Abstract

Graphene-based electrical chemical vapor sensors can achieve extremely high sensitivity, whereas the comparatively slow sensing response and recovery, the research focused on only low concentration detection, have been known as drawbacks for many applications requiring rapid and high concentration detection. Here we report a novel graphene-based fiber-optic relative humidity (RH) sensor relying on fundamentally different sensing mechanism. The sensor can achieve power variation of up to 6.9 dB in high relative humidity range (70-95%), and display linear response with correlation coefficient of 98.2%, sensitivity of 0.31 dB/%RH, response speed of faster than 0.13%RH/s, and good repeatability in 75-95%RH. Theoretical analysis of sensing mechanism can explain the experimental result, and reveal the broad applying prospect of the sensor for other kinds of chemical vapor detection. This novel graphene-based optical sensor provides a beneficial complement to the existing electrical ones, and will promote the employment of graphene in chemical sensing techniques.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reduced graphene oxide for fiber-optic toluene gas sensing

Yi Xiao, Jianhui Yu, Long Shun, Shaozao Tan, Xiang Cai, Yunhan Luo, Jun Zhang, Huazhuo Dong, Huihui Lu, Heyuan Guan, Yongchun Zhong, Jieyuan Tang, and Zhe Chen
Opt. Express 24(25) 28290-28302 (2016)

Tungsten disulfide (WS2) based all-fiber-optic humidity sensor

Yunhan Luo, Chaoying Chen, Kai Xia, Shuihua Peng, Heyuan Guan, Jieyuan Tang, Huiui Lu, Jianhui Yu, Jun Zhang, Yi Xiao, and Zhe Chen
Opt. Express 24(8) 8956-8966 (2016)

Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing

Tenghui Ouyang, Limin Lin, Kai Xia, Mengjiang Jiang, Yuwei Lang, Heyuan Guan, Jianhui Yu, Dongquan Li, Guanglei Chen, Wenguo Zhu, Yongchun Zhong, Jieyuan Tang, Jiangli Dong, Huihui Lu, Yunhan Luo, Jun Zhang, and Zhe Chen
Opt. Express 25(9) 9823-9833 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
    [Crossref] [PubMed]
  3. Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
    [Crossref] [PubMed]
  4. K. S. Novoselov, E. Mccann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nat. Phys. 2(3), 177–180 (2006).
    [Crossref]
  5. Z. Jiang, Y. Zhang, H. L. Stormer, and P. Kim, “Quantum Hall states near the charge-neutral Dirac point in graphene,” Phys. Rev. Lett. 99(10), 106802 (2007).
    [Crossref] [PubMed]
  6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
    [Crossref] [PubMed]
  7. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
    [Crossref] [PubMed]
  8. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
    [Crossref]
  9. S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
    [Crossref] [PubMed]
  10. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
    [Crossref]
  11. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
    [Crossref] [PubMed]
  12. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  13. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
    [Crossref] [PubMed]
  14. L. A. Mashat, K. Shin, K. K. Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. L. Gou, S. J. Ippolito, and W. Wlodarski, “Graphene/Polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114(39), 16168–16173 (2010).
    [Crossref]
  15. J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Q. Wei, and P. E. Sheehan, “Reduced graphene oxide molecular sensors,” Nano Lett. 8(10), 3137–3140 (2008).
    [Crossref] [PubMed]
  16. G. H. Lu, L. E. Ocola, and J. H. Chen, “Reduced graphene oxide for room-temperature gas sensors,” Nanotechnology 20(44), 445502 (2009).
    [Crossref] [PubMed]
  17. G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
    [Crossref]
  18. J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
    [Crossref] [PubMed]
  19. H. Y. Jeong, D. S. Lee, H. K. Choi, D. H. Lee, J. E. Kim, J. Y. Lee, W. J. Lee, S. O. Kim, and S. Y. Choi, “Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films,” Appl. Phys. Lett. 96(21), 213105 (2010).
    [Crossref]
  20. G. S. Kulkarni, K. Reddy, Z. H. Zhong, and X. D. Fan, “Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection,” Nat Commun 5(4376), 4376 (2014).
    [PubMed]
  21. M. C. Chen, C. L. Hsu, and T. J. Hsueh, “Fabrication of humidity sensor based on bilayer graphene,” IEEE Electron Device Lett. 35(5), 590–592 (2014).
    [Crossref]
  22. P. G. Su and C. F. Chiou, “Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate,” Sens. Actuators B Chem. 200, 9–18 (2014).
    [Crossref]
  23. D. Z. Zhang, J. Tong, and B. K. Xia, “Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly,” Sens. Actuators B Chem. 197, 66–72 (2014).
    [Crossref]
  24. M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  25. S. J. Koester and M. Li, “High-speed waveguide-coupled graphene-on-graphene optical modulators,” Appl. Phys. Lett. 100(17), 171107 (2012).
    [Crossref]
  26. W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
    [Crossref] [PubMed]
  27. Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [Crossref]
  28. J. T. Kim and C. G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express 20(4), 3556–3562 (2012).
    [Crossref] [PubMed]
  29. J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
    [Crossref]
  30. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
    [Crossref]
  31. X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
    [Crossref]
  32. P. F. Jiang, Z. Chen, Y. X. Zeng, L. H. Liu, and F. L. Li, “Optical propagation characteristics of side-polished fibers,” Semiconductor Optoelectronics 27(5), 578–581 (2006).
  33. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
    [Crossref] [PubMed]
  34. C. Bariain, I. R. Matias, F. I. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69(1-2), 127–131 (2000).
    [Crossref]
  35. B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sens. Actuators B Chem. 80(2), 132–135 (2001).
    [Crossref]
  36. S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B Chem. 104(2), 217–222 (2005).
    [Crossref]
  37. L. Xia, L. C. Li, W. Li, T. Kou, and D. M. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
    [Crossref]
  38. A. Gastón, F. Pérez, and J. Sevilla, “Optical fiber relative-humidity sensor with polyvinyl alcohol film,” Appl. Opt. 43(21), 4127–4132 (2004).
    [Crossref] [PubMed]
  39. J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photon. Technol. Lett. 18(8), 935–937 (2006).
    [Crossref]
  40. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]

2014 (6)

G. S. Kulkarni, K. Reddy, Z. H. Zhong, and X. D. Fan, “Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection,” Nat Commun 5(4376), 4376 (2014).
[PubMed]

M. C. Chen, C. L. Hsu, and T. J. Hsueh, “Fabrication of humidity sensor based on bilayer graphene,” IEEE Electron Device Lett. 35(5), 590–592 (2014).
[Crossref]

P. G. Su and C. F. Chiou, “Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate,” Sens. Actuators B Chem. 200, 9–18 (2014).
[Crossref]

D. Z. Zhang, J. Tong, and B. K. Xia, “Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly,” Sens. Actuators B Chem. 197, 66–72 (2014).
[Crossref]

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

2013 (1)

L. Xia, L. C. Li, W. Li, T. Kou, and D. M. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

2012 (2)

S. J. Koester and M. Li, “High-speed waveguide-coupled graphene-on-graphene optical modulators,” Appl. Phys. Lett. 100(17), 171107 (2012).
[Crossref]

J. T. Kim and C. G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express 20(4), 3556–3562 (2012).
[Crossref] [PubMed]

2011 (5)

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

2010 (2)

L. A. Mashat, K. Shin, K. K. Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. L. Gou, S. J. Ippolito, and W. Wlodarski, “Graphene/Polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114(39), 16168–16173 (2010).
[Crossref]

H. Y. Jeong, D. S. Lee, H. K. Choi, D. H. Lee, J. E. Kim, J. Y. Lee, W. J. Lee, S. O. Kim, and S. Y. Choi, “Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films,” Appl. Phys. Lett. 96(21), 213105 (2010).
[Crossref]

2009 (4)

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

G. H. Lu, L. E. Ocola, and J. H. Chen, “Reduced graphene oxide for room-temperature gas sensors,” Nanotechnology 20(44), 445502 (2009).
[Crossref] [PubMed]

G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
[Crossref]

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
[Crossref] [PubMed]

2008 (4)

J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Q. Wei, and P. E. Sheehan, “Reduced graphene oxide molecular sensors,” Nano Lett. 8(10), 3137–3140 (2008).
[Crossref] [PubMed]

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (4)

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

Z. Jiang, Y. Zhang, H. L. Stormer, and P. Kim, “Quantum Hall states near the charge-neutral Dirac point in graphene,” Phys. Rev. Lett. 99(10), 106802 (2007).
[Crossref] [PubMed]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

2006 (4)

K. S. Novoselov, E. Mccann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nat. Phys. 2(3), 177–180 (2006).
[Crossref]

P. F. Jiang, Z. Chen, Y. X. Zeng, L. H. Liu, and F. L. Li, “Optical propagation characteristics of side-polished fibers,” Semiconductor Optoelectronics 27(5), 578–581 (2006).

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photon. Technol. Lett. 18(8), 935–937 (2006).
[Crossref]

2005 (3)

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B Chem. 104(2), 217–222 (2005).
[Crossref]

Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

2004 (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

A. Gastón, F. Pérez, and J. Sevilla, “Optical fiber relative-humidity sensor with polyvinyl alcohol film,” Appl. Opt. 43(21), 4127–4132 (2004).
[Crossref] [PubMed]

2001 (1)

B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sens. Actuators B Chem. 80(2), 132–135 (2001).
[Crossref]

2000 (1)

C. Bariain, I. R. Matias, F. I. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69(1-2), 127–131 (2000).
[Crossref]

1958 (1)

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Allen, M. J.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
[Crossref] [PubMed]

Arregui, F. I.

C. Bariain, I. R. Matias, F. I. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69(1-2), 127–131 (2000).
[Crossref]

Arregui, F. J.

J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photon. Technol. Lett. 18(8), 935–937 (2006).
[Crossref]

Bao, J. M.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Bao, Q. L.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Bariain, C.

C. Bariain, I. R. Matias, F. I. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69(1-2), 127–131 (2000).
[Crossref]

Blake, P.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Boebinger, G. S.

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Bolotin, K. I.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Bravo, J.

J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photon. Technol. Lett. 18(8), 935–937 (2006).
[Crossref]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Cai, X.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Cao, D.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Chen, B. G.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Chen, J. H.

G. H. Lu, L. E. Ocola, and J. H. Chen, “Reduced graphene oxide for room-temperature gas sensors,” Nanotechnology 20(44), 445502 (2009).
[Crossref] [PubMed]

G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
[Crossref]

Chen, M. C.

M. C. Chen, C. L. Hsu, and T. J. Hsueh, “Fabrication of humidity sensor based on bilayer graphene,” IEEE Electron Device Lett. 35(5), 590–592 (2014).
[Crossref]

Chen, Z.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

P. F. Jiang, Z. Chen, Y. X. Zeng, L. H. Liu, and F. L. Li, “Optical propagation characteristics of side-polished fibers,” Semiconductor Optoelectronics 27(5), 578–581 (2006).

Chiou, C. F.

P. G. Su and C. F. Chiou, “Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate,” Sens. Actuators B Chem. 200, 9–18 (2014).
[Crossref]

Choi, C. G.

Choi, H. K.

H. Y. Jeong, D. S. Lee, H. K. Choi, D. H. Lee, J. E. Kim, J. Y. Lee, W. J. Lee, S. O. Kim, and S. Y. Choi, “Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films,” Appl. Phys. Lett. 96(21), 213105 (2010).
[Crossref]

Choi, S. Y.

H. Y. Jeong, D. S. Lee, H. K. Choi, D. H. Lee, J. E. Kim, J. Y. Lee, W. J. Lee, S. O. Kim, and S. Y. Choi, “Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films,” Appl. Phys. Lett. 96(21), 213105 (2010).
[Crossref]

Corres, J. M.

J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photon. Technol. Lett. 18(8), 935–937 (2006).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Elias, D. C.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Falko, V. I.

K. S. Novoselov, E. Mccann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nat. Phys. 2(3), 177–180 (2006).
[Crossref]

Fan, X. D.

G. S. Kulkarni, K. Reddy, Z. H. Zhong, and X. D. Fan, “Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection,” Nat Commun 5(4376), 4376 (2014).
[PubMed]

Fang, W.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Ferrari, A. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fowler, J. D.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
[Crossref] [PubMed]

Fudenberg, G.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

García de Abajo, F. J.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Gastón, A.

Geim, A. K.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

K. S. Novoselov, E. Mccann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nat. Phys. 2(3), 177–180 (2006).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Geng, B. S.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Gou, X. L.

L. A. Mashat, K. Shin, K. K. Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. L. Gou, S. J. Ippolito, and W. Wlodarski, “Graphene/Polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114(39), 16168–16173 (2010).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gupta, B. D.

B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sens. Actuators B Chem. 80(2), 132–135 (2001).
[Crossref]

Han, S. H.

L. A. Mashat, K. Shin, K. K. Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. L. Gou, S. J. Ippolito, and W. Wlodarski, “Graphene/Polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114(39), 16168–16173 (2010).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hill, E. W.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Hone, J.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Hsu, C. L.

M. C. Chen, C. L. Hsu, and T. J. Hsueh, “Fabrication of humidity sensor based on bilayer graphene,” IEEE Electron Device Lett. 35(5), 590–592 (2014).
[Crossref]

Hsueh, T. J.

M. C. Chen, C. L. Hsu, and T. J. Hsueh, “Fabrication of humidity sensor based on bilayer graphene,” IEEE Electron Device Lett. 35(5), 590–592 (2014).
[Crossref]

Hu, Z. F.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Hummers, W. S.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Ippolito, S. J.

L. A. Mashat, K. Shin, K. K. Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. L. Gou, S. J. Ippolito, and W. Wlodarski, “Graphene/Polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114(39), 16168–16173 (2010).
[Crossref]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Jaszczak, J. A.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Jeong, H. Y.

H. Y. Jeong, D. S. Lee, H. K. Choi, D. H. Lee, J. E. Kim, J. Y. Lee, W. J. Lee, S. O. Kim, and S. Y. Choi, “Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films,” Appl. Phys. Lett. 96(21), 213105 (2010).
[Crossref]

Jiang, D.

K. S. Novoselov, E. Mccann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nat. Phys. 2(3), 177–180 (2006).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, P. F.

P. F. Jiang, Z. Chen, Y. X. Zeng, L. H. Liu, and F. L. Li, “Optical propagation characteristics of side-polished fibers,” Semiconductor Optoelectronics 27(5), 578–581 (2006).

Jiang, Z.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Z. Jiang, Y. Zhang, H. L. Stormer, and P. Kim, “Quantum Hall states near the charge-neutral Dirac point in graphene,” Phys. Rev. Lett. 99(10), 106802 (2007).
[Crossref] [PubMed]

Jin, S. S.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Ju, L.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kaner, R. B.

L. A. Mashat, K. Shin, K. K. Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. L. Gou, S. J. Ippolito, and W. Wlodarski, “Graphene/Polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114(39), 16168–16173 (2010).
[Crossref]

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
[Crossref] [PubMed]

Katsnelson, M. I.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

K. S. Novoselov, E. Mccann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nat. Phys. 2(3), 177–180 (2006).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Khijwania, S. K.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B Chem. 104(2), 217–222 (2005).
[Crossref]

Kim, J. E.

H. Y. Jeong, D. S. Lee, H. K. Choi, D. H. Lee, J. E. Kim, J. Y. Lee, W. J. Lee, S. O. Kim, and S. Y. Choi, “Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films,” Appl. Phys. Lett. 96(21), 213105 (2010).
[Crossref]

Kim, J. T.

Kim, P.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Z. Jiang, Y. Zhang, H. L. Stormer, and P. Kim, “Quantum Hall states near the charge-neutral Dirac point in graphene,” Phys. Rev. Lett. 99(10), 106802 (2007).
[Crossref] [PubMed]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

Kim, S. O.

H. Y. Jeong, D. S. Lee, H. K. Choi, D. H. Lee, J. E. Kim, J. Y. Lee, W. J. Lee, S. O. Kim, and S. Y. Choi, “Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films,” Appl. Phys. Lett. 96(21), 213105 (2010).
[Crossref]

Klima, M.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Koester, S. J.

S. J. Koester and M. Li, “High-speed waveguide-coupled graphene-on-graphene optical modulators,” Appl. Phys. Lett. 100(17), 171107 (2012).
[Crossref]

Kojima, R. W.

L. A. Mashat, K. Shin, K. K. Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. L. Gou, S. J. Ippolito, and W. Wlodarski, “Graphene/Polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114(39), 16168–16173 (2010).
[Crossref]

Koppens, F. H. L.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Kou, T.

L. Xia, L. C. Li, W. Li, T. Kou, and D. M. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Kulkarni, G. S.

G. S. Kulkarni, K. Reddy, Z. H. Zhong, and X. D. Fan, “Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection,” Nat Commun 5(4376), 4376 (2014).
[PubMed]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Lee, D. H.

H. Y. Jeong, D. S. Lee, H. K. Choi, D. H. Lee, J. E. Kim, J. Y. Lee, W. J. Lee, S. O. Kim, and S. Y. Choi, “Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films,” Appl. Phys. Lett. 96(21), 213105 (2010).
[Crossref]

Lee, D. S.

H. Y. Jeong, D. S. Lee, H. K. Choi, D. H. Lee, J. E. Kim, J. Y. Lee, W. J. Lee, S. O. Kim, and S. Y. Choi, “Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films,” Appl. Phys. Lett. 96(21), 213105 (2010).
[Crossref]

Lee, J. Y.

H. Y. Jeong, D. S. Lee, H. K. Choi, D. H. Lee, J. E. Kim, J. Y. Lee, W. J. Lee, S. O. Kim, and S. Y. Choi, “Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films,” Appl. Phys. Lett. 96(21), 213105 (2010).
[Crossref]

Lee, W. J.

H. Y. Jeong, D. S. Lee, H. K. Choi, D. H. Lee, J. E. Kim, J. Y. Lee, W. J. Lee, S. O. Kim, and S. Y. Choi, “Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films,” Appl. Phys. Lett. 96(21), 213105 (2010).
[Crossref]

Li, D.

L. A. Mashat, K. Shin, K. K. Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. L. Gou, S. J. Ippolito, and W. Wlodarski, “Graphene/Polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114(39), 16168–16173 (2010).
[Crossref]

Li, F. L.

P. F. Jiang, Z. Chen, Y. X. Zeng, L. H. Liu, and F. L. Li, “Optical propagation characteristics of side-polished fibers,” Semiconductor Optoelectronics 27(5), 578–581 (2006).

Li, L. C.

L. Xia, L. C. Li, W. Li, T. Kou, and D. M. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Li, M.

S. J. Koester and M. Li, “High-speed waveguide-coupled graphene-on-graphene optical modulators,” Appl. Phys. Lett. 100(17), 171107 (2012).
[Crossref]

Li, W.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

L. Xia, L. C. Li, W. Li, T. Kou, and D. M. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Li, X. Y.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Liao, G. Z.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Lim, C. H. Y. X.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Lin, M. S.

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Lin, Z. D.

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Liu, D. M.

L. Xia, L. C. Li, W. Li, T. Kou, and D. M. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Liu, L. H.

P. F. Jiang, Z. Chen, Y. X. Zeng, L. H. Liu, and F. L. Li, “Optical propagation characteristics of side-polished fibers,” Semiconductor Optoelectronics 27(5), 578–581 (2006).

Liu, M.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, W. T.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Liu, Y. L.

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Loh, K. P.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Lopez-Amo, M.

C. Bariain, I. R. Matias, F. I. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69(1-2), 127–131 (2000).
[Crossref]

Lu, G. H.

G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
[Crossref]

G. H. Lu, L. E. Ocola, and J. H. Chen, “Reduced graphene oxide for room-temperature gas sensors,” Nanotechnology 20(44), 445502 (2009).
[Crossref] [PubMed]

Lu, H. H.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Luo, Y. H.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Maan, J. C.

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Mai, W. J.

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Mashat, L. A.

L. A. Mashat, K. Shin, K. K. Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. L. Gou, S. J. Ippolito, and W. Wlodarski, “Graphene/Polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114(39), 16168–16173 (2010).
[Crossref]

Matias, I. R.

J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photon. Technol. Lett. 18(8), 935–937 (2006).
[Crossref]

C. Bariain, I. R. Matias, F. I. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69(1-2), 127–131 (2000).
[Crossref]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Mccann, E.

K. S. Novoselov, E. Mccann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nat. Phys. 2(3), 177–180 (2006).
[Crossref]

Meng, C.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Mikhailov, S. A.

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

Morozov, S. V.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

K. S. Novoselov, E. Mccann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nat. Phys. 2(3), 177–180 (2006).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ni, Z. H.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Novoselov, K. S.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

K. S. Novoselov, E. Mccann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nat. Phys. 2(3), 177–180 (2006).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ocola, L. E.

G. H. Lu, L. E. Ocola, and J. H. Chen, “Reduced graphene oxide for room-temperature gas sensors,” Nanotechnology 20(44), 445502 (2009).
[Crossref] [PubMed]

G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
[Crossref]

Offeman, R. E.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

Pérez, F.

Perkins, F. K.

J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Q. Wei, and P. E. Sheehan, “Reduced graphene oxide molecular sensors,” Nano Lett. 8(10), 3137–3140 (2008).
[Crossref] [PubMed]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Plessis, J. D.

L. A. Mashat, K. Shin, K. K. Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. L. Gou, S. J. Ippolito, and W. Wlodarski, “Graphene/Polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114(39), 16168–16173 (2010).
[Crossref]

Ratnanjali,

B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sens. Actuators B Chem. 80(2), 132–135 (2001).
[Crossref]

Reddy, K.

G. S. Kulkarni, K. Reddy, Z. H. Zhong, and X. D. Fan, “Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection,” Nat Commun 5(4376), 4376 (2014).
[PubMed]

Robinson, J. T.

J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Q. Wei, and P. E. Sheehan, “Reduced graphene oxide molecular sensors,” Nano Lett. 8(10), 3137–3140 (2008).
[Crossref] [PubMed]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Schedin, F.

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

K. S. Novoselov, E. Mccann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nat. Phys. 2(3), 177–180 (2006).
[Crossref]

Sevilla, J.

Sheehan, P. E.

J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Q. Wei, and P. E. Sheehan, “Reduced graphene oxide molecular sensors,” Nano Lett. 8(10), 3137–3140 (2008).
[Crossref] [PubMed]

Shen, Y. R.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Shin, K.

L. A. Mashat, K. Shin, K. K. Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. L. Gou, S. J. Ippolito, and W. Wlodarski, “Graphene/Polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114(39), 16168–16173 (2010).
[Crossref]

Sikes, K. J.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Singh, J. P.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B Chem. 104(2), 217–222 (2005).
[Crossref]

Snow, E. S.

J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Q. Wei, and P. E. Sheehan, “Reduced graphene oxide molecular sensors,” Nano Lett. 8(10), 3137–3140 (2008).
[Crossref] [PubMed]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Srinivasan, K. L.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B Chem. 104(2), 217–222 (2005).
[Crossref]

Stormer, H. L.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Z. Jiang, Y. Zhang, H. L. Stormer, and P. Kim, “Quantum Hall states near the charge-neutral Dirac point in graphene,” Phys. Rev. Lett. 99(10), 106802 (2007).
[Crossref] [PubMed]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

Su, P. G.

P. G. Su and C. F. Chiou, “Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate,” Sens. Actuators B Chem. 200, 9–18 (2014).
[Crossref]

Tan, S. Z.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Tan, Y. W.

Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

Tang, D. Y.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Tang, J. Y.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Tong, J.

D. Z. Zhang, J. Tong, and B. K. Xia, “Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly,” Sens. Actuators B Chem. 197, 66–72 (2014).
[Crossref]

Tong, L. M.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Tung, V. C.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
[Crossref] [PubMed]

Ulin-Avila, E.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Wang, B.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, F.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, H. Q.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Wang, Y.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wei, Q. S.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Wei, Z. Q.

J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Q. Wei, and P. E. Sheehan, “Reduced graphene oxide molecular sensors,” Nano Lett. 8(10), 3137–3140 (2008).
[Crossref] [PubMed]

Weiller, B. H.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
[Crossref] [PubMed]

Wlodarski, W.

L. A. Mashat, K. Shin, K. K. Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. L. Gou, S. J. Ippolito, and W. Wlodarski, “Graphene/Polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114(39), 16168–16173 (2010).
[Crossref]

Wu, T.

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Xia, B. K.

D. Z. Zhang, J. Tong, and B. K. Xia, “Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly,” Sens. Actuators B Chem. 197, 66–72 (2014).
[Crossref]

Xia, L.

L. Xia, L. C. Li, W. Li, T. Kou, and D. M. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Xiao, Y.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Xie, A. G.

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Xu, Y. X.

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Yang, Y.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
[Crossref] [PubMed]

Yin, X. B.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yu, J. H.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Zadeh, K. K.

L. A. Mashat, K. Shin, K. K. Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. L. Gou, S. J. Ippolito, and W. Wlodarski, “Graphene/Polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114(39), 16168–16173 (2010).
[Crossref]

Zeitler, U.

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

K. S. Novoselov, E. Mccann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nat. Phys. 2(3), 177–180 (2006).
[Crossref]

Zeng, Y. X.

P. F. Jiang, Z. Chen, Y. X. Zeng, L. H. Liu, and F. L. Li, “Optical propagation characteristics of side-polished fibers,” Semiconductor Optoelectronics 27(5), 578–581 (2006).

Zentgraf, T.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, D. Z.

D. Z. Zhang, J. Tong, and B. K. Xia, “Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly,” Sens. Actuators B Chem. 197, 66–72 (2014).
[Crossref]

Zhang, H.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Zhang, J.

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Zhang, X.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, X. J.

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Zhang, Y.

Z. Jiang, Y. Zhang, H. L. Stormer, and P. Kim, “Quantum Hall states near the charge-neutral Dirac point in graphene,” Phys. Rev. Lett. 99(10), 106802 (2007).
[Crossref] [PubMed]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhang, Y. B.

Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

Zhong, Z. H.

G. S. Kulkarni, K. Reddy, Z. H. Zhong, and X. D. Fan, “Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection,” Nat Commun 5(4376), 4376 (2014).
[PubMed]

Ziegler, K.

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

ACS Nano (1)

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. Y. Jeong, D. S. Lee, H. K. Choi, D. H. Lee, J. E. Kim, J. Y. Lee, W. J. Lee, S. O. Kim, and S. Y. Choi, “Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films,” Appl. Phys. Lett. 96(21), 213105 (2010).
[Crossref]

G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
[Crossref]

S. J. Koester and M. Li, “High-speed waveguide-coupled graphene-on-graphene optical modulators,” Appl. Phys. Lett. 100(17), 171107 (2012).
[Crossref]

IEEE Electron Device Lett. (1)

M. C. Chen, C. L. Hsu, and T. J. Hsueh, “Fabrication of humidity sensor based on bilayer graphene,” IEEE Electron Device Lett. 35(5), 590–592 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photon. Technol. Lett. 18(8), 935–937 (2006).
[Crossref]

J. Am. Chem. Soc. (1)

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80(6), 1339 (1958).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Phys. Chem. C (1)

L. A. Mashat, K. Shin, K. K. Zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. L. Gou, S. J. Ippolito, and W. Wlodarski, “Graphene/Polyaniline nanocomposite for hydrogen sensing,” J. Phys. Chem. C 114(39), 16168–16173 (2010).
[Crossref]

Laser Phys. Lett. (1)

J. Zhang, G. Z. Liao, S. S. Jin, D. Cao, Q. S. Wei, H. H. Lu, J. H. Yu, X. Cai, S. Z. Tan, Y. Xiao, J. Y. Tang, Y. H. Luo, and Z. Chen, “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Phys. Lett. 11(3), 035901 (2014).
[Crossref]

Mater. Res. Bull. (1)

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Nano Lett. (3)

W. Li, B. G. Chen, C. Meng, W. Fang, Y. Xiao, X. Y. Li, Z. F. Hu, Y. X. Xu, L. M. Tong, H. Q. Wang, W. T. Liu, J. M. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Q. Wei, and P. E. Sheehan, “Reduced graphene oxide molecular sensors,” Nano Lett. 8(10), 3137–3140 (2008).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

G. H. Lu, L. E. Ocola, and J. H. Chen, “Reduced graphene oxide for room-temperature gas sensors,” Nanotechnology 20(44), 445502 (2009).
[Crossref] [PubMed]

Nat Commun (1)

G. S. Kulkarni, K. Reddy, Z. H. Zhong, and X. D. Fan, “Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection,” Nat Commun 5(4376), 4376 (2014).
[PubMed]

Nat. Mater. (1)

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Nat. Phys. (1)

K. S. Novoselov, E. Mccann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nat. Phys. 2(3), 177–180 (2006).
[Crossref]

Nature (3)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref] [PubMed]

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (1)

M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Phys. Rev. Lett. (4)

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett. 100(1), 016602 (2008).
[Crossref] [PubMed]

Z. Jiang, Y. Zhang, H. L. Stormer, and P. Kim, “Quantum Hall states near the charge-neutral Dirac point in graphene,” Phys. Rev. Lett. 99(10), 106802 (2007).
[Crossref] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Science (3)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum Hall effect in graphene,” Science 315(5817), 1379 (2007).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Semiconductor Optoelectronics (1)

P. F. Jiang, Z. Chen, Y. X. Zeng, L. H. Liu, and F. L. Li, “Optical propagation characteristics of side-polished fibers,” Semiconductor Optoelectronics 27(5), 578–581 (2006).

Sens. Actuators A Phys. (1)

L. Xia, L. C. Li, W. Li, T. Kou, and D. M. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sens. Actuators A Phys. 190, 1–5 (2013).
[Crossref]

Sens. Actuators B Chem. (5)

C. Bariain, I. R. Matias, F. I. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B Chem. 69(1-2), 127–131 (2000).
[Crossref]

B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sens. Actuators B Chem. 80(2), 132–135 (2001).
[Crossref]

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B Chem. 104(2), 217–222 (2005).
[Crossref]

P. G. Su and C. F. Chiou, “Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate,” Sens. Actuators B Chem. 200, 9–18 (2014).
[Crossref]

D. Z. Zhang, J. Tong, and B. K. Xia, “Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly,” Sens. Actuators B Chem. 197, 66–72 (2014).
[Crossref]

Solid State Commun. (1)

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Sketch map of the sensor.
Fig. 2
Fig. 2 (a) SEM photo of the cross section of GCSPF with magnification of 585; (b) enlarged view of the region marked by green square in (a) with magnification of 20570.
Fig. 3
Fig. 3 Raman spectrum of the rGO on the SPF.
Fig. 4
Fig. 4 Experimental set-up.
Fig. 5
Fig. 5 (a) Variation of relative humidity in the chamber measured by commercial humidity/temperature meter; variation of relative output optical power through: (b) unpolished SMF, (c) SPF, (d) GCSPF.
Fig. 6
Fig. 6 Variation of actual relative humidity (a) and relative output optical power of GCSPF (b) during 3000-7300s in ascending humidity order.
Fig. 7
Fig. 7 Relative output optical power of GCSPF as a function of relative humidity.
Fig. 8
Fig. 8 Variation of relative output optical power when adjusting the relative humidity between (a) 75% and 95%, (b) 40% and 75%, back and forth for several times with temperature keeping 25°C.
Fig. 9
Fig. 9 Response of GCSPF to human breathing. The breathing was applied directly on sensor for about 5s.
Fig. 10
Fig. 10 Calculated theoretical relation between (a) μ c and n, σ and μ c (inset), (b) Re( n eff ) and μ c , (c) Im( n eff ) and μ c , (d) relative power and μ c , with Γ = 1012Hz, T = 298K, ω/2π = 1.94 × 1014Hz.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

σ( ω, μ c ,Γ,T )= j e 2 ( ωj2Γ ) π 2 [ 1 ( ωj2Γ ) 2 0 ε( f d ( ε ) ε f d ( ε ) ε ) dε 0 f d ( ε ) f d ( ε ) ( ωj2Γ ) 2 4 ( ε/ ) 2 dε]
σ( ω, μ c ,Γ,T )=j e 2 k B T π 2 ( ωj2Γ ) ( μ c k B T +2ln( e μ c / k B T +1 ) ) + j e 2 4π ln( 2| μ c |( ω+j2Γ ) 2| μ c |+( ω+j2Γ ) )
n= 2 π 2 v F 2 0 ε[ f d ( ε ) f d ( ε+2 μ c ) ] dε
atan( j C a + C b 1+ C a C b )+mπ= γ 2 d
C a =( γ 1 ε 2 γ 2 ε 1 ) ( 1+ σ γ 1 ω ε 0 ε 1 ) 1 , C b = γ 3 ε 2 γ 2 ε 3
C a = γ 1 +ω μ 0 σ γ 2 , C b = γ 3 γ 2
power=10lg P P 0 10lg{ 1 2 [ | exp( j k 0 n eff TM L ) | 2 + | exp( j k 0 n eff TE L ) | 2 ] }

Metrics