Abstract

We propose and implement a novel approach based on multi-wavelength Transmission-Reflection Analysis (MW-TRA) technique for monitoring lossy events (e.g. disconnected connectors, fiber breaks and fiber bendings) along an optical fiber link. By launching un-modulated continuous-wave lights carried by different wavelengths into the fiber and measuring their transmitted and reflected/backscattered optical powers, our proposed MW-TRA scheme is able to localize any lossy event (including both reflective and non-reflective) and to quantify the corresponding insertion and return losses with high accuracy.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Localization and quantification of reflective events along an optical fiber using a bi-directional TRA technique

Min Cen, Véronique Moeyaert, Patrice Mégret, and Marc Wuilpart
Opt. Express 22(8) 9839-9853 (2014)

Identification method of non-reflective faults based on index distribution of optical fibers

Wonkyoung Lee, Seung Il Myong, Jyung Chan Lee, and Sangsoo Lee
Opt. Express 22(1) 325-337 (2014)

Enhanced fault characterization by using a conventional OTDR and DSP techniques

Manuel P. Fernández, Laureano A. Bulus Rossini, Juan Pablo Pascual, and Pablo A. Costanzo Caso
Opt. Express 26(21) 27127-27140 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall PTR, 1997), chap. 11.
  2. K. Yüksel, M. Wuilpart, and P. Mégret, “Analysis and suppression of nonlinear frequency modulation in an OFDR,” Opt. Express 17, 5845–5851 (2009).
    [Crossref] [PubMed]
  3. V. V. Spirin, F. J. Mendieta, S. V. Miridonov, M. G. Shlyagin, A. A. Chtcherbakov, and P. L. Swart, “Localization of a loss-inducing perturbation with variable accuracy along a test fiber using transmission-reflection analysis,” IEEE Photonic Tech. L. 16(2), 569–571 (2004).
    [Crossref]
  4. V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, and P. L. Swart, “Transmission/reflection analysis for distributed optical fiber loss sensor interrogation,” Electron. Lett. 38(3), 117–118 (2002).
    [Crossref]
  5. A. Girard, FTTx PON technology and testing (EXFO Electro-Optical Engineering Inc., 2005), chap. 3.
  6. M. Cen, V. Moeyaert, P. Mégret, and M. Wuilpart, “Localization and quantification of reflective events along an optical fiber using a bi-directional TRA technique,” Opt. Express 22(8), 9839–9853 (2014).
    [Crossref] [PubMed]
  7. L. Thevenaz and M. Wuilpart, Advanced Fiber Optics: Concepts and Technology (CRC, 2011), chap. 8.
  8. W. Lee, S. I. Myong, J. C. Lee, and S. Lee, “Identification method of non-reflective faults based on index distribution of optical fibers,” Opt. Express 22(1), 325–337 (2014).
    [Crossref] [PubMed]
  9. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1964), chap. 1.
  10. P. J. Urban, A. Getaneh, J. P. von der Weid, G. P. Temporão, G. Vall-llosera, and J. Chen, “Detection of fiber faults in passive optical networks,” IEEE/OSA J. Opt. Commun. Netw. 5(11), 1111–1121 (2013).
    [Crossref]
  11. G. Lietaert, JDSU White Paper, “Fiber Water Peak Characterization” (JDSU, 2009). http://www.jdsu.com/ProductLiterature/fiber-water-peak-characterization_fwpc_wp_fop_tm_ae.pdf .
  12. D. Kinet, C. Caucheteur, M. Wuilpart, and P. Mégret, “Quasi-distributed measurement of surrounding refractive index using photon-counting time domain reflectometry,” in Proceeding of IEEE Sensors Conference (IEEE, 2011), pp. 355–358.
    [Crossref]

2014 (2)

2013 (1)

P. J. Urban, A. Getaneh, J. P. von der Weid, G. P. Temporão, G. Vall-llosera, and J. Chen, “Detection of fiber faults in passive optical networks,” IEEE/OSA J. Opt. Commun. Netw. 5(11), 1111–1121 (2013).
[Crossref]

2009 (1)

2004 (1)

V. V. Spirin, F. J. Mendieta, S. V. Miridonov, M. G. Shlyagin, A. A. Chtcherbakov, and P. L. Swart, “Localization of a loss-inducing perturbation with variable accuracy along a test fiber using transmission-reflection analysis,” IEEE Photonic Tech. L. 16(2), 569–571 (2004).
[Crossref]

2002 (1)

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, and P. L. Swart, “Transmission/reflection analysis for distributed optical fiber loss sensor interrogation,” Electron. Lett. 38(3), 117–118 (2002).
[Crossref]

Caucheteur, C.

D. Kinet, C. Caucheteur, M. Wuilpart, and P. Mégret, “Quasi-distributed measurement of surrounding refractive index using photon-counting time domain reflectometry,” in Proceeding of IEEE Sensors Conference (IEEE, 2011), pp. 355–358.
[Crossref]

Cen, M.

Chen, J.

P. J. Urban, A. Getaneh, J. P. von der Weid, G. P. Temporão, G. Vall-llosera, and J. Chen, “Detection of fiber faults in passive optical networks,” IEEE/OSA J. Opt. Commun. Netw. 5(11), 1111–1121 (2013).
[Crossref]

Chtcherbakov, A. A.

V. V. Spirin, F. J. Mendieta, S. V. Miridonov, M. G. Shlyagin, A. A. Chtcherbakov, and P. L. Swart, “Localization of a loss-inducing perturbation with variable accuracy along a test fiber using transmission-reflection analysis,” IEEE Photonic Tech. L. 16(2), 569–571 (2004).
[Crossref]

Getaneh, A.

P. J. Urban, A. Getaneh, J. P. von der Weid, G. P. Temporão, G. Vall-llosera, and J. Chen, “Detection of fiber faults in passive optical networks,” IEEE/OSA J. Opt. Commun. Netw. 5(11), 1111–1121 (2013).
[Crossref]

Kinet, D.

D. Kinet, C. Caucheteur, M. Wuilpart, and P. Mégret, “Quasi-distributed measurement of surrounding refractive index using photon-counting time domain reflectometry,” in Proceeding of IEEE Sensors Conference (IEEE, 2011), pp. 355–358.
[Crossref]

Lee, J. C.

Lee, S.

Lee, W.

Mégret, P.

Mendieta, F. J.

V. V. Spirin, F. J. Mendieta, S. V. Miridonov, M. G. Shlyagin, A. A. Chtcherbakov, and P. L. Swart, “Localization of a loss-inducing perturbation with variable accuracy along a test fiber using transmission-reflection analysis,” IEEE Photonic Tech. L. 16(2), 569–571 (2004).
[Crossref]

Miridonov, S. V.

V. V. Spirin, F. J. Mendieta, S. V. Miridonov, M. G. Shlyagin, A. A. Chtcherbakov, and P. L. Swart, “Localization of a loss-inducing perturbation with variable accuracy along a test fiber using transmission-reflection analysis,” IEEE Photonic Tech. L. 16(2), 569–571 (2004).
[Crossref]

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, and P. L. Swart, “Transmission/reflection analysis for distributed optical fiber loss sensor interrogation,” Electron. Lett. 38(3), 117–118 (2002).
[Crossref]

Moeyaert, V.

Myong, S. I.

Shlyagin, M. G.

V. V. Spirin, F. J. Mendieta, S. V. Miridonov, M. G. Shlyagin, A. A. Chtcherbakov, and P. L. Swart, “Localization of a loss-inducing perturbation with variable accuracy along a test fiber using transmission-reflection analysis,” IEEE Photonic Tech. L. 16(2), 569–571 (2004).
[Crossref]

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, and P. L. Swart, “Transmission/reflection analysis for distributed optical fiber loss sensor interrogation,” Electron. Lett. 38(3), 117–118 (2002).
[Crossref]

Spirin, V. V.

V. V. Spirin, F. J. Mendieta, S. V. Miridonov, M. G. Shlyagin, A. A. Chtcherbakov, and P. L. Swart, “Localization of a loss-inducing perturbation with variable accuracy along a test fiber using transmission-reflection analysis,” IEEE Photonic Tech. L. 16(2), 569–571 (2004).
[Crossref]

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, and P. L. Swart, “Transmission/reflection analysis for distributed optical fiber loss sensor interrogation,” Electron. Lett. 38(3), 117–118 (2002).
[Crossref]

Swart, P. L.

V. V. Spirin, F. J. Mendieta, S. V. Miridonov, M. G. Shlyagin, A. A. Chtcherbakov, and P. L. Swart, “Localization of a loss-inducing perturbation with variable accuracy along a test fiber using transmission-reflection analysis,” IEEE Photonic Tech. L. 16(2), 569–571 (2004).
[Crossref]

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, and P. L. Swart, “Transmission/reflection analysis for distributed optical fiber loss sensor interrogation,” Electron. Lett. 38(3), 117–118 (2002).
[Crossref]

Temporão, G. P.

P. J. Urban, A. Getaneh, J. P. von der Weid, G. P. Temporão, G. Vall-llosera, and J. Chen, “Detection of fiber faults in passive optical networks,” IEEE/OSA J. Opt. Commun. Netw. 5(11), 1111–1121 (2013).
[Crossref]

Urban, P. J.

P. J. Urban, A. Getaneh, J. P. von der Weid, G. P. Temporão, G. Vall-llosera, and J. Chen, “Detection of fiber faults in passive optical networks,” IEEE/OSA J. Opt. Commun. Netw. 5(11), 1111–1121 (2013).
[Crossref]

Vall-llosera, G.

P. J. Urban, A. Getaneh, J. P. von der Weid, G. P. Temporão, G. Vall-llosera, and J. Chen, “Detection of fiber faults in passive optical networks,” IEEE/OSA J. Opt. Commun. Netw. 5(11), 1111–1121 (2013).
[Crossref]

von der Weid, J. P.

P. J. Urban, A. Getaneh, J. P. von der Weid, G. P. Temporão, G. Vall-llosera, and J. Chen, “Detection of fiber faults in passive optical networks,” IEEE/OSA J. Opt. Commun. Netw. 5(11), 1111–1121 (2013).
[Crossref]

Wuilpart, M.

Yüksel, K.

Electron. Lett. (1)

V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, and P. L. Swart, “Transmission/reflection analysis for distributed optical fiber loss sensor interrogation,” Electron. Lett. 38(3), 117–118 (2002).
[Crossref]

IEEE Photonic Tech. L. (1)

V. V. Spirin, F. J. Mendieta, S. V. Miridonov, M. G. Shlyagin, A. A. Chtcherbakov, and P. L. Swart, “Localization of a loss-inducing perturbation with variable accuracy along a test fiber using transmission-reflection analysis,” IEEE Photonic Tech. L. 16(2), 569–571 (2004).
[Crossref]

IEEE/OSA J. Opt. Commun. Netw. (1)

P. J. Urban, A. Getaneh, J. P. von der Weid, G. P. Temporão, G. Vall-llosera, and J. Chen, “Detection of fiber faults in passive optical networks,” IEEE/OSA J. Opt. Commun. Netw. 5(11), 1111–1121 (2013).
[Crossref]

Opt. Express (3)

Other (6)

G. Lietaert, JDSU White Paper, “Fiber Water Peak Characterization” (JDSU, 2009). http://www.jdsu.com/ProductLiterature/fiber-water-peak-characterization_fwpc_wp_fop_tm_ae.pdf .

D. Kinet, C. Caucheteur, M. Wuilpart, and P. Mégret, “Quasi-distributed measurement of surrounding refractive index using photon-counting time domain reflectometry,” in Proceeding of IEEE Sensors Conference (IEEE, 2011), pp. 355–358.
[Crossref]

A. Girard, FTTx PON technology and testing (EXFO Electro-Optical Engineering Inc., 2005), chap. 3.

D. Derickson, Fiber Optic Test and Measurement (Prentice Hall PTR, 1997), chap. 11.

L. Thevenaz and M. Wuilpart, Advanced Fiber Optics: Concepts and Technology (CRC, 2011), chap. 8.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1964), chap. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Definition of transmitted (PT) and backscattered (PB) powers [6].
Fig. 2
Fig. 2 Schematic diagram of 2λ -TRA technique.
Fig. 3
Fig. 3 RL and zp obtained by the proposed 2λ-TRA technique compared to the benchmark scenarios (where values of RL are theoretical [9] and results of zp are measured by the OTDR) when a disconnected FC/PC connector is introduced as an event. Note that the theoretical results of RL @1310nm and 1550nm are almost the same and hence in the figure they are overlapped (the pink dots are hardly seen).
Fig. 4
Fig. 4 RL and zp results obtained by the proposed 2λ-TRA technique compared with OTDR measurements when a disconnected FC/APC connector is introduced as an event.
Fig. 5
Fig. 5 RL and zp results measured by OTDR measurements when a fiber break is introduced as an event. A good accuracy and a good repeatability of both RL and zp measurement have been observed.
Fig. 6
Fig. 6 Calculated localization STDs and expected localization errors as a function of RL when an event is introduced at 1.7 km. (a) 1310 nm + 1550 nm. (b) 1310 nm + 1383 nm.
Fig. 7
Fig. 7 Calculated normalized power reflection coefficients (R1 and R2) for different RL values when an event is introduced at various locations along the fiber (zp is varied from 0 to 5km in each curve). (a) 1310 nm and 1550 nm light sources are used. (b) 1310 nm and 1383 nm light sources are used.
Fig. 8
Fig. 8 Calculated localization STDs and expected localization errors as a function of IL with an event located at 1.7km for three different RL values (28 dB, 45 dB and 90 dB). (a) Expected localization errors (negative values mean that the estimated zp values of the proposed 2λ-TRA technique is smaller than the real values). (b) Localization STDs.
Fig. 9
Fig. 9 Calculated localization STDs and expected localization errors as a function of IL under two wavelengths combinations (1310nm + 1550nm and 1310 nm + 1383 nm) when an event occurs at 1.7 km and its RL is 30 dB.
Fig. 10
Fig. 10 Calculated localization STDs as a function of L with an event located at L/4 for three different wavelength combinations used in the proposed 2λ-TRA technique: (a) for fiber break and (b) for fiber bending
Fig. 11
Fig. 11 Calculated normalized power reflection coefficients (R1 and R2) for different fiber lengths (L) when an event is located at L/4: (a) for fiber break (there is Fresnel reflection in the fiber break, therefore R1 and R2 may be larger than 1) and (b) for fiber bending.
Fig. 12
Fig. 12 Distribution RL values of the 103 fiber breaks measured by OTDR at wavelengths of 1310nm and 1550nm.
Fig. 13
Fig. 13 RL and zp measured by 2λ-TRA technique compared with OTDR results when different types of fiber breaks are introduced as an event.

Tables (3)

Tables Icon

Table 1 Comparison of the localization results measured by ν-OTDR and 2λ-TRA when macro bending is introduced as an event

Tables Icon

Table 2 2λ-TRA measurement accuracies

Tables Icon

Table 3 Different applications as well as the optimized wavelengths for the 2λ-TRA technique

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P T0i = P 0i 10 ( I L cir(12i) 10 ) T i (L) 10 ( I L iso(i) 10 ) .
P B0i = P 0i 10 ( DI R i 10 ) + P 0i 10 ( I L cir(12i) 10 ) [RA Y i (L)+ T i 2 (L) 10 ( R L iso(i) 10 ) ] 10 ( I L cir(23i) 10 ) .
RA Y i (x)= S i α Si 2 α i (1 e 2 α i x ).
P Ti = P T0i 10 ( I L i 10 ) .
P Bi = P 0i 10 ( DI R i 10 ) + P 0i 10 ( I L cir(12i) 10 ) {RA Y i ( z p )+ T i 2 ( z p ) 10 ( RL 10 ) + [RA Y i (L)RA Y i ( z p )] 10 ( I L i 5 ) + T i 2 (L) 10 ( I L i 5 ) 10 ( R L iso(i) 10 ) } 10 ( I L cir(23i) 10 ) .
R i = P Bi P B0i = 10 ( DI R i 10 ) + 10 ( I L cir(12i) +I L cir(23i) 10 ) [RA Y i ( z p )+ T i 2 ( z p ) 10 ( RL 10 ) ] 10 ( DI R i 10 ) + 10 ( I L cir(12i) +I L cir(23i) 10 ) [RA Y i (L)+ T i 2 (L) 10 ( R L iso(i) 10 ) ] + 10 ( I L cir(12i) +I L cir(23i) 10 ) {[RA Y i (L)RA Y i ( z p )] 10 ( I L i 5 ) + T i 2 (L) 10 ( I L i 5 ) 10 ( R L iso(i) 10 ) } 10 ( DI R i 10 ) + 10 ( I L cir(12i) +I L cir(23i) 10 ) [RA Y i (L)+ T i 2 (L) 10 ( R L iso(i) 10 ) ] .

Metrics