Abstract

This paper presents a novel optical fiber torsion sensor based on dual polarized Mach-Zehnder interference (DPMZI). Unlike the conventional fiber sensor, the proposed sensor is composed of a sensor part and a demodulator. The demodulator is made by a bared single mode fiber (SMF) loop, and the sensor part is a segment of a coated SMF placed before the loop. A mathematical model is proposed based on DPMZI mechanism and from the model when the sensor part is twisted, the E-field rotational angle will bring a quasi-linear impact on the resonance dip wavelength in their matched detecting range. A proof-of-concept experiment was performed to verify the theoretical prediction. From the experimental data, a sensitivity of −0.3703, −1.00962, and −0.59881 nm•m/rad is achieved with the determining range of 12.0936, 7.6959, and 10.4444 rad/m respectively. The sensor which is composed only of the SMF has the advantages of low insertion loss (~-2dB), healthy structure, low manufacture cost, and easy assembly and application.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber torsion sensor based on a twist taper in polarization-maintaining fiber

Quan Zhou, Weigang Zhang, Lei Chen, Tieyi Yan, Liyu Zhang, Li Wang, and Biao Wang
Opt. Express 23(18) 23877-23886 (2015)

Intensity-demodulated torsion sensor based on thin-core polarization-maintaining fiber

Xuexue Kang, Weigang Zhang, Yanxin Zhang, Jiang Yang, Lei Chen, Lingxin Kong, Yunshan Zhang, Lin Yu, Tieyi Yan, and Pengcheng Geng
Appl. Opt. 57(13) 3474-3478 (2018)

References

  • View by:
  • |
  • |
  • |

  1. V. Lemarquand, “Synthesis study of magnetic torque sensors,” IEEE Trans. Magn. 35(6), 4503–4510 (1999).
    [Crossref]
  2. J. Ruan, W. G. Zhang, H. Zhang, P. C. Geng, and Z. Y. Bai, “A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop,” Chin. Phys. B 22(6), 064216 (2013).
    [Crossref]
  3. H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(20), 1539–1541 (2010).
    [Crossref]
  4. P. Zu, C. Chiu Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
    [Crossref]
  5. W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
    [Crossref]
  6. S. M. Nalawade, S. S. Harnol, and H. V. Thakur, “Temperature and strain independent modal interferometric torsion sensor using photonic crystal fiber,” IEEE Sens. J. 12(8), 2614–2615 (2012).
    [Crossref]
  7. O. Frazão, S. O. Silva, J. M. Baptista, J. L. Santos, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber,” Appl. Opt. 47(27), 4841–4848 (2008).
    [Crossref] [PubMed]
  8. Y. Y. Du, X. G. Qiao, Q. Z. Rong, J. Zhang, D. Y. Feng, R. H. Wang, H. Sun, M. L. Hu, and Z. Y. Feng, “Polarization-dependent in-line quasi-Michelson interferometer based on PM-PCF reflection,” Appl. Opt. 52(15), 3591–3596 (2013).
    [Crossref] [PubMed]
  9. X. M. Xi, G. K. L. Wong, T. Weiss, and P. St. J. Russell, “Measuring mechanical strain and twist using helical photonic crystal fiber,” Opt. Lett. 38(24), 5401–5404 (2013).
    [Crossref] [PubMed]
  10. H. Y. Fu, S. K. Khijwania, H. Y. Tam, P. K. A. Wai, and C. Lu, “Polarization-maintaining photonic-crystal-fiber-based all-optical polarimetric torsion sensor,” Appl. Opt. 49(31), 5954–5958 (2010).
  11. S. Ura, S. Shoda, K. Nishio, and Y. Awatsuji, “In-line rotation sensor based on VCSEL behavior under polarization-rotating optical feedback,” Opt. Express 19(24), 23683–23688 (2011).
    [Crossref] [PubMed]
  12. T. Guo, F. Liu, F. Du, Z. Zhang, C. Li, B. O. Guan, and J. Albert, “VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor,” Opt. Express 21(16), 19097–19102 (2013).
    [Crossref] [PubMed]
  13. D. Lesnik and D. Donlagic, “In-line, fiber-optic polarimetric twist/torsion sensor,” Opt. Lett. 38(9), 1494–1496 (2013).
    [Crossref] [PubMed]
  14. O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
    [Crossref]
  15. Z. Y. Liu, C. Wu, M. L. V. Tse, and H. Y. Tam, “Fabrication, characterization, and sensing applications of a high-birefringence suspended-core fiber,” J. Lightwave Technol. 32(11), 2113–2122 (2014).
    [Crossref]
  16. O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett. 35(16), 2777–2779 (2010).
    [Crossref] [PubMed]
  17. S. L. Wei, W. G. Zhang, J. B. Shang, and L. M. Yin, “Torsion sensing characteristics of fibre ring laser based on nonlinear polarization rotation,” Electron. Lett. 48(2), 116 (2012).
    [Crossref]
  18. W. G. Zhang, G. Y. Kai, X. Y. Dong, S. Z. Yuan, and Q. D. Zhao, “Temperature-Independent FBG-Type Torsion Sensor Based on Combinatorial Torsion Beam,” IEEE Photon. Technol. Lett. 14(8), 1154–1156 (2002).
    [Crossref]
  19. T. Zhu, Y. J. Rao, and J. L. Wang, “All-fiber dynamic gain equalizer based on a twisted long-period grating written by high-frequency CO2 laser pulses,” Appl. Opt. 46(3), 375–378 (2007).
    [Crossref] [PubMed]
  20. T. Zhu, K. S. Chiang, Y. J. Rao, C. H. Shi, Y. Song, and M. Liu, “Characterization of long-period fiber gratings written by CO2 laser in twisted single-mode fibers,” J. Lightwave Technol. 27(21), 4863–4869 (2009).
    [Crossref]
  21. W. Jin, H. F. Xuan, W. Jin, and L. Ji, “Rocking long period gratings in single mode fibers,” J. Lightwave Technol. 31(18), 3117–3122 (2013).
    [Crossref]
  22. W. Yiping, M. Wang, and X. Q. Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express 21(10), 11913–11920 (2013).
    [Crossref] [PubMed]
  23. L. Chen, W. G. Zhang, Z. Zhang, Y. J. Liu, J. Sieg, L. Y. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Y. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6(4), 2200909 (2014).
  24. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5(6), 273–275 (1980).
    [Crossref] [PubMed]
  25. L. L. Xu, Y. Li, and B. J. Li, “Semicircular fiber-based high-sensitivity displacement sensor,” Opt. Lett. 38(1), 64–66 (2013).
    [Crossref] [PubMed]
  26. A. M. Smith, “Birefringence induced by bends and twists in single-mode optical fiber,” Appl. Opt. 19(15), 2606–2611 (1980).
    [Crossref] [PubMed]
  27. P. C. Geng, W. G. Zhang, S. C. Gao, H. Zhang, J. L. Li, S. S. Zhang, Z. Y. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express 20(27), 28557–28562 (2012).
    [Crossref] [PubMed]
  28. J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
    [Crossref]

2014 (2)

L. Chen, W. G. Zhang, Z. Zhang, Y. J. Liu, J. Sieg, L. Y. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Y. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6(4), 2200909 (2014).

Z. Y. Liu, C. Wu, M. L. V. Tse, and H. Y. Tam, “Fabrication, characterization, and sensing applications of a high-birefringence suspended-core fiber,” J. Lightwave Technol. 32(11), 2113–2122 (2014).
[Crossref]

2013 (8)

L. L. Xu, Y. Li, and B. J. Li, “Semicircular fiber-based high-sensitivity displacement sensor,” Opt. Lett. 38(1), 64–66 (2013).
[Crossref] [PubMed]

D. Lesnik and D. Donlagic, “In-line, fiber-optic polarimetric twist/torsion sensor,” Opt. Lett. 38(9), 1494–1496 (2013).
[Crossref] [PubMed]

W. Yiping, M. Wang, and X. Q. Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express 21(10), 11913–11920 (2013).
[Crossref] [PubMed]

Y. Y. Du, X. G. Qiao, Q. Z. Rong, J. Zhang, D. Y. Feng, R. H. Wang, H. Sun, M. L. Hu, and Z. Y. Feng, “Polarization-dependent in-line quasi-Michelson interferometer based on PM-PCF reflection,” Appl. Opt. 52(15), 3591–3596 (2013).
[Crossref] [PubMed]

T. Guo, F. Liu, F. Du, Z. Zhang, C. Li, B. O. Guan, and J. Albert, “VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor,” Opt. Express 21(16), 19097–19102 (2013).
[Crossref] [PubMed]

W. Jin, H. F. Xuan, W. Jin, and L. Ji, “Rocking long period gratings in single mode fibers,” J. Lightwave Technol. 31(18), 3117–3122 (2013).
[Crossref]

X. M. Xi, G. K. L. Wong, T. Weiss, and P. St. J. Russell, “Measuring mechanical strain and twist using helical photonic crystal fiber,” Opt. Lett. 38(24), 5401–5404 (2013).
[Crossref] [PubMed]

J. Ruan, W. G. Zhang, H. Zhang, P. C. Geng, and Z. Y. Bai, “A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop,” Chin. Phys. B 22(6), 064216 (2013).
[Crossref]

2012 (4)

S. M. Nalawade, S. S. Harnol, and H. V. Thakur, “Temperature and strain independent modal interferometric torsion sensor using photonic crystal fiber,” IEEE Sens. J. 12(8), 2614–2615 (2012).
[Crossref]

S. L. Wei, W. G. Zhang, J. B. Shang, and L. M. Yin, “Torsion sensing characteristics of fibre ring laser based on nonlinear polarization rotation,” Electron. Lett. 48(2), 116 (2012).
[Crossref]

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

P. C. Geng, W. G. Zhang, S. C. Gao, H. Zhang, J. L. Li, S. S. Zhang, Z. Y. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express 20(27), 28557–28562 (2012).
[Crossref] [PubMed]

2011 (3)

S. Ura, S. Shoda, K. Nishio, and Y. Awatsuji, “In-line rotation sensor based on VCSEL behavior under polarization-rotating optical feedback,” Opt. Express 19(24), 23683–23688 (2011).
[Crossref] [PubMed]

P. Zu, C. Chiu Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

2010 (3)

2009 (2)

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

T. Zhu, K. S. Chiang, Y. J. Rao, C. H. Shi, Y. Song, and M. Liu, “Characterization of long-period fiber gratings written by CO2 laser in twisted single-mode fibers,” J. Lightwave Technol. 27(21), 4863–4869 (2009).
[Crossref]

2008 (1)

2007 (1)

2002 (1)

W. G. Zhang, G. Y. Kai, X. Y. Dong, S. Z. Yuan, and Q. D. Zhao, “Temperature-Independent FBG-Type Torsion Sensor Based on Combinatorial Torsion Beam,” IEEE Photon. Technol. Lett. 14(8), 1154–1156 (2002).
[Crossref]

1999 (1)

V. Lemarquand, “Synthesis study of magnetic torque sensors,” IEEE Trans. Magn. 35(6), 4503–4510 (1999).
[Crossref]

1980 (2)

Albert, J.

Awatsuji, Y.

Bai, Z. Y.

J. Ruan, W. G. Zhang, H. Zhang, P. C. Geng, and Z. Y. Bai, “A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop,” Chin. Phys. B 22(6), 064216 (2013).
[Crossref]

P. C. Geng, W. G. Zhang, S. C. Gao, H. Zhang, J. L. Li, S. S. Zhang, Z. Y. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express 20(27), 28557–28562 (2012).
[Crossref] [PubMed]

Baptista, J. M.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

O. Frazão, S. O. Silva, J. M. Baptista, J. L. Santos, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber,” Appl. Opt. 47(27), 4841–4848 (2008).
[Crossref] [PubMed]

Chen, L.

L. Chen, W. G. Zhang, Z. Zhang, Y. J. Liu, J. Sieg, L. Y. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Y. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6(4), 2200909 (2014).

Chen, L. H.

P. Zu, C. Chiu Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Chen, W. G.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Chiang, K. S.

Chiu Chan, C.

P. Zu, C. Chiu Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Chung, Y.

H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Dong, X. Y.

P. Zu, C. Chiu Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

W. G. Zhang, G. Y. Kai, X. Y. Dong, S. Z. Yuan, and Q. D. Zhao, “Temperature-Independent FBG-Type Torsion Sensor Based on Combinatorial Torsion Beam,” IEEE Photon. Technol. Lett. 14(8), 1154–1156 (2002).
[Crossref]

Donlagic, D.

Du, F.

Du, Y. Y.

Eickhoff, W.

Feng, D. Y.

Feng, Z. Y.

Frazão, O.

Fu, H. Y.

Gao, S. C.

Geng, P. C.

J. Ruan, W. G. Zhang, H. Zhang, P. C. Geng, and Z. Y. Bai, “A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop,” Chin. Phys. B 22(6), 064216 (2013).
[Crossref]

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

P. C. Geng, W. G. Zhang, S. C. Gao, H. Zhang, J. L. Li, S. S. Zhang, Z. Y. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express 20(27), 28557–28562 (2012).
[Crossref] [PubMed]

Gong, T. X.

P. Zu, C. Chiu Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Guan, B. O.

Guo, T.

Harnol, S. S.

S. M. Nalawade, S. S. Harnol, and H. V. Thakur, “Temperature and strain independent modal interferometric torsion sensor using photonic crystal fiber,” IEEE Sens. J. 12(8), 2614–2615 (2012).
[Crossref]

Hu, M. L.

Huang, X. Q.

Jesus, C.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

Ji, L.

Jian, S. S.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Jin, W.

Jin, Y. X.

P. Zu, C. Chiu Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Kai, G. Y.

W. G. Zhang, G. Y. Kai, X. Y. Dong, S. Z. Yuan, and Q. D. Zhao, “Temperature-Independent FBG-Type Torsion Sensor Based on Combinatorial Torsion Beam,” IEEE Photon. Technol. Lett. 14(8), 1154–1156 (2002).
[Crossref]

Khijwania, S. K.

Kim, B.

H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kim, H. M.

H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kim, T. H.

H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kobelke, J.

Lemarquand, V.

V. Lemarquand, “Synthesis study of magnetic torque sensors,” IEEE Trans. Magn. 35(6), 4503–4510 (1999).
[Crossref]

Lesnik, D.

Li, B. J.

Li, C.

Li, J. L.

Li, X. L.

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Li, Y.

Liu, F.

Liu, M.

Liu, Y. J.

L. Chen, W. G. Zhang, Z. Zhang, Y. J. Liu, J. Sieg, L. Y. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Y. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6(4), 2200909 (2014).

Liu, Z. Y.

Lou, S. Q.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Lu, C.

Lu, W. L.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Nalawade, S. M.

S. M. Nalawade, S. S. Harnol, and H. V. Thakur, “Temperature and strain independent modal interferometric torsion sensor using photonic crystal fiber,” IEEE Sens. J. 12(8), 2614–2615 (2012).
[Crossref]

Nishio, K.

Qiao, X. G.

Rao, Y. J.

Rashleigh, S. C.

Rong, Q. Z.

Roy, P.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

Ruan, J.

J. Ruan, W. G. Zhang, H. Zhang, P. C. Geng, and Z. Y. Bai, “A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop,” Chin. Phys. B 22(6), 064216 (2013).
[Crossref]

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Russell, P. St. J.

Santos, J. L.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

O. Frazão, S. O. Silva, J. M. Baptista, J. L. Santos, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber,” Appl. Opt. 47(27), 4841–4848 (2008).
[Crossref] [PubMed]

Schuster, K.

Shang, J. B.

S. L. Wei, W. G. Zhang, J. B. Shang, and L. M. Yin, “Torsion sensing characteristics of fibre ring laser based on nonlinear polarization rotation,” Electron. Lett. 48(2), 116 (2012).
[Crossref]

Shi, C. H.

Shoda, S.

Sieg, J.

L. Chen, W. G. Zhang, Z. Zhang, Y. J. Liu, J. Sieg, L. Y. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Y. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6(4), 2200909 (2014).

Silva, R. M.

Silva, S. O.

Smith, A. M.

Song, Y.

Statkiewicz-Barabach, G.

Sun, H.

Tam, H. Y.

Thakur, H. V.

S. M. Nalawade, S. S. Harnol, and H. V. Thakur, “Temperature and strain independent modal interferometric torsion sensor using photonic crystal fiber,” IEEE Sens. J. 12(8), 2614–2615 (2012).
[Crossref]

Tse, M. L. V.

Ulrich, R.

Ura, S.

Urbanczyk, W.

Wai, P. K. A.

Wang, B.

L. Chen, W. G. Zhang, Z. Zhang, Y. J. Liu, J. Sieg, L. Y. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Y. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6(4), 2200909 (2014).

Wang, J. L.

Wang, L.

L. Chen, W. G. Zhang, Z. Zhang, Y. J. Liu, J. Sieg, L. Y. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Y. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6(4), 2200909 (2014).

P. C. Geng, W. G. Zhang, S. C. Gao, H. Zhang, J. L. Li, S. S. Zhang, Z. Y. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express 20(27), 28557–28562 (2012).
[Crossref] [PubMed]

Wang, L. W.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Wang, M.

Wang, R. H.

Wei, S. L.

S. L. Wei, W. G. Zhang, J. B. Shang, and L. M. Yin, “Torsion sensing characteristics of fibre ring laser based on nonlinear polarization rotation,” Electron. Lett. 48(2), 116 (2012).
[Crossref]

Weiss, T.

Wojcik, J.

Wong, G. K. L.

Wu, C.

Xi, X. M.

Xu, L. L.

Xuan, H. F.

Xue, X. L.

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Yan, T. Y.

L. Chen, W. G. Zhang, Z. Zhang, Y. J. Liu, J. Sieg, L. Y. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Y. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6(4), 2200909 (2014).

Yin, L. M.

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

S. L. Wei, W. G. Zhang, J. B. Shang, and L. M. Yin, “Torsion sensing characteristics of fibre ring laser based on nonlinear polarization rotation,” Electron. Lett. 48(2), 116 (2012).
[Crossref]

Yiping, W.

Yuan, S. Z.

W. G. Zhang, G. Y. Kai, X. Y. Dong, S. Z. Yuan, and Q. D. Zhao, “Temperature-Independent FBG-Type Torsion Sensor Based on Combinatorial Torsion Beam,” IEEE Photon. Technol. Lett. 14(8), 1154–1156 (2002).
[Crossref]

Zhang, H.

J. Ruan, W. G. Zhang, H. Zhang, P. C. Geng, and Z. Y. Bai, “A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop,” Chin. Phys. B 22(6), 064216 (2013).
[Crossref]

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

P. C. Geng, W. G. Zhang, S. C. Gao, H. Zhang, J. L. Li, S. S. Zhang, Z. Y. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express 20(27), 28557–28562 (2012).
[Crossref] [PubMed]

Zhang, J.

Zhang, L. Y.

L. Chen, W. G. Zhang, Z. Zhang, Y. J. Liu, J. Sieg, L. Y. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Y. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6(4), 2200909 (2014).

Zhang, S. S.

Zhang, W. G.

L. Chen, W. G. Zhang, Z. Zhang, Y. J. Liu, J. Sieg, L. Y. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Y. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6(4), 2200909 (2014).

J. Ruan, W. G. Zhang, H. Zhang, P. C. Geng, and Z. Y. Bai, “A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop,” Chin. Phys. B 22(6), 064216 (2013).
[Crossref]

S. L. Wei, W. G. Zhang, J. B. Shang, and L. M. Yin, “Torsion sensing characteristics of fibre ring laser based on nonlinear polarization rotation,” Electron. Lett. 48(2), 116 (2012).
[Crossref]

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

P. C. Geng, W. G. Zhang, S. C. Gao, H. Zhang, J. L. Li, S. S. Zhang, Z. Y. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express 20(27), 28557–28562 (2012).
[Crossref] [PubMed]

W. G. Zhang, G. Y. Kai, X. Y. Dong, S. Z. Yuan, and Q. D. Zhao, “Temperature-Independent FBG-Type Torsion Sensor Based on Combinatorial Torsion Beam,” IEEE Photon. Technol. Lett. 14(8), 1154–1156 (2002).
[Crossref]

Zhang, Y. F.

P. Zu, C. Chiu Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Zhang, Z.

L. Chen, W. G. Zhang, Z. Zhang, Y. J. Liu, J. Sieg, L. Y. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Y. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6(4), 2200909 (2014).

T. Guo, F. Liu, F. Du, Z. Zhang, C. Li, B. O. Guan, and J. Albert, “VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor,” Opt. Express 21(16), 19097–19102 (2013).
[Crossref] [PubMed]

Zhao, Q. D.

W. G. Zhang, G. Y. Kai, X. Y. Dong, S. Z. Yuan, and Q. D. Zhao, “Temperature-Independent FBG-Type Torsion Sensor Based on Combinatorial Torsion Beam,” IEEE Photon. Technol. Lett. 14(8), 1154–1156 (2002).
[Crossref]

Zhou, Q.

L. Chen, W. G. Zhang, Z. Zhang, Y. J. Liu, J. Sieg, L. Y. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Y. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6(4), 2200909 (2014).

Zhu, T.

Zou, H.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Zu, P.

P. Zu, C. Chiu Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Appl. Opt. (5)

Chin. Phys. B (1)

J. Ruan, W. G. Zhang, H. Zhang, P. C. Geng, and Z. Y. Bai, “A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop,” Chin. Phys. B 22(6), 064216 (2013).
[Crossref]

Electron. Lett. (1)

S. L. Wei, W. G. Zhang, J. B. Shang, and L. M. Yin, “Torsion sensing characteristics of fibre ring laser based on nonlinear polarization rotation,” Electron. Lett. 48(2), 116 (2012).
[Crossref]

IEEE Photon. J. (1)

L. Chen, W. G. Zhang, Z. Zhang, Y. J. Liu, J. Sieg, L. Y. Zhang, Q. Zhou, L. Wang, B. Wang, and T. Y. Yan, “Design for a single-polarization photonic crystal fiber wavelength splitter based on hybrid-surface plasmon resonance,” IEEE Photon. J. 6(4), 2200909 (2014).

IEEE Photon. Technol. Lett. (5)

W. G. Zhang, G. Y. Kai, X. Y. Dong, S. Z. Yuan, and Q. D. Zhao, “Temperature-Independent FBG-Type Torsion Sensor Based on Combinatorial Torsion Beam,” IEEE Photon. Technol. Lett. 14(8), 1154–1156 (2002).
[Crossref]

H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

P. Zu, C. Chiu Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

IEEE Sens. J. (1)

S. M. Nalawade, S. S. Harnol, and H. V. Thakur, “Temperature and strain independent modal interferometric torsion sensor using photonic crystal fiber,” IEEE Sens. J. 12(8), 2614–2615 (2012).
[Crossref]

IEEE Trans. Magn. (1)

V. Lemarquand, “Synthesis study of magnetic torque sensors,” IEEE Trans. Magn. 35(6), 4503–4510 (1999).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. (1)

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Normalized electric field of the four modes supported by the SMF at a wavelength of 1.55 μm with the red arrows indicating the electric field directions of the four modes.
Fig. 2
Fig. 2 Resonance dip wavelength and intensity changing with E-field rotational angle φ increasing in a series of Δϕ (a) resonance wavelength as functions of E-field rotational angle; (b) resonance intensity as functions of E-field rotational angle.
Fig. 3
Fig. 3 Resonance dip shifting processes when Δϕ = π/2.
Fig. 4
Fig. 4 Resonance dip wavelength and intensity change with E-field rotational angle φ in a series of α-β (a) resonance dip wavelength as functions of E-field rotational angle; (b) resonance dip intensity as functions of E-field rotational angle.
Fig. 5
Fig. 5 Resonance dip shifting processes when (a) κ = 0.125 and α-β = 0.4; (b) κ = 0.125 and α-β = 0.
Fig. 6
Fig. 6 Schematic diagram of the proposed torsion sensing system. (a) Experimental setup. (b) Photograph of the sensor.
Fig. 7
Fig. 7 Transmission spectral evolution of the bare fiber loop under different twist rates.
Fig. 8
Fig. 8 Magnified figures for dips (a) a; (b) b; and (c) c.
Fig. 9
Fig. 9 Resonance dips’ wavelength and intensity for dips (a) a; (b) b; and (c) c.

Tables (1)

Tables Icon

Table 1 Sensitivity and detecting range for dip a, b, and c

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I= I s + I f
I= I dc +2a(1a) [ sin( φ ) ] 2 cos(2pΔ n s L/l)+2β( 1β ) [ cos( φ ) ] 2 cos(2pΔ n f L/l)

Metrics