (1)

Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, “Vertically Self-Organized InAs Quantum Box Islands on GaAs(100),” Phys. Rev. Lett. 75(13), 2542–2545 (1995).
[Crossref] [PubMed]

Akiyama, T.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Alén, B.

J. M. Ulloa, J. M. Llorens, B. Alén, D. F. Reyes, D. L. Sales, D. González, and A. Hierro, “High efficient luminescence in type-II GaAsSb-capped InAs quantum dots upon annealing,” Appl. Phys. Lett. 101(25), 253112 (2012).
[Crossref]

Alferov, Zh. I.

O. G. Schmidt, N. Kirstaedter, N. N. Ledentsov, M. H. Mao, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, “Prevention of gain saturation by multi-layer quantum dot lasers,” Electron. Lett. 32(14), 1302–1304 (1996).
[Crossref]

Amano, T.

T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
[Crossref]

T. Sugaya, T. Amano, M. Mori, and S. Niki, “Miniband formation in InGaAs quantum dot superlattice,” Appl. Phys. Lett. 97(4), 043112 (2010).
[Crossref]

Antolín, E.

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[Crossref]

A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, E. Cánovas, P. G. Linares, and A. Luque, “Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell,” Phys. Rev. Lett. 97(24), 247701 (2006).
[Crossref] [PubMed]

Arakawa, Y.

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “Effect of antimony on the density of InAs/Sb:GaAs (1 0 0) quantum dots grown by metalorganic chemical-vapor deposition,” J. Cryst. Growth 298, 548–552 (2007).
[Crossref]

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[Crossref]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Bakonyi, Z.

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[Crossref]

Bimberg, D.

F. Heinrichsdorff, Ch. Ribbat, M. Grundmann, and D. Bimberg, “High-power quantum-dot lasers at 1100 nm,” Appl. Phys. Lett. 76(5), 556–558 (2000).
[Crossref]

F. Heinrichsdorff, M.-H. Mao, N. Kirstaedter, A. Krost, D. Bimberg, A. O. Kosogov, and P. Werner, “Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 71(1), 22–24 (1997).
[Crossref]

O. G. Schmidt, N. Kirstaedter, N. N. Ledentsov, M. H. Mao, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, “Prevention of gain saturation by multi-layer quantum dot lasers,” Electron. Lett. 32(14), 1302–1304 (1996).
[Crossref]

Bouzaîene, L.

B. Ilahi, L. Sfaxi, F. Hassen, L. Bouzaîene, H. Maaref, B. Salem, G. Bremond, and O. Marty, “Spacer layer thickness effects on the photoluminescence properties of InAs/GaAs quantum dot superlattices,” Phys. Status. Solidi.A 199(3), 457–463 (2003).
[Crossref]

Bozkurt, M.

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guzmán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[Crossref]

Bremond, G.

B. Ilahi, L. Sfaxi, F. Hassen, L. Bouzaîene, H. Maaref, B. Salem, G. Bremond, and O. Marty, “Spacer layer thickness effects on the photoluminescence properties of InAs/GaAs quantum dot superlattices,” Phys. Status. Solidi.A 199(3), 457–463 (2003).
[Crossref]

Cánovas, E.

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[Crossref]

A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, E. Cánovas, P. G. Linares, and A. Luque, “Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell,” Phys. Rev. Lett. 97(24), 247701 (2006).
[Crossref] [PubMed]

Carlin, J. F.

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

Catalano, M.

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

Chang, H.-S.

W.-S. Liu, D. M. T. Kuo, J.-I. Chyi, W.-Y. Chen, H.-S. Chang, and T.-M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).
[Crossref]

Chang, L. L.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B Condens. Matter 54(16), 11528–11531 (1996).
[Crossref] [PubMed]

Chang, W.-H.

Y.-A. Liao, W.-T. Hsu, P.-C. Chiu, J.-I. Chyi, and W.-H. Chang, “Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots,” Appl. Phys. Lett. 94(5), 053101 (2009).
[Crossref]

W.-H. Chang, Y.-A. Liao, W.-T. Hsu, M.-C. Lee, P.-C. Chiu, and J.-I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[Crossref]

T. M. Hsu, Y. S. Lan, W.-H. Chang, N. T. Yeh, and J.-I. Chyi, “Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 76(6), 691–693 (2000).
[Crossref]

Chen, J. X.

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

Chen, P.

Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, “Vertically Self-Organized InAs Quantum Box Islands on GaAs(100),” Phys. Rev. Lett. 75(13), 2542–2545 (1995).
[Crossref] [PubMed]

Chen, W.-Y.

W.-S. Liu, H.-M. Wu, Y.-A. Liao, J.-I. Chyi, W.-Y. Chen, and T.-M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[Crossref]

W.-S. Liu, D. M. T. Kuo, J.-I. Chyi, W.-Y. Chen, H.-S. Chang, and T.-M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).
[Crossref]

Childs, D.

P. D. Siverns, S. Malik, G. McPherson, D. Childs, C. Roberts, R. Murray, B. A. Joyce, and H. Davock, “Scanning transmission-electron microscopy study of InAs/GaAs quantum dots,” Phys. Rev. B 58(16), R10127 (1998).
[Crossref]

Chiu, P.-C.

Y.-A. Liao, W.-T. Hsu, P.-C. Chiu, J.-I. Chyi, and W.-H. Chang, “Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots,” Appl. Phys. Lett. 94(5), 053101 (2009).
[Crossref]

W.-H. Chang, Y.-A. Liao, W.-T. Hsu, M.-C. Lee, P.-C. Chiu, and J.-I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[Crossref]

Chua, S. J.

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. J. Chua, “Origins of high radiative efficiency and wideband emission from InAs quantum dots,” Appl. Phys. Lett. 91(19), 191901 (2007).
[Crossref]

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335–3337 (1998).
[Crossref]

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335 (1998).
[Crossref]

Chyi, J.-I.

W.-S. Liu, H.-M. Wu, F.-H. Tsao, T.-L. Hsu, and J.-I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Sol. Energy Mater. Sol. Cells 105, 237–241 (2012).
[Crossref]

W.-S. Liu, H.-M. Wu, Y.-A. Liao, J.-I. Chyi, W.-Y. Chen, and T.-M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[Crossref]

Y.-A. Liao, W.-T. Hsu, P.-C. Chiu, J.-I. Chyi, and W.-H. Chang, “Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots,” Appl. Phys. Lett. 94(5), 053101 (2009).
[Crossref]

W.-H. Chang, Y.-A. Liao, W.-T. Hsu, M.-C. Lee, P.-C. Chiu, and J.-I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[Crossref]

W.-S. Liu, D. M. T. Kuo, J.-I. Chyi, W.-Y. Chen, H.-S. Chang, and T.-M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).
[Crossref]

T. M. Hsu, Y. S. Lan, W.-H. Chang, N. T. Yeh, and J.-I. Chyi, “Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 76(6), 691–693 (2000).
[Crossref]

Cingolani, R.

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

Cui, C. X.

G. X. Shi, P. Jin, B. Xu, C. M. Li, C. X. Cui, Y. L. Wang, X. L. Ye, J. Wu, and Z. G. Wang, “Thermal annealing effect on InAs/InGaAs quantum dots grown by atomic layer molecular beam epitaxy,” J. Cryst. Growth 269(2-4), 181–186 (2004).
[Crossref]

Davock, H.

P. D. Siverns, S. Malik, G. McPherson, D. Childs, C. Roberts, R. Murray, B. A. Joyce, and H. Davock, “Scanning transmission-electron microscopy study of InAs/GaAs quantum dots,” Phys. Rev. B 58(16), R10127 (1998).
[Crossref]

del Moral, M.

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guzmán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[Crossref]

Díaz, P.

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[Crossref]

A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, E. Cánovas, P. G. Linares, and A. Luque, “Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell,” Phys. Rev. Lett. 97(24), 247701 (2006).
[Crossref] [PubMed]

Drouzas, I. W. D.

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[Crossref]

Ebe, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Egorov, A. Y.

O. G. Schmidt, N. Kirstaedter, N. N. Ledentsov, M. H. Mao, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, “Prevention of gain saturation by multi-layer quantum dot lasers,” Electron. Lett. 32(14), 1302–1304 (1996).
[Crossref]

Ekawa, M.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Eliseev, P. G.

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett. 77(2), 262–264 (2000).
[Crossref]

Fafard, S.

R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys. Rev. B 58(8), R4262–R4265 (1998).
[Crossref]

Fan, W. J.

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. J. Chua, “Origins of high radiative efficiency and wideband emission from InAs quantum dots,” Appl. Phys. Lett. 91(19), 191901 (2007).
[Crossref]

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335 (1998).
[Crossref]

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335–3337 (1998).
[Crossref]

Fang, C.

W.-S. Liu, Y.-T. Wang, W.-Y. Qiu, and C. Fang, “Carrier Dynamics of a Type-II Vertically Aligned InAs Quantum Dot Structure with a GaAsSb Strain-Reducing Layer,” Appl. Phys. Express 6(8), 085001 (2013).
[Crossref]

Farmer, C. D.

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[Crossref]

A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, E. Cánovas, P. G. Linares, and A. Luque, “Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell,” Phys. Rev. Lett. 97(24), 247701 (2006).
[Crossref] [PubMed]

Feng, J. L.

J. M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, J. Kotthaus, and P. M. Petroff, “Intermixing and shape changes during the formation of InAs self-assembled quantum dots,” Appl. Phys. Lett. 71(14), 2014–2016 (1997).
[Crossref]

Fiore, A.

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

Fuchs, B. A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diode,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[Crossref]

Furue, S.

T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
[Crossref]

García, J. M.

J. M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, J. Kotthaus, and P. M. Petroff, “Intermixing and shape changes during the formation of InAs self-assembled quantum dots,” Appl. Phys. Lett. 71(14), 2014–2016 (1997).
[Crossref]

Gargallo-Caballero, R.

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guzmán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[Crossref]

Ge, W. K.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B Condens. Matter 54(16), 11528–11531 (1996).
[Crossref] [PubMed]

González, D.

J. M. Ulloa, J. M. Llorens, B. Alén, D. F. Reyes, D. L. Sales, D. González, and A. Hierro, “High efficient luminescence in type-II GaAsSb-capped InAs quantum dots upon annealing,” Appl. Phys. Lett. 101(25), 253112 (2012).
[Crossref]

Gray, A. L.

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[Crossref]

Grundmann, M.

F. Heinrichsdorff, Ch. Ribbat, M. Grundmann, and D. Bimberg, “High-power quantum-dot lasers at 1100 nm,” Appl. Phys. Lett. 76(5), 556–558 (2000).
[Crossref]

Guimard, D.

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[Crossref]

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “Effect of antimony on the density of InAs/Sb:GaAs (1 0 0) quantum dots grown by metalorganic chemical-vapor deposition,” J. Cryst. Growth 298, 548–552 (2007).
[Crossref]

Guzmán, A.

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guzmán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[Crossref]

Harris, J. S.

G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris., “Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs,” Phys. Rev. Lett. 76(6), 952–955 (1996).
[Crossref] [PubMed]

Hassen, F.

B. Ilahi, L. Sfaxi, F. Hassen, L. Bouzaîene, H. Maaref, B. Salem, G. Bremond, and O. Marty, “Spacer layer thickness effects on the photoluminescence properties of InAs/GaAs quantum dot superlattices,” Phys. Status. Solidi.A 199(3), 457–463 (2003).
[Crossref]

Heinrichsdorff, F.

F. Heinrichsdorff, Ch. Ribbat, M. Grundmann, and D. Bimberg, “High-power quantum-dot lasers at 1100 nm,” Appl. Phys. Lett. 76(5), 556–558 (2000).
[Crossref]

F. Heinrichsdorff, M.-H. Mao, N. Kirstaedter, A. Krost, D. Bimberg, A. O. Kosogov, and P. Werner, “Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 71(1), 22–24 (1997).
[Crossref]

Hierro, A.

J. M. Ulloa, J. M. Llorens, B. Alén, D. F. Reyes, D. L. Sales, D. González, and A. Hierro, “High efficient luminescence in type-II GaAsSb-capped InAs quantum dots upon annealing,” Appl. Phys. Lett. 101(25), 253112 (2012).
[Crossref]

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guzmán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[Crossref]

Hopkinson, M.

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[Crossref]

Houdré, R.

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

Hsu, T. M.

T. M. Hsu, Y. S. Lan, W.-H. Chang, N. T. Yeh, and J.-I. Chyi, “Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 76(6), 691–693 (2000).
[Crossref]

Hsu, T.-L.

W.-S. Liu, H.-M. Wu, F.-H. Tsao, T.-L. Hsu, and J.-I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Sol. Energy Mater. Sol. Cells 105, 237–241 (2012).
[Crossref]

Hsu, T.-M.

W.-S. Liu, H.-M. Wu, Y.-A. Liao, J.-I. Chyi, W.-Y. Chen, and T.-M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[Crossref]

W.-S. Liu, D. M. T. Kuo, J.-I. Chyi, W.-Y. Chen, H.-S. Chang, and T.-M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).
[Crossref]

Hsu, W.-T.

Y.-A. Liao, W.-T. Hsu, P.-C. Chiu, J.-I. Chyi, and W.-H. Chang, “Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots,” Appl. Phys. Lett. 94(5), 053101 (2009).
[Crossref]

W.-H. Chang, Y.-A. Liao, W.-T. Hsu, M.-C. Lee, P.-C. Chiu, and J.-I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[Crossref]

Ilahi, B.

Z. Zaâboub, B. Ilahi, L. Sfaxi, and H. Maaref, “Thermal-induced intermixing effects on the optical properties of long wavelength low density InAs/GaAs quantum dots,” Mat. Sci. Eng. C-Mater. 28, 1002–1005 (2008).

B. Ilahi, L. Sfaxi, F. Hassen, L. Bouzaîene, H. Maaref, B. Salem, G. Bremond, and O. Marty, “Spacer layer thickness effects on the photoluminescence properties of InAs/GaAs quantum dot superlattices,” Phys. Status. Solidi.A 199(3), 457–463 (2003).
[Crossref]

Ilegems, M.

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

Ishida, M.

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[Crossref]

Jiang, J.

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335 (1998).
[Crossref]

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335–3337 (1998).
[Crossref]

Jin, P.

G. X. Shi, P. Jin, B. Xu, C. M. Li, C. X. Cui, Y. L. Wang, X. L. Ye, J. Wu, and Z. G. Wang, “Thermal annealing effect on InAs/InGaAs quantum dots grown by atomic layer molecular beam epitaxy,” J. Cryst. Growth 269(2-4), 181–186 (2004).
[Crossref]

Joyce, B. A.

P. D. Siverns, S. Malik, G. McPherson, D. Childs, C. Roberts, R. Murray, B. A. Joyce, and H. Davock, “Scanning transmission-electron microscopy study of InAs/GaAs quantum dots,” Phys. Rev. B 58(16), R10127 (1998).
[Crossref]

Kamikawa, Y.

T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
[Crossref]

Katcki, J.

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

Kawaguchi, K.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Kennerly, S.

D. Pan, E. Towe, and S. Kennerly, “A five-period normal-incidence (In, Ga)As/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 75(18), 2719–2721 (1999).
[Crossref]

Kirstaedter, N.

F. Heinrichsdorff, M.-H. Mao, N. Kirstaedter, A. Krost, D. Bimberg, A. O. Kosogov, and P. Werner, “Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 71(1), 22–24 (1997).
[Crossref]

O. G. Schmidt, N. Kirstaedter, N. N. Ledentsov, M. H. Mao, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, “Prevention of gain saturation by multi-layer quantum dot lasers,” Electron. Lett. 32(14), 1302–1304 (1996).
[Crossref]

Kobayashi, N. P.

Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, “Vertically Self-Organized InAs Quantum Box Islands on GaAs(100),” Phys. Rev. Lett. 75(13), 2542–2545 (1995).
[Crossref] [PubMed]

Koenraad, P. M.

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guzmán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[Crossref]

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[Crossref]

Kop’ev, P. S.

O. G. Schmidt, N. Kirstaedter, N. N. Ledentsov, M. H. Mao, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, “Prevention of gain saturation by multi-layer quantum dot lasers,” Electron. Lett. 32(14), 1302–1304 (1996).
[Crossref]

Kosogov, A. O.

F. Heinrichsdorff, M.-H. Mao, N. Kirstaedter, A. Krost, D. Bimberg, A. O. Kosogov, and P. Werner, “Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 71(1), 22–24 (1997).
[Crossref]

Kotthaus, J.

J. M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, J. Kotthaus, and P. M. Petroff, “Intermixing and shape changes during the formation of InAs self-assembled quantum dots,” Appl. Phys. Lett. 71(14), 2014–2016 (1997).
[Crossref]

Krost, A.

F. Heinrichsdorff, M.-H. Mao, N. Kirstaedter, A. Krost, D. Bimberg, A. O. Kosogov, and P. Werner, “Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 71(1), 22–24 (1997).
[Crossref]

Kuo, D. M. T.

W.-S. Liu, D. M. T. Kuo, J.-I. Chyi, W.-Y. Chen, H.-S. Chang, and T.-M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).
[Crossref]

Kuo, P.-C.

Kuramata, A.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Lan, Y. S.

T. M. Hsu, Y. S. Lan, W.-H. Chang, N. T. Yeh, and J.-I. Chyi, “Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 76(6), 691–693 (2000).
[Crossref]

Lazzarini, L.

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

Ledentsov, N. N.

O. G. Schmidt, N. Kirstaedter, N. N. Ledentsov, M. H. Mao, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, “Prevention of gain saturation by multi-layer quantum dot lasers,” Electron. Lett. 32(14), 1302–1304 (1996).
[Crossref]

Lee, M.-C.

W.-H. Chang, Y.-A. Liao, W.-T. Hsu, M.-C. Lee, P.-C. Chiu, and J.-I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[Crossref]

Lee, S.-C.

S.-F. Tang, S.-Y. Lin, and S.-C. Lee, “Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 78(17), 2428–2450 (2001).
[Crossref]

Leon, R.

R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys. Rev. B 58(8), R4262–R4265 (1998).
[Crossref]

Lester, L. F.

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[Crossref]

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett. 77(2), 262–264 (2000).
[Crossref]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diode,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[Crossref]

Li, C. M.

G. X. Shi, P. Jin, B. Xu, C. M. Li, C. X. Cui, Y. L. Wang, X. L. Ye, J. Wu, and Z. G. Wang, “Thermal annealing effect on InAs/InGaAs quantum dots grown by atomic layer molecular beam epitaxy,” J. Cryst. Growth 269(2-4), 181–186 (2004).
[Crossref]

Li, H.

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett. 77(2), 262–264 (2000).
[Crossref]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diode,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[Crossref]

Liao, Y.-A.

W.-S. Liu, H.-M. Wu, Y.-A. Liao, J.-I. Chyi, W.-Y. Chen, and T.-M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[Crossref]

Y.-A. Liao, W.-T. Hsu, P.-C. Chiu, J.-I. Chyi, and W.-H. Chang, “Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots,” Appl. Phys. Lett. 94(5), 053101 (2009).
[Crossref]

W.-H. Chang, Y.-A. Liao, W.-T. Hsu, M.-C. Lee, P.-C. Chiu, and J.-I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[Crossref]

Liliental-Weber, Z.

R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys. Rev. B 58(8), R4262–R4265 (1998).
[Crossref]

Lin, S.-Y.

S.-F. Tang, S.-Y. Lin, and S.-C. Lee, “Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 78(17), 2428–2450 (2001).
[Crossref]

Linares, P. G.

A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, E. Cánovas, P. G. Linares, and A. Luque, “Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell,” Phys. Rev. Lett. 97(24), 247701 (2006).
[Crossref] [PubMed]

Liu, G. T.

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett. 77(2), 262–264 (2000).
[Crossref]

Liu, H. Y.

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[Crossref]

Liu, W.-S.

W.-S. Liu, H.-L. Tseng, and P.-C. Kuo, “Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm,” Opt. Express 22(16), 18860–18869 (2014).
[Crossref]

W.-S. Liu, “Enhancing device characteristics of 1.3 μm emitting InAs/GaAs quantum dot lasers through dot-height uniformity study,” J. Alloy. Comp. 571, 153–158 (2013).
[Crossref]

W.-S. Liu, Y.-T. Wang, W.-Y. Qiu, and C. Fang, “Carrier Dynamics of a Type-II Vertically Aligned InAs Quantum Dot Structure with a GaAsSb Strain-Reducing Layer,” Appl. Phys. Express 6(8), 085001 (2013).
[Crossref]

W.-S. Liu, H.-M. Wu, F.-H. Tsao, T.-L. Hsu, and J.-I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Sol. Energy Mater. Sol. Cells 105, 237–241 (2012).
[Crossref]

W.-S. Liu, H.-M. Wu, Y.-A. Liao, J.-I. Chyi, W.-Y. Chen, and T.-M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[Crossref]

W.-S. Liu, D. M. T. Kuo, J.-I. Chyi, W.-Y. Chen, H.-S. Chang, and T.-M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).
[Crossref]

Llorens, J. M.

J. M. Ulloa, J. M. Llorens, B. Alén, D. F. Reyes, D. L. Sales, D. González, and A. Hierro, “High efficient luminescence in type-II GaAsSb-capped InAs quantum dots upon annealing,” Appl. Phys. Lett. 101(25), 253112 (2012).
[Crossref]

López, N.

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[Crossref]

A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, E. Cánovas, P. G. Linares, and A. Luque, “Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell,” Phys. Rev. Lett. 97(24), 247701 (2006).
[Crossref] [PubMed]

Lorke, A.

J. M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, J. Kotthaus, and P. M. Petroff, “Intermixing and shape changes during the formation of InAs self-assembled quantum dots,” Appl. Phys. Lett. 71(14), 2014–2016 (1997).
[Crossref]

Lu, Z. D.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B Condens. Matter 54(16), 11528–11531 (1996).
[Crossref] [PubMed]

Luque, A.

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[Crossref]

A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, E. Cánovas, P. G. Linares, and A. Luque, “Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell,” Phys. Rev. Lett. 97(24), 247701 (2006).
[Crossref] [PubMed]

A. Luque and A. Martí, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Maaref, H.

Z. Zaâboub, B. Ilahi, L. Sfaxi, and H. Maaref, “Thermal-induced intermixing effects on the optical properties of long wavelength low density InAs/GaAs quantum dots,” Mat. Sci. Eng. C-Mater. 28, 1002–1005 (2008).

B. Ilahi, L. Sfaxi, F. Hassen, L. Bouzaîene, H. Maaref, B. Salem, G. Bremond, and O. Marty, “Spacer layer thickness effects on the photoluminescence properties of InAs/GaAs quantum dot superlattices,” Phys. Status. Solidi.A 199(3), 457–463 (2003).
[Crossref]

Madhukar, A.

Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, “Vertically Self-Organized InAs Quantum Box Islands on GaAs(100),” Phys. Rev. Lett. 75(13), 2542–2545 (1995).
[Crossref] [PubMed]

Malik, S.

P. D. Siverns, S. Malik, G. McPherson, D. Childs, C. Roberts, R. Murray, B. A. Joyce, and H. Davock, “Scanning transmission-electron microscopy study of InAs/GaAs quantum dots,” Phys. Rev. B 58(16), R10127 (1998).
[Crossref]

S. Malik, C. Roberts, R. Murray, and M. Pate, “Tuning self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 71(14), 1987–1989 (1997).
[Crossref]

Malloy, K. J.

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett. 77(2), 262–264 (2000).
[Crossref]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diode,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[Crossref]

Mao, M. H.

O. G. Schmidt, N. Kirstaedter, N. N. Ledentsov, M. H. Mao, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, “Prevention of gain saturation by multi-layer quantum dot lasers,” Electron. Lett. 32(14), 1302–1304 (1996).
[Crossref]

Mao, M.-H.

F. Heinrichsdorff, M.-H. Mao, N. Kirstaedter, A. Krost, D. Bimberg, A. O. Kosogov, and P. Werner, “Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 71(1), 22–24 (1997).
[Crossref]

Markus, A.

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

Marshall, A. F.

G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris., “Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs,” Phys. Rev. Lett. 76(6), 952–955 (1996).
[Crossref] [PubMed]

Martí, A.

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[Crossref]

A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, E. Cánovas, P. G. Linares, and A. Luque, “Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell,” Phys. Rev. Lett. 97(24), 247701 (2006).
[Crossref] [PubMed]

A. Luque and A. Martí, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Marty, O.

B. Ilahi, L. Sfaxi, F. Hassen, L. Bouzaîene, H. Maaref, B. Salem, G. Bremond, and O. Marty, “Spacer layer thickness effects on the photoluminescence properties of InAs/GaAs quantum dot superlattices,” Phys. Status. Solidi.A 199(3), 457–463 (2003).
[Crossref]

Maximov, M. V.

O. G. Schmidt, N. Kirstaedter, N. N. Ledentsov, M. H. Mao, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, “Prevention of gain saturation by multi-layer quantum dot lasers,” Electron. Lett. 32(14), 1302–1304 (1996).
[Crossref]

McPherson, G.

P. D. Siverns, S. Malik, G. McPherson, D. Childs, C. Roberts, R. Murray, B. A. Joyce, and H. Davock, “Scanning transmission-electron microscopy study of InAs/GaAs quantum dots,” Phys. Rev. B 58(16), R10127 (1998).
[Crossref]

Medeiros-Ribeiro, G.

J. M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, J. Kotthaus, and P. M. Petroff, “Intermixing and shape changes during the formation of InAs self-assembled quantum dots,” Appl. Phys. Lett. 71(14), 2014–2016 (1997).
[Crossref]

Mori, M.

T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
[Crossref]

T. Sugaya, T. Amano, M. Mori, and S. Niki, “Miniband formation in InGaAs quantum dot superlattice,” Appl. Phys. Lett. 97(4), 043112 (2010).
[Crossref]

Mowbray, D. J.

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[Crossref]

Murray, R.

P. D. Siverns, S. Malik, G. McPherson, D. Childs, C. Roberts, R. Murray, B. A. Joyce, and H. Davock, “Scanning transmission-electron microscopy study of InAs/GaAs quantum dots,” Phys. Rev. B 58(16), R10127 (1998).
[Crossref]

S. Malik, C. Roberts, R. Murray, and M. Pate, “Tuning self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 71(14), 1987–1989 (1997).
[Crossref]

Nakata, Y.

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[Crossref]

Nasi, L.

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

Newell, T. C.

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[Crossref]

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett. 77(2), 262–264 (2000).
[Crossref]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diode,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[Crossref]

Ngo, C. Y.

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. J. Chua, “Origins of high radiative efficiency and wideband emission from InAs quantum dots,” Appl. Phys. Lett. 91(19), 191901 (2007).
[Crossref]

Ngo, T.

J. M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, J. Kotthaus, and P. M. Petroff, “Intermixing and shape changes during the formation of InAs self-assembled quantum dots,” Appl. Phys. Lett. 71(14), 2014–2016 (1997).
[Crossref]

Niki, S.

T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
[Crossref]

T. Sugaya, T. Amano, M. Mori, and S. Niki, “Miniband formation in InGaAs quantum dot superlattice,” Appl. Phys. Lett. 97(4), 043112 (2010).
[Crossref]

Nishioka, M.

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[Crossref]

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “Effect of antimony on the density of InAs/Sb:GaAs (1 0 0) quantum dots grown by metalorganic chemical-vapor deposition,” J. Cryst. Growth 298, 548–552 (2007).
[Crossref]

Oesterle, U.

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

Okada, Y.

R. Oshima, A. Takata, and Y. Okada, “Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells,” Appl. Phys. Lett. 93(8), 083111 (2008).
[Crossref]

Onishchukov, G.

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[Crossref]

Oshima, R.

R. Oshima, A. Takata, and Y. Okada, “Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells,” Appl. Phys. Lett. 93(8), 083111 (2008).
[Crossref]

Pan, D.

D. Pan, E. Towe, and S. Kennerly, “A five-period normal-incidence (In, Ga)As/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 75(18), 2719–2721 (1999).
[Crossref]

Pate, M.

S. Malik, C. Roberts, R. Murray, and M. Pate, “Tuning self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 71(14), 1987–1989 (1997).
[Crossref]

Pease, E. A.

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diode,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[Crossref]

Petroff, P. M.

J. M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, J. Kotthaus, and P. M. Petroff, “Intermixing and shape changes during the formation of InAs self-assembled quantum dots,” Appl. Phys. Lett. 71(14), 2014–2016 (1997).
[Crossref]

Piscopiello, E.

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

Pistol, M. E.

C. E. Pryor and M. E. Pistol, “Band-edge diagrams for strained III–V semiconductor quantum wells, wires, and dots,” Phys. Rev. B 72(20), 205311 (2005).
[Crossref]

Piva, P. G.

R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys. Rev. B 58(8), R4262–R4265 (1998).
[Crossref]

Pryor, C. E.

C. E. Pryor and M. E. Pistol, “Band-edge diagrams for strained III–V semiconductor quantum wells, wires, and dots,” Phys. Rev. B 72(20), 205311 (2005).
[Crossref]

Qiu, W.-Y.

W.-S. Liu, Y.-T. Wang, W.-Y. Qiu, and C. Fang, “Carrier Dynamics of a Type-II Vertically Aligned InAs Quantum Dot Structure with a GaAsSb Strain-Reducing Layer,” Appl. Phys. Express 6(8), 085001 (2013).
[Crossref]

Ratajczak, J.

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

Reyes, D. F.

J. M. Ulloa, J. M. Llorens, B. Alén, D. F. Reyes, D. L. Sales, D. González, and A. Hierro, “High efficient luminescence in type-II GaAsSb-capped InAs quantum dots upon annealing,” Appl. Phys. Lett. 101(25), 253112 (2012).
[Crossref]

Ribbat, Ch.

F. Heinrichsdorff, Ch. Ribbat, M. Grundmann, and D. Bimberg, “High-power quantum-dot lasers at 1100 nm,” Appl. Phys. Lett. 76(5), 556–558 (2000).
[Crossref]

Roberts, C.

P. D. Siverns, S. Malik, G. McPherson, D. Childs, C. Roberts, R. Murray, B. A. Joyce, and H. Davock, “Scanning transmission-electron microscopy study of InAs/GaAs quantum dots,” Phys. Rev. B 58(16), R10127 (1998).
[Crossref]

S. Malik, C. Roberts, R. Murray, and M. Pate, “Tuning self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 71(14), 1987–1989 (1997).
[Crossref]

Ruvimov, S.

R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys. Rev. B 58(8), R4262–R4265 (1998).
[Crossref]

Salem, B.

B. Ilahi, L. Sfaxi, F. Hassen, L. Bouzaîene, H. Maaref, B. Salem, G. Bremond, and O. Marty, “Spacer layer thickness effects on the photoluminescence properties of InAs/GaAs quantum dot superlattices,” Phys. Status. Solidi.A 199(3), 457–463 (2003).
[Crossref]

Sales, D. L.

J. M. Ulloa, J. M. Llorens, B. Alén, D. F. Reyes, D. L. Sales, D. González, and A. Hierro, “High efficient luminescence in type-II GaAsSb-capped InAs quantum dots upon annealing,” Appl. Phys. Lett. 101(25), 253112 (2012).
[Crossref]

Schmidt, K.

J. M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, J. Kotthaus, and P. M. Petroff, “Intermixing and shape changes during the formation of InAs self-assembled quantum dots,” Appl. Phys. Lett. 71(14), 2014–2016 (1997).
[Crossref]

Schmidt, O. G.

O. G. Schmidt, N. Kirstaedter, N. N. Ledentsov, M. H. Mao, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, “Prevention of gain saturation by multi-layer quantum dot lasers,” Electron. Lett. 32(14), 1302–1304 (1996).
[Crossref]

Sfaxi, L.

Z. Zaâboub, B. Ilahi, L. Sfaxi, and H. Maaref, “Thermal-induced intermixing effects on the optical properties of long wavelength low density InAs/GaAs quantum dots,” Mat. Sci. Eng. C-Mater. 28, 1002–1005 (2008).

B. Ilahi, L. Sfaxi, F. Hassen, L. Bouzaîene, H. Maaref, B. Salem, G. Bremond, and O. Marty, “Spacer layer thickness effects on the photoluminescence properties of InAs/GaAs quantum dot superlattices,” Phys. Status. Solidi.A 199(3), 457–463 (2003).
[Crossref]

Shi, G. X.

G. X. Shi, P. Jin, B. Xu, C. M. Li, C. X. Cui, Y. L. Wang, X. L. Ye, J. Wu, and Z. G. Wang, “Thermal annealing effect on InAs/InGaAs quantum dots grown by atomic layer molecular beam epitaxy,” J. Cryst. Growth 269(2-4), 181–186 (2004).
[Crossref]

Siverns, P. D.

P. D. Siverns, S. Malik, G. McPherson, D. Childs, C. Roberts, R. Murray, B. A. Joyce, and H. Davock, “Scanning transmission-electron microscopy study of InAs/GaAs quantum dots,” Phys. Rev. B 58(16), R10127 (1998).
[Crossref]

Solomon, G. S.

G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris., “Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs,” Phys. Rev. Lett. 76(6), 952–955 (1996).
[Crossref] [PubMed]

Stanley, C. R.

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[Crossref]

A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, E. Cánovas, P. G. Linares, and A. Luque, “Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell,” Phys. Rev. Lett. 97(24), 247701 (2006).
[Crossref] [PubMed]

Stanley, R. P.

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

Steer, M. J.

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[Crossref]

Stintz, A.

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett. 77(2), 262–264 (2000).
[Crossref]

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diode,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[Crossref]

Su, H.

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[Crossref]

Sudo, H.

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[Crossref]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Sugawara, M.

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[Crossref]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

Sugaya, T.

T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
[Crossref]

T. Sugaya, T. Amano, M. Mori, and S. Niki, “Miniband formation in InGaAs quantum dot superlattice,” Appl. Phys. Lett. 97(4), 043112 (2010).
[Crossref]

Takata, A.

R. Oshima, A. Takata, and Y. Okada, “Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells,” Appl. Phys. Lett. 93(8), 083111 (2008).
[Crossref]

Tang, S.-F.

S.-F. Tang, S.-Y. Lin, and S.-C. Lee, “Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 78(17), 2428–2450 (2001).
[Crossref]

Todaro, M. T.

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

Towe, E.

D. Pan, E. Towe, and S. Kennerly, “A five-period normal-incidence (In, Ga)As/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 75(18), 2719–2721 (1999).
[Crossref]

Trezza, J. A.

G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris., “Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs,” Phys. Rev. Lett. 76(6), 952–955 (1996).
[Crossref] [PubMed]

Tsao, F.-H.

W.-S. Liu, H.-M. Wu, F.-H. Tsao, T.-L. Hsu, and J.-I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Sol. Energy Mater. Sol. Cells 105, 237–241 (2012).
[Crossref]

Tseng, H.-L.

Tsukamoto, S.

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[Crossref]

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “Effect of antimony on the density of InAs/Sb:GaAs (1 0 0) quantum dots grown by metalorganic chemical-vapor deposition,” J. Cryst. Growth 298, 548–552 (2007).
[Crossref]

Tünnermann, A.

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[Crossref]

Ulloa, J. M.

J. M. Ulloa, J. M. Llorens, B. Alén, D. F. Reyes, D. L. Sales, D. González, and A. Hierro, “High efficient luminescence in type-II GaAsSb-capped InAs quantum dots upon annealing,” Appl. Phys. Lett. 101(25), 253112 (2012).
[Crossref]

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guzmán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[Crossref]

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[Crossref]

Ustinov, V. M.

O. G. Schmidt, N. Kirstaedter, N. N. Ledentsov, M. H. Mao, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, “Prevention of gain saturation by multi-layer quantum dot lasers,” Electron. Lett. 32(14), 1302–1304 (1996).
[Crossref]

Wang, C. H.

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335 (1998).
[Crossref]

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335–3337 (1998).
[Crossref]

Wang, J.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B Condens. Matter 54(16), 11528–11531 (1996).
[Crossref] [PubMed]

Wang, X. C.

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335 (1998).
[Crossref]

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335–3337 (1998).
[Crossref]

Wang, Y.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B Condens. Matter 54(16), 11528–11531 (1996).
[Crossref] [PubMed]

Wang, Y. L.

G. X. Shi, P. Jin, B. Xu, C. M. Li, C. X. Cui, Y. L. Wang, X. L. Ye, J. Wu, and Z. G. Wang, “Thermal annealing effect on InAs/InGaAs quantum dots grown by atomic layer molecular beam epitaxy,” J. Cryst. Growth 269(2-4), 181–186 (2004).
[Crossref]

Wang, Y.-T.

W.-S. Liu, Y.-T. Wang, W.-Y. Qiu, and C. Fang, “Carrier Dynamics of a Type-II Vertically Aligned InAs Quantum Dot Structure with a GaAsSb Strain-Reducing Layer,” Appl. Phys. Express 6(8), 085001 (2013).
[Crossref]

Wang, Z. G.

G. X. Shi, P. Jin, B. Xu, C. M. Li, C. X. Cui, Y. L. Wang, X. L. Ye, J. Wu, and Z. G. Wang, “Thermal annealing effect on InAs/InGaAs quantum dots grown by atomic layer molecular beam epitaxy,” J. Cryst. Growth 269(2-4), 181–186 (2004).
[Crossref]

Werner, P.

F. Heinrichsdorff, M.-H. Mao, N. Kirstaedter, A. Krost, D. Bimberg, A. O. Kosogov, and P. Werner, “Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 71(1), 22–24 (1997).
[Crossref]

Wu, H.-M.

W.-S. Liu, H.-M. Wu, F.-H. Tsao, T.-L. Hsu, and J.-I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Sol. Energy Mater. Sol. Cells 105, 237–241 (2012).
[Crossref]

W.-S. Liu, H.-M. Wu, Y.-A. Liao, J.-I. Chyi, W.-Y. Chen, and T.-M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[Crossref]

Wu, J.

G. X. Shi, P. Jin, B. Xu, C. M. Li, C. X. Cui, Y. L. Wang, X. L. Ye, J. Wu, and Z. G. Wang, “Thermal annealing effect on InAs/InGaAs quantum dots grown by atomic layer molecular beam epitaxy,” J. Cryst. Growth 269(2-4), 181–186 (2004).
[Crossref]

Xie, Q.

Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, “Vertically Self-Organized InAs Quantum Box Islands on GaAs(100),” Phys. Rev. Lett. 75(13), 2542–2545 (1995).
[Crossref] [PubMed]

Xie, X. G.

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335 (1998).
[Crossref]

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335–3337 (1998).
[Crossref]

Xu, B.

G. X. Shi, P. Jin, B. Xu, C. M. Li, C. X. Cui, Y. L. Wang, X. L. Ye, J. Wu, and Z. G. Wang, “Thermal annealing effect on InAs/InGaAs quantum dots grown by atomic layer molecular beam epitaxy,” J. Cryst. Growth 269(2-4), 181–186 (2004).
[Crossref]

Xu, J. Z.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B Condens. Matter 54(16), 11528–11531 (1996).
[Crossref] [PubMed]

Xu, S. J.

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335–3337 (1998).
[Crossref]

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335 (1998).
[Crossref]

Xu, Z. Y.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B Condens. Matter 54(16), 11528–11531 (1996).
[Crossref] [PubMed]

Yamamoto, T.

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[Crossref]

Yang, X. P.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B Condens. Matter 54(16), 11528–11531 (1996).
[Crossref] [PubMed]

Ye, X. L.

G. X. Shi, P. Jin, B. Xu, C. M. Li, C. X. Cui, Y. L. Wang, X. L. Ye, J. Wu, and Z. G. Wang, “Thermal annealing effect on InAs/InGaAs quantum dots grown by atomic layer molecular beam epitaxy,” J. Cryst. Growth 269(2-4), 181–186 (2004).
[Crossref]

Yeh, N. T.

T. M. Hsu, Y. S. Lan, W.-H. Chang, N. T. Yeh, and J.-I. Chyi, “Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 76(6), 691–693 (2000).
[Crossref]

Yoon, S. F.

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. J. Chua, “Origins of high radiative efficiency and wideband emission from InAs quantum dots,” Appl. Phys. Lett. 91(19), 191901 (2007).
[Crossref]

Yuan, Z. L.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B Condens. Matter 54(16), 11528–11531 (1996).
[Crossref] [PubMed]

Zaâboub, Z.

Z. Zaâboub, B. Ilahi, L. Sfaxi, and H. Maaref, “Thermal-induced intermixing effects on the optical properties of long wavelength low density InAs/GaAs quantum dots,” Mat. Sci. Eng. C-Mater. 28, 1002–1005 (2008).

Zheng, B. Z.

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B Condens. Matter 54(16), 11528–11531 (1996).
[Crossref] [PubMed]

Zhukov, A. E.

O. G. Schmidt, N. Kirstaedter, N. N. Ledentsov, M. H. Mao, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, “Prevention of gain saturation by multi-layer quantum dot lasers,” Electron. Lett. 32(14), 1302–1304 (1996).
[Crossref]

Appl. Phys. Express (1)

W.-S. Liu, Y.-T. Wang, W.-Y. Qiu, and C. Fang, “Carrier Dynamics of a Type-II Vertically Aligned InAs Quantum Dot Structure with a GaAsSb Strain-Reducing Layer,” Appl. Phys. Express 6(8), 085001 (2013).
[Crossref]

Appl. Phys. Lett. (20)

C. Y. Ngo, S. F. Yoon, W. J. Fan, and S. J. Chua, “Origins of high radiative efficiency and wideband emission from InAs quantum dots,” Appl. Phys. Lett. 91(19), 191901 (2007).
[Crossref]

W.-S. Liu, D. M. T. Kuo, J.-I. Chyi, W.-Y. Chen, H.-S. Chang, and T.-M. Hsu, “Enhanced thermal stability and emission intensity of InAs quantum dots covered by an InGaAsSb strain-reducing layer,” Appl. Phys. Lett. 89(24), 243103 (2006).
[Crossref]

Y.-A. Liao, W.-T. Hsu, P.-C. Chiu, J.-I. Chyi, and W.-H. Chang, “Effects of thermal annealing on the emission properties of type-II InAs/GaAsSb quantum dots,” Appl. Phys. Lett. 94(5), 053101 (2009).
[Crossref]

J. M. Ulloa, J. M. Llorens, B. Alén, D. F. Reyes, D. L. Sales, D. González, and A. Hierro, “High efficient luminescence in type-II GaAsSb-capped InAs quantum dots upon annealing,” Appl. Phys. Lett. 101(25), 253112 (2012).
[Crossref]

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335–3337 (1998).
[Crossref]

J. M. Ulloa, I. W. D. Drouzas, P. M. Koenraad, D. J. Mowbray, M. J. Steer, H. Y. Liu, and M. Hopkinson, “Suppression of InAs/GaAs quantum dot decomposition by the incorporation of a GaAsSb capping layer,” Appl. Phys. Lett. 90(21), 213105 (2007).
[Crossref]

J. M. García, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. Feng, A. Lorke, J. Kotthaus, and P. M. Petroff, “Intermixing and shape changes during the formation of InAs self-assembled quantum dots,” Appl. Phys. Lett. 71(14), 2014–2016 (1997).
[Crossref]

T. M. Hsu, Y. S. Lan, W.-H. Chang, N. T. Yeh, and J.-I. Chyi, “Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 76(6), 691–693 (2000).
[Crossref]

S. J. Xu, X. C. Wang, S. J. Chua, C. H. Wang, W. J. Fan, J. Jiang, and X. G. Xie, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett. 72(25), 3335 (1998).
[Crossref]

S. Malik, C. Roberts, R. Murray, and M. Pate, “Tuning self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett. 71(14), 1987–1989 (1997).
[Crossref]

D. Guimard, Y. Arakawa, M. Ishida, S. Tsukamoto, M. Nishioka, Y. Nakata, H. Sudo, T. Yamamoto, and M. Sugawara, “Ground state lasing at 1.34 μm from InAs/GaAs quantum dots grown by antimony-mediated metal organic chemical vapor deposition,” Appl. Phys. Lett. 90(24), 241110 (2007).
[Crossref]

S.-F. Tang, S.-Y. Lin, and S.-C. Lee, “Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 78(17), 2428–2450 (2001).
[Crossref]

R. Oshima, A. Takata, and Y. Okada, “Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells,” Appl. Phys. Lett. 93(8), 083111 (2008).
[Crossref]

F. Heinrichsdorff, Ch. Ribbat, M. Grundmann, and D. Bimberg, “High-power quantum-dot lasers at 1100 nm,” Appl. Phys. Lett. 76(5), 556–558 (2000).
[Crossref]

P. G. Eliseev, H. Li, A. Stintz, G. T. Liu, T. C. Newell, K. J. Malloy, and L. F. Lester, “Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes,” Appl. Phys. Lett. 77(2), 262–264 (2000).
[Crossref]

F. Heinrichsdorff, M.-H. Mao, N. Kirstaedter, A. Krost, D. Bimberg, A. O. Kosogov, and P. Werner, “Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 71(1), 22–24 (1997).
[Crossref]

D. Pan, E. Towe, and S. Kennerly, “A five-period normal-incidence (In, Ga)As/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett. 75(18), 2719–2721 (1999).
[Crossref]

A. Martí, N. López, E. Antolín, E. Cánovas, A. Luque, C. R. Stanley, C. D. Farmer, and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells,” Appl. Phys. Lett. 90(23), 233510 (2007).
[Crossref]

W.-H. Chang, Y.-A. Liao, W.-T. Hsu, M.-C. Lee, P.-C. Chiu, and J.-I. Chyi, “Carrier dynamics of type-II InAs/GaAs quantum dots covered by a thin GaAs1−xSbx layer,” Appl. Phys. Lett. 93(3), 033107 (2008).
[Crossref]

T. Sugaya, T. Amano, M. Mori, and S. Niki, “Miniband formation in InGaAs quantum dot superlattice,” Appl. Phys. Lett. 97(4), 043112 (2010).
[Crossref]

Electron. Lett. (1)

O. G. Schmidt, N. Kirstaedter, N. N. Ledentsov, M. H. Mao, D. Bimberg, V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, “Prevention of gain saturation by multi-layer quantum dot lasers,” Electron. Lett. 32(14), 1302–1304 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell, and A. Tünnermann, “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE J. Quantum Electron. 39(11), 1409–1414 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (2)

L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, “Optical characteristics of 1.24-μm InAs quantum-dot laser diode,” IEEE Photon. Technol. Lett. 11(8), 931–933 (1999).
[Crossref]

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, and Y. Arakawa, “An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots,” IEEE Photon. Technol. Lett. 17(8), 1614–1616 (2005).
[Crossref]

J. Alloy. Comp. (1)

W.-S. Liu, “Enhancing device characteristics of 1.3 μm emitting InAs/GaAs quantum dot lasers through dot-height uniformity study,” J. Alloy. Comp. 571, 153–158 (2013).
[Crossref]

J. Appl. Phys. (1)

J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdré, M. Ilegems, L. Lazzarini, L. Nasi, M. T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications,” J. Appl. Phys. 91(10), 6710–6716 (2002).
[Crossref]

J. Cryst. Growth (3)

G. X. Shi, P. Jin, B. Xu, C. M. Li, C. X. Cui, Y. L. Wang, X. L. Ye, J. Wu, and Z. G. Wang, “Thermal annealing effect on InAs/InGaAs quantum dots grown by atomic layer molecular beam epitaxy,” J. Cryst. Growth 269(2-4), 181–186 (2004).
[Crossref]

W.-S. Liu, H.-M. Wu, Y.-A. Liao, J.-I. Chyi, W.-Y. Chen, and T.-M. Hsu, “High optical property vertically aligned InAs quantum dot structures with GaAsSb overgrown layers,” J. Cryst. Growth 323(1), 164–166 (2011).
[Crossref]

D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, “Effect of antimony on the density of InAs/Sb:GaAs (1 0 0) quantum dots grown by metalorganic chemical-vapor deposition,” J. Cryst. Growth 298, 548–552 (2007).
[Crossref]

Mat. Sci. Eng. C-Mater. (1)

Z. Zaâboub, B. Ilahi, L. Sfaxi, and H. Maaref, “Thermal-induced intermixing effects on the optical properties of long wavelength low density InAs/GaAs quantum dots,” Mat. Sci. Eng. C-Mater. 28, 1002–1005 (2008).

Opt. Express (1)

Phys. Rev. B (4)

R. Leon, S. Fafard, P. G. Piva, S. Ruvimov, and Z. Liliental-Weber, “Tunable intersublevel transitions in self-forming semiconductor quantum dots,” Phys. Rev. B 58(8), R4262–R4265 (1998).
[Crossref]

P. D. Siverns, S. Malik, G. McPherson, D. Childs, C. Roberts, R. Murray, B. A. Joyce, and H. Davock, “Scanning transmission-electron microscopy study of InAs/GaAs quantum dots,” Phys. Rev. B 58(16), R10127 (1998).
[Crossref]

J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. del Moral, A. Guzmán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B 81(16), 165305 (2010).
[Crossref]

C. E. Pryor and M. E. Pistol, “Band-edge diagrams for strained III–V semiconductor quantum wells, wires, and dots,” Phys. Rev. B 72(20), 205311 (2005).
[Crossref]

Phys. Rev. B Condens. Matter (1)

Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B Condens. Matter 54(16), 11528–11531 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris., “Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs,” Phys. Rev. Lett. 76(6), 952–955 (1996).
[Crossref] [PubMed]

A. Luque and A. Martí, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, E. Cánovas, P. G. Linares, and A. Luque, “Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell,” Phys. Rev. Lett. 97(24), 247701 (2006).
[Crossref] [PubMed]

Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, “Vertically Self-Organized InAs Quantum Box Islands on GaAs(100),” Phys. Rev. Lett. 75(13), 2542–2545 (1995).
[Crossref] [PubMed]

Phys. Status. Solidi.A (1)

B. Ilahi, L. Sfaxi, F. Hassen, L. Bouzaîene, H. Maaref, B. Salem, G. Bremond, and O. Marty, “Spacer layer thickness effects on the photoluminescence properties of InAs/GaAs quantum dot superlattices,” Phys. Status. Solidi.A 199(3), 457–463 (2003).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

W.-S. Liu, H.-M. Wu, F.-H. Tsao, T.-L. Hsu, and J.-I. Chyi, “Improving the characteristics of intermediate-band solar cell devices using a vertically aligned InAs/GaAsSb quantum dot structure,” Sol. Energy Mater. Sol. Cells 105, 237–241 (2012).
[Crossref]

T. Sugaya, Y. Kamikawa, S. Furue, T. Amano, M. Mori, and S. Niki, “Multi-stacked quantum dot solar cells fabricated by intermittent deposition of InGaAs,” Sol. Energy Mater. Sol. Cells 95(1), 163–166 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of vertically aligned InAs quantum dot structure with ten stacked dot layers in (a) sample A: InAs/GaAs, and (b) sample B: InAs/GaAs1-xSbx (x = 10%). TEM image of (c) sample A and (d) sample B.
Fig. 2
Fig. 2 Photoluminescence spectra, obtained at low temperature of 10 K, of (a) sample A and (b) sample B following annealing at various temperatures.
Fig. 3
Fig. 3 Photoluminescence spectra, obtained at low temperature of 10 K, of (a) sample A and (b) sample B following annealing at various temperatures. Power-dependent photoluminescence spectra of samples A and B following annealing at 800 °C are shown in (c) and (d), respectively. For convenience of comparison, the emission intensity of the spectral lines in the figures is normalized. The insets of Fig. 3 (c) and (d) show the TEM images of samples A and B with post-growth annealing process at 800°C.
Fig. 4
Fig. 4 Arrhenius plot for temperature-dependent integrated PL intensity from samples (a) A and (b) B at excitation power of 100 mW. Figure 4(c) summarizes the activation energies of samples A and B as functions of annealing temperature, respectively. The insets represent the band alignment of QD heterostructures of the as-grown samples A and B. The GS transition energies and carrier activation energies of both samples in the inset were conducted by the temperature-dependent PL measurement in this work.
Fig. 5
Fig. 5 Time-resolved PL decay traces, measured at low temperature of 10 K, of (a) sample A and (b) sample B following annealing at temperatures from as-grown to 900 °C. The carrier lifetimes of all investigated samples are summarized in (c). The inset in the Fig. 5(c) represents the schematic illustrations of type-I and type II carrier transitions.
Fig. 6
Fig. 6 PL ground-state peak position of (a) reference single-layer InAs/GaAs QDs, (b) sample A, and (c) sample B following annealing at various temperatures as a function of (excitation power)1/3. The degrees of GS energy blueshift (ΔE) are summarized in (d), which indicates the GS energy difference between different excitation powers of 10 and 100 mW. The dash line at 0 meV represents the GS energy without spectral blueshift.
Fig. 7
Fig. 7 Schematic illustration vertically aligned InAs/GaAsSb QD structure, showing aggregation of Sb atoms upon rapid thermal annealing. Top part presents strain field of columnar QD structure.

Metrics