Abstract

A promising design of Ge11.5As24Se64.5 nanowires for supercontinuum generation is proposed through numerical simulations. It can be used for generating a supercontinuum with 1300-nm bandwidth. The dispersion parameters upto eighth-order are obtained by calculating the effective mode index with the finite-element method. We have investigated dispersion curves for a number of nanowire geometries. Through dispersion engineering and by varying dimensions of the nanowires we have identified a promising structure that shows possibility of realizing a wideband supercontinuum. We have found significant variations in its bandwidth with the inclusion of higher-order dispersion coefficients and indicated the possibility of obtaining spurious results if the adequate number of dispersion coefficients is not considered. To confirm the accuracy of dispersion coefficients obtained through numerical computations, we have shown that a data-fitting procedure based on the Taylor series expansion provides good agreement with the actual group velocity dispersion curve obtained by using a full-vectorial finite-element mode-solver.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared supercontinuum generation using dispersion-engineered Ge11.5As24Se64.5 chalcogenide channel waveguide

M. R. Karim, B. M. A. Rahman, and Govind P. Agrawal
Opt. Express 23(5) 6903-6914 (2015)

Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W−1m−1 at 1550nm

Xin Gai, Steve Madden, Duk-Yong Choi, Douglas Bulla, and Barry Luther-Davies
Opt. Express 18(18) 18866-18874 (2010)

Near-zero anomalous dispersion Ge11.5As24Se64.5 glass nanowires for correlated photon pair generation: design and analysis

X. Gai, R. P. Wang, C. Xiong, M. J. Steel, B. J. Eggleton, and B. Luther-Davies
Opt. Express 20(2) 776-786 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  2. G. P. Agrawal, Nonlinear Fiber Optics5th ed. (Academic press, San Diego, California, 2013).
  3. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(3), 6722–6739 (2010).
    [Crossref] [PubMed]
  4. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32(4), 391–393 (2007).
    [Crossref] [PubMed]
  5. I. W. Hsieh, X. G. Chen, J. I. Dadap, N. C. Panoiu, and R. M. Osgood, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express 14(25), 12380–12387 (2006).
    [Crossref] [PubMed]
  6. I. W. Hsieh, X. G. Chen, X. P. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. N. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15(23), 15242–15249 (2007).
    [Crossref] [PubMed]
  7. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
    [Crossref] [PubMed]
  8. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  9. D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [Crossref] [PubMed]
  10. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
    [Crossref] [PubMed]
  11. D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinera chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285, 4660–4669 (2012).
    [Crossref]
  12. I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).
  13. X. Gia, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1m−1 at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
    [Crossref]
  14. X. Gia, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
    [Crossref]
  15. D. D. Hudson, M. Baudisch, D. Werdehausen, B. J. Eggleton, and J. Biegert, “1.9 octave supercontinuum generation in a As2S3 step-index fiber driven by mid-IR OPCPA,” Opt. Lett. 39(19), 5752–5755 (2014).
    [Crossref] [PubMed]
  16. P. Ma, D. Y. Choi, Y. Yu, X. Gia, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
    [Crossref]
  17. C. Choudhari, M. Liao, T. Suzuki, and Y. Ohishi, “Chalcogenide core tellurite cladding composite microstructured fiber for nonlinear applications,” J. Lightwave Technol. 30(13), 2069–2076, (2012).
    [Crossref]
  18. M. R. E. Lamont, C. M. Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15(15), 9458–9463 (2007).
    [Crossref] [PubMed]
  19. F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 49 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
    [Crossref] [PubMed]
  20. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
    [Crossref] [PubMed]
  21. B. M. A. Rahman and J. B. Davies, “Vector-H finite element soluion of GaAs/GaAlAs rib waveguides,” Proc. IEE 132(6), 349–353 (1985).
  22. N. Granzow, M.A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. St. J. Russell, “Mid-infrared supercontinuum generation in As2S3 ”nano-spike” step index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
    [Crossref] [PubMed]
  23. B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2(5), 682–688, (1984).
    [Crossref]
  24. D. V. Skryabin, F. Laun, J. C. Knight, and P. St. J. Russel, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science,  301, 1705–1708 (2003).
    [Crossref] [PubMed]
  25. F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by resonant radiation in photonic crystal fibers,” Physical Review E,  70, 016615 (2004).
    [Crossref]
  26. W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supecontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
    [Crossref] [PubMed]
  27. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
    [Crossref]
  28. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-slica step-index fibers,” Opt. Express 19(21), 21003–21010 (2011).
    [Crossref] [PubMed]

2014 (1)

2013 (3)

2012 (2)

C. Choudhari, M. Liao, T. Suzuki, and Y. Ohishi, “Chalcogenide core tellurite cladding composite microstructured fiber for nonlinear applications,” J. Lightwave Technol. 30(13), 2069–2076, (2012).
[Crossref]

D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinera chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285, 4660–4669 (2012).
[Crossref]

2011 (3)

2010 (3)

2009 (1)

2008 (2)

2007 (4)

2006 (2)

2004 (1)

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by resonant radiation in photonic crystal fibers,” Physical Review E,  70, 016615 (2004).
[Crossref]

2003 (1)

D. V. Skryabin, F. Laun, J. C. Knight, and P. St. J. Russel, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science,  301, 1705–1708 (2003).
[Crossref] [PubMed]

2002 (1)

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

1985 (1)

B. M. A. Rahman and J. B. Davies, “Vector-H finite element soluion of GaAs/GaAlAs rib waveguides,” Proc. IEE 132(6), 349–353 (1985).

1984 (1)

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2(5), 682–688, (1984).
[Crossref]

Aggarwal, I. D.

Agrawal, G. P.

Amraoui, M. E.

Baudisch, M.

Biancalana, F.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by resonant radiation in photonic crystal fibers,” Physical Review E,  70, 016615 (2004).
[Crossref]

Biegert, J.

Bulla, D.

Bulla, D. A.

Chang, W.

Chen, X. G.

Cheng, T.

Choi, D. Y.

P. Ma, D. Y. Choi, Y. Yu, X. Gia, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref]

X. Gia, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1m−1 at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[Crossref]

X. Gia, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
[Crossref]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 49 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[Crossref] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[Crossref] [PubMed]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

Chou, C. Y.

Choudhari, C.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Coulombier, Q.

Dadap, J. I.

Davies, J. B.

B. M. A. Rahman and J. B. Davies, “Vector-H finite element soluion of GaAs/GaAlAs rib waveguides,” Proc. IEE 132(6), 349–353 (1985).

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2(5), 682–688, (1984).
[Crossref]

Debbarma, S.

Dekker, S. A.

D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinera chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285, 4660–4669 (2012).
[Crossref]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
[Crossref] [PubMed]

Deng, D.

Duan, Z.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
[Crossref]

Eggleton, B. J.

D. D. Hudson, M. Baudisch, D. Werdehausen, B. J. Eggleton, and J. Biegert, “1.9 octave supercontinuum generation in a As2S3 step-index fiber driven by mid-IR OPCPA,” Opt. Lett. 39(19), 5752–5755 (2014).
[Crossref] [PubMed]

D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinera chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285, 4660–4669 (2012).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
[Crossref] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 49 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[Crossref] [PubMed]

D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[Crossref] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[Crossref] [PubMed]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

M. R. E. Lamont, C. M. Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15(15), 9458–9463 (2007).
[Crossref] [PubMed]

Fermann, M. E.

Fu, L.

Gao, W.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Gia, X.

Granzow, N.

Green, W. M.

Han, T.

Hartl, I.

Hsieh, I. W.

Hu, J.

Hudson, D. D.

Jackson, S. D.

Judge, A. C.

D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinera chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285, 4660–4669 (2012).
[Crossref]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
[Crossref] [PubMed]

Kawashima, H.

Knight, J. C.

D. V. Skryabin, F. Laun, J. C. Knight, and P. St. J. Russel, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science,  301, 1705–1708 (2003).
[Crossref] [PubMed]

Lamont, M. R. E.

Laun, F.

D. V. Skryabin, F. Laun, J. C. Knight, and P. St. J. Russel, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science,  301, 1705–1708 (2003).
[Crossref] [PubMed]

Lee, K. F.

Li, E.

Liao, M.

Lin, Q.

Liu, X. P.

Luan, F.

Luther-Davies, B.

P. Ma, D. Y. Choi, Y. Yu, X. Gia, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

X. Gia, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
[Crossref]

X. Gia, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1m−1 at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[Crossref]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 49 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[Crossref] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[Crossref] [PubMed]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

Ma, P.

Madden, S.

Madden, S. J.

Mägi, E. C.

Menyuk, C. R.

Messaddeq, Y.

Ohishi, Y.

Osgood, R. M.

Panoiu, N. C.

Pelusi, M. D.

Prasad, A.

Rahman, B. M. A.

B. M. A. Rahman and J. B. Davies, “Vector-H finite element soluion of GaAs/GaAlAs rib waveguides,” Proc. IEE 132(6), 349–353 (1985).

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2(5), 682–688, (1984).
[Crossref]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Rode, A. V.

Roelens, M. A. F.

Russel, P. St. J.

D. V. Skryabin, F. Laun, J. C. Knight, and P. St. J. Russel, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science,  301, 1705–1708 (2003).
[Crossref] [PubMed]

Russell, P. St. J.

Sanghera, J. S.

Schmidt, M. A.

Schmidt, M.A.

Shaw, L. B.

Skryabin, D. V.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by resonant radiation in photonic crystal fibers,” Physical Review E,  70, 016615 (2004).
[Crossref]

D. V. Skryabin, F. Laun, J. C. Knight, and P. St. J. Russel, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science,  301, 1705–1708 (2003).
[Crossref] [PubMed]

Stark, S. P.

Sterke, C. M.

Suzuki, T.

Ta’eed, V. G.

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
[Crossref]

Toupin, P.

Troles, J.

Tverjanovich, A. S.

Vlasov, Y. A.

Wang, L.

Wang, R.

Werdehausen, D.

Wondraczek, L.

Xia, F. N.

Yang, Z.

Yeom, D.

Yin, L.

Yu, Y.

Yulin, A. V.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by resonant radiation in photonic crystal fibers,” Physical Review E,  70, 016615 (2004).
[Crossref]

J. Lightwave Technol. (2)

J. Optoelectron. Adv. Mater. (1)

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

Nat. Photonics (1)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Opt. Commun. (1)

D. D. Hudson, E. C. Mägi, A. C. Judge, S. A. Dekker, and B. J. Eggleton, “Highly nonlinera chalcogenide glass micro/nanofiber devices: Design, theory, and octave-spanning spectral generation,” Opt. Commun. 285, 4660–4669 (2012).
[Crossref]

Opt. Express (13)

P. Ma, D. Y. Choi, Y. Yu, X. Gia, Z. Yang, S. Debbarma, S. Madden, and B. Luther-Davies, “Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared,” Opt. Express 21(24), 29927–29937 (2013).
[Crossref]

N. Granzow, M.A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. St. J. Russell, “Mid-infrared supercontinuum generation in As2S3 ”nano-spike” step index waveguide,” Opt. Express 21(9), 10969–10977 (2013).
[Crossref] [PubMed]

W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supecontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
[Crossref] [PubMed]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-slica step-index fibers,” Opt. Express 19(21), 21003–21010 (2011).
[Crossref] [PubMed]

I. W. Hsieh, X. G. Chen, J. I. Dadap, N. C. Panoiu, and R. M. Osgood, “Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides,” Opt. Express 14(25), 12380–12387 (2006).
[Crossref] [PubMed]

I. W. Hsieh, X. G. Chen, X. P. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. N. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15(23), 15242–15249 (2007).
[Crossref] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[Crossref] [PubMed]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(3), 6722–6739 (2010).
[Crossref] [PubMed]

X. Gia, S. Madden, D. Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1m−1 at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[Crossref]

X. Gia, T. Han, A. Prasad, S. Madden, D. Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
[Crossref]

M. R. E. Lamont, C. M. Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion,” Opt. Express 15(15), 9458–9463 (2007).
[Crossref] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 49 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[Crossref] [PubMed]

S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[Crossref] [PubMed]

Opt. Lett. (4)

Physical Review E (1)

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by resonant radiation in photonic crystal fibers,” Physical Review E,  70, 016615 (2004).
[Crossref]

Proc. IEE (1)

B. M. A. Rahman and J. B. Davies, “Vector-H finite element soluion of GaAs/GaAlAs rib waveguides,” Proc. IEE 132(6), 349–353 (1985).

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Science (1)

D. V. Skryabin, F. Laun, J. C. Knight, and P. St. J. Russel, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science,  301, 1705–1708 (2003).
[Crossref] [PubMed]

Other (2)

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics5th ed. (Academic press, San Diego, California, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Variation of neff of the fundamental quasi-TE mode with the mesh size and improvement realized with the Aitken extrapolation technique. Geometry of nanowire is shown as an inset.
Fig. 2
Fig. 2 GVD for the fundamental quasi-TE mode as a function of wavelength for the naowire structure with W = 700 nm and H = 500 nm. The black-solid, red-dashed, and blue-dotted correspond to a mesh size of 200×200, 300×300, and 600×600, respectively.
Fig. 3
Fig. 3 GVD curves for the fundamental quasi-TE mode calculated from the neff values for (a) different W and same H and (b) different H and same W. Vertical dotted line represents the wavelength λ = 1550 nm.
Fig. 4
Fig. 4 Changes in SC spectra with the successive addition of higher-order dispersion terms for the nanowire of dimensions W = 700 nm and H = 500 nm.
Fig. 5
Fig. 5 Temporal intensity (top), spectral density (middle) and spectrogram (bottom) including terms upto β3 (left column), upto β4 (middle column), and upto β8 (right column).
Fig. 6
Fig. 6 Same as Fig. 4 except for a different nanowire with W = 775 nm and H = 500 nm.
Fig. 7
Fig. 7 Same as Fig. 5 except for a different nanowire with W = 775 nm and H = 500 nm.
Fig. 8
Fig. 8 Dispersion curve obtained with FE method (black) fitted the Taylor expansion upto β8 for the nanowire W = 775 nm and H = 500 nm.
Fig. 9
Fig. 9 Numerically simulated SC spectra for nanowires with the dispersion curves shown in Fig. 3 by including dispersion terms upto β8.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ ) = 1 + 5.78525 λ 2 λ 2 0.28795 2 + 0.39705 λ 2 λ 2 30.39338 2 ,
ω 2 = [ ( × H ) * . ε ^ 1 ( × H ) + p ( . H ) * ( . H ) ] d x d y H * . μ ^ H d x d y ,
z A ( z , T ) = α 2 A + m 2 i m + 1 m ! β m m A T m + i ( γ + i α 2 2 A eff ) ( 1 + i ω 0 T ) × ( A ( z , T ) R ( T ) | A ( z , T T ) | 2 d T ) ,
R ( t ) = ( 1 f R ) δ ( t ) + f R h R ( t ) ,
h R ( t ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( t τ 2 ) sin ( t τ 1 ) ,
n eff = n eff ( r + 1 ) [ n eff ( r + 1 ) n eff ( r ) ] 2 n eff ( r + 1 ) 2 n eff ( r ) + n eff ( r 1 ) ,

Metrics