Abstract

The polarized emission spectra for the 3P01G4 emission transition of the Pr3+ ion around 910 nm in the Pr3+:LiYF4 (Pr:YLF) laser crystal were registered and calibrated in unit of cross sections for the first time. Continuous-wave (CW) laser operation is demonstrated at 915 nm in π polarization by pumping the crystal with an optically pumped semiconductor laser (OPSL) at 479.2 nm. An output power of 218 mW is thus obtained with a laser slope efficiency of about 24% for an output coupler (OC) transmission of 1.9%. CW laser operation is also demonstrated at 907 nm in σ polarization by using a thin plate oriented at Brewster angle. An output power of about 89 mW with a slope efficiency of about 10% is then obtained for an OC transmission of 0.8%.The round-trip cavity losses are estimated for different experimental cavity configurations to be about 1% and the typical beam quality M2 factors measured in the transverse x and y directions are found equal to about 1.07 and 1.04, respectively. Finally, we also report on a double laser wavelength operation by using an OC with a transmission of about 0.05%, such effect resulting from joint-etalon effects inside the cavity.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In-band pumped Ho3+:KY3F10 2 μm laser

Martin Schellhorn, Daniela Parisi, Stefano Veronesi, Giacomo Bolognesi, Marc Eichhorn, and Mauro Tonelli
Opt. Lett. 38(4) 504-506 (2013)

Diode-pumped Nd:YVO4 laser with discrete multi-wavelength tunability and high efficiency

Tanant Waritanant and Arkady Major
Opt. Lett. 42(6) 1149-1152 (2017)

Efficient laser operation based on transparent Nd:Lu2O3 ceramic fabricated by Spark Plasma Sintering

Changwen Xu, Chengdong Yang, Han Zhang, Yanmin Duan, Haiyong Zhu, Dingyuan Tang, Huihui Huang, and Jian Zhang
Opt. Express 24(18) 20571-20579 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm,” Opt. Lett. 36(6), 1002–1004 (2011).
    [Crossref] [PubMed]
  2. B. Xu, Z. Liu, H. Y. Xu, Z. P. Cai, C. H. Zeng, S. L. Huang, Y. Yan, F. J. Wang, P. Camy, J. L. Doualan, A. Braud, and R. Moncorgé, “Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607nm,” Opt. Commun. 305, 96–99 (2013).
    [Crossref]
  3. B. Xu, P. Camy, J. L. Doualan, Z. P. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19(2), 1191–1197 (2011).
    [Crossref] [PubMed]
  4. Z. Liu, Z. P. Cai, S. L. Huang, C. H. Zeng, Z. Y. Meng, Y. K. Bu, Z. Q. Luo, B. Xu, H. Y. Xu, C. C. Ye, F. Stareki, P. Camy, and R. Moncorgé, “Diode-pumped Pr3+:LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
    [Crossref]
  5. P. W. Metz, F. Reichert, F. Moglia, S. Müller, D. T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr³⁺:LiYF₄ lasers,” Opt. Lett. 39(11), 3193–3196 (2014).
    [Crossref] [PubMed]
  6. Z. Liu, Z. P. Cai, B. Xu, C. H. Zeng, S. L. Huang, F. J. Wang, Y. Yan, and H. Y. Xu, “Continuous-Wave Ultraviolet Generation at 349 nm by Intracavity Frequency Doubling of a Diode-Pumped Pr:LiYF4 Laser,” IEEE Photon. J. 5(4), 195005 (2013).
  7. T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99(18), 181103 (2011).
    [Crossref]
  8. T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58(2), 149–151 (1994).
    [Crossref]
  9. J. L. Adam, W. A. Sibley, and D. R. Gabbe, “Optical absorption and emission of LiYF4:Pr3+,” J. Lumin. 33(4), 391–407 (1985).
    [Crossref]
  10. L. Esterowitz, F. J. Bartoli, R. E. Allen, D. E. Wortman, C. A. Morrison, and R. P. Leavitt, “Energy levels and line intensities ofPr3+ in LiYF4,” Phys. Rev. B 19(12), 6442–6455 (1979).
    [Crossref]
  11. A. Richter, Laser Parameters and Performance of Pr3+-doped Fluorides Operating in the Visible Spectral Region (Cuvillier Verlag, 2008).
  12. S. Khiari, M. Velazquez, R. Moncorgé, J. L. Doualan, P. Camy, A. Ferrier, and M. Diaf, “Red-luminescence analysis of Pr3+ doped fluoride crystals,” J. Alloy. Comp. 451(1–2), 128–131 (2008).
    [Crossref]
  13. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, and S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3(1), 102–113 (1986).
    [Crossref]
  14. T. Y. Fan and R. Byer, “Diode laser pumped solid state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
    [Crossref]
  15. N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorgé, “Performance of various diode-pumped Nd:laser materials: Influence of inhomogeneous broadening,” IEEE J. Quantum Electron. 28(4), 1179–1187 (1992).
    [Crossref]

2014 (1)

2013 (3)

Z. Liu, Z. P. Cai, S. L. Huang, C. H. Zeng, Z. Y. Meng, Y. K. Bu, Z. Q. Luo, B. Xu, H. Y. Xu, C. C. Ye, F. Stareki, P. Camy, and R. Moncorgé, “Diode-pumped Pr3+:LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
[Crossref]

B. Xu, Z. Liu, H. Y. Xu, Z. P. Cai, C. H. Zeng, S. L. Huang, Y. Yan, F. J. Wang, P. Camy, J. L. Doualan, A. Braud, and R. Moncorgé, “Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607nm,” Opt. Commun. 305, 96–99 (2013).
[Crossref]

Z. Liu, Z. P. Cai, B. Xu, C. H. Zeng, S. L. Huang, F. J. Wang, Y. Yan, and H. Y. Xu, “Continuous-Wave Ultraviolet Generation at 349 nm by Intracavity Frequency Doubling of a Diode-Pumped Pr:LiYF4 Laser,” IEEE Photon. J. 5(4), 195005 (2013).

2011 (3)

2008 (1)

S. Khiari, M. Velazquez, R. Moncorgé, J. L. Doualan, P. Camy, A. Ferrier, and M. Diaf, “Red-luminescence analysis of Pr3+ doped fluoride crystals,” J. Alloy. Comp. 451(1–2), 128–131 (2008).
[Crossref]

1994 (1)

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58(2), 149–151 (1994).
[Crossref]

1992 (1)

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorgé, “Performance of various diode-pumped Nd:laser materials: Influence of inhomogeneous broadening,” IEEE J. Quantum Electron. 28(4), 1179–1187 (1992).
[Crossref]

1988 (1)

T. Y. Fan and R. Byer, “Diode laser pumped solid state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

1986 (1)

1985 (1)

J. L. Adam, W. A. Sibley, and D. R. Gabbe, “Optical absorption and emission of LiYF4:Pr3+,” J. Lumin. 33(4), 391–407 (1985).
[Crossref]

1979 (1)

L. Esterowitz, F. J. Bartoli, R. E. Allen, D. E. Wortman, C. A. Morrison, and R. P. Leavitt, “Energy levels and line intensities ofPr3+ in LiYF4,” Phys. Rev. B 19(12), 6442–6455 (1979).
[Crossref]

Adam, J. L.

J. L. Adam, W. A. Sibley, and D. R. Gabbe, “Optical absorption and emission of LiYF4:Pr3+,” J. Lumin. 33(4), 391–407 (1985).
[Crossref]

Allen, R. E.

L. Esterowitz, F. J. Bartoli, R. E. Allen, D. E. Wortman, C. A. Morrison, and R. P. Leavitt, “Energy levels and line intensities ofPr3+ in LiYF4,” Phys. Rev. B 19(12), 6442–6455 (1979).
[Crossref]

Bartoli, F. J.

L. Esterowitz, F. J. Bartoli, R. E. Allen, D. E. Wortman, C. A. Morrison, and R. P. Leavitt, “Energy levels and line intensities ofPr3+ in LiYF4,” Phys. Rev. B 19(12), 6442–6455 (1979).
[Crossref]

Braud, A.

B. Xu, Z. Liu, H. Y. Xu, Z. P. Cai, C. H. Zeng, S. L. Huang, Y. Yan, F. J. Wang, P. Camy, J. L. Doualan, A. Braud, and R. Moncorgé, “Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607nm,” Opt. Commun. 305, 96–99 (2013).
[Crossref]

Bu, Y. K.

Byer, R.

T. Y. Fan and R. Byer, “Diode laser pumped solid state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

Cai, Z. P.

Z. Liu, Z. P. Cai, S. L. Huang, C. H. Zeng, Z. Y. Meng, Y. K. Bu, Z. Q. Luo, B. Xu, H. Y. Xu, C. C. Ye, F. Stareki, P. Camy, and R. Moncorgé, “Diode-pumped Pr3+:LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
[Crossref]

Z. Liu, Z. P. Cai, B. Xu, C. H. Zeng, S. L. Huang, F. J. Wang, Y. Yan, and H. Y. Xu, “Continuous-Wave Ultraviolet Generation at 349 nm by Intracavity Frequency Doubling of a Diode-Pumped Pr:LiYF4 Laser,” IEEE Photon. J. 5(4), 195005 (2013).

B. Xu, Z. Liu, H. Y. Xu, Z. P. Cai, C. H. Zeng, S. L. Huang, Y. Yan, F. J. Wang, P. Camy, J. L. Doualan, A. Braud, and R. Moncorgé, “Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607nm,” Opt. Commun. 305, 96–99 (2013).
[Crossref]

B. Xu, P. Camy, J. L. Doualan, Z. P. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19(2), 1191–1197 (2011).
[Crossref] [PubMed]

Caird, J. A.

Camy, P.

B. Xu, Z. Liu, H. Y. Xu, Z. P. Cai, C. H. Zeng, S. L. Huang, Y. Yan, F. J. Wang, P. Camy, J. L. Doualan, A. Braud, and R. Moncorgé, “Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607nm,” Opt. Commun. 305, 96–99 (2013).
[Crossref]

Z. Liu, Z. P. Cai, S. L. Huang, C. H. Zeng, Z. Y. Meng, Y. K. Bu, Z. Q. Luo, B. Xu, H. Y. Xu, C. C. Ye, F. Stareki, P. Camy, and R. Moncorgé, “Diode-pumped Pr3+:LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
[Crossref]

B. Xu, P. Camy, J. L. Doualan, Z. P. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19(2), 1191–1197 (2011).
[Crossref] [PubMed]

S. Khiari, M. Velazquez, R. Moncorgé, J. L. Doualan, P. Camy, A. Ferrier, and M. Diaf, “Red-luminescence analysis of Pr3+ doped fluoride crystals,” J. Alloy. Comp. 451(1–2), 128–131 (2008).
[Crossref]

Chai, B. H. T.

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58(2), 149–151 (1994).
[Crossref]

Chartier, I.

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorgé, “Performance of various diode-pumped Nd:laser materials: Influence of inhomogeneous broadening,” IEEE J. Quantum Electron. 28(4), 1179–1187 (1992).
[Crossref]

Danger, T.

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58(2), 149–151 (1994).
[Crossref]

Diaf, M.

S. Khiari, M. Velazquez, R. Moncorgé, J. L. Doualan, P. Camy, A. Ferrier, and M. Diaf, “Red-luminescence analysis of Pr3+ doped fluoride crystals,” J. Alloy. Comp. 451(1–2), 128–131 (2008).
[Crossref]

Doualan, J. L.

B. Xu, Z. Liu, H. Y. Xu, Z. P. Cai, C. H. Zeng, S. L. Huang, Y. Yan, F. J. Wang, P. Camy, J. L. Doualan, A. Braud, and R. Moncorgé, “Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607nm,” Opt. Commun. 305, 96–99 (2013).
[Crossref]

B. Xu, P. Camy, J. L. Doualan, Z. P. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19(2), 1191–1197 (2011).
[Crossref] [PubMed]

S. Khiari, M. Velazquez, R. Moncorgé, J. L. Doualan, P. Camy, A. Ferrier, and M. Diaf, “Red-luminescence analysis of Pr3+ doped fluoride crystals,” J. Alloy. Comp. 451(1–2), 128–131 (2008).
[Crossref]

Esterowitz, L.

L. Esterowitz, F. J. Bartoli, R. E. Allen, D. E. Wortman, C. A. Morrison, and R. P. Leavitt, “Energy levels and line intensities ofPr3+ in LiYF4,” Phys. Rev. B 19(12), 6442–6455 (1979).
[Crossref]

Fan, T. Y.

T. Y. Fan and R. Byer, “Diode laser pumped solid state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

Ferrier, A.

S. Khiari, M. Velazquez, R. Moncorgé, J. L. Doualan, P. Camy, A. Ferrier, and M. Diaf, “Red-luminescence analysis of Pr3+ doped fluoride crystals,” J. Alloy. Comp. 451(1–2), 128–131 (2008).
[Crossref]

Gabbe, D. R.

J. L. Adam, W. A. Sibley, and D. R. Gabbe, “Optical absorption and emission of LiYF4:Pr3+,” J. Lumin. 33(4), 391–407 (1985).
[Crossref]

Garapon, C.

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorgé, “Performance of various diode-pumped Nd:laser materials: Influence of inhomogeneous broadening,” IEEE J. Quantum Electron. 28(4), 1179–1187 (1992).
[Crossref]

Gün, T.

Heumann, E.

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58(2), 149–151 (1994).
[Crossref]

Huang, S. L.

Z. Liu, Z. P. Cai, B. Xu, C. H. Zeng, S. L. Huang, F. J. Wang, Y. Yan, and H. Y. Xu, “Continuous-Wave Ultraviolet Generation at 349 nm by Intracavity Frequency Doubling of a Diode-Pumped Pr:LiYF4 Laser,” IEEE Photon. J. 5(4), 195005 (2013).

B. Xu, Z. Liu, H. Y. Xu, Z. P. Cai, C. H. Zeng, S. L. Huang, Y. Yan, F. J. Wang, P. Camy, J. L. Doualan, A. Braud, and R. Moncorgé, “Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607nm,” Opt. Commun. 305, 96–99 (2013).
[Crossref]

Z. Liu, Z. P. Cai, S. L. Huang, C. H. Zeng, Z. Y. Meng, Y. K. Bu, Z. Q. Luo, B. Xu, H. Y. Xu, C. C. Ye, F. Stareki, P. Camy, and R. Moncorgé, “Diode-pumped Pr3+:LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
[Crossref]

Huber, G.

P. W. Metz, F. Reichert, F. Moglia, S. Müller, D. T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr³⁺:LiYF₄ lasers,” Opt. Lett. 39(11), 3193–3196 (2014).
[Crossref] [PubMed]

T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm,” Opt. Lett. 36(6), 1002–1004 (2011).
[Crossref] [PubMed]

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99(18), 181103 (2011).
[Crossref]

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58(2), 149–151 (1994).
[Crossref]

Khiari, S.

S. Khiari, M. Velazquez, R. Moncorgé, J. L. Doualan, P. Camy, A. Ferrier, and M. Diaf, “Red-luminescence analysis of Pr3+ doped fluoride crystals,” J. Alloy. Comp. 451(1–2), 128–131 (2008).
[Crossref]

Kränkel, C.

Krupke, W. F.

Leavitt, R. P.

L. Esterowitz, F. J. Bartoli, R. E. Allen, D. E. Wortman, C. A. Morrison, and R. P. Leavitt, “Energy levels and line intensities ofPr3+ in LiYF4,” Phys. Rev. B 19(12), 6442–6455 (1979).
[Crossref]

Liu, Z.

Z. Liu, Z. P. Cai, S. L. Huang, C. H. Zeng, Z. Y. Meng, Y. K. Bu, Z. Q. Luo, B. Xu, H. Y. Xu, C. C. Ye, F. Stareki, P. Camy, and R. Moncorgé, “Diode-pumped Pr3+:LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
[Crossref]

Z. Liu, Z. P. Cai, B. Xu, C. H. Zeng, S. L. Huang, F. J. Wang, Y. Yan, and H. Y. Xu, “Continuous-Wave Ultraviolet Generation at 349 nm by Intracavity Frequency Doubling of a Diode-Pumped Pr:LiYF4 Laser,” IEEE Photon. J. 5(4), 195005 (2013).

B. Xu, Z. Liu, H. Y. Xu, Z. P. Cai, C. H. Zeng, S. L. Huang, Y. Yan, F. J. Wang, P. Camy, J. L. Doualan, A. Braud, and R. Moncorgé, “Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607nm,” Opt. Commun. 305, 96–99 (2013).
[Crossref]

Luo, Z. Q.

Marion, J. E.

Marzahl, D. T.

Meng, Z. Y.

Mermilliod, N.

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorgé, “Performance of various diode-pumped Nd:laser materials: Influence of inhomogeneous broadening,” IEEE J. Quantum Electron. 28(4), 1179–1187 (1992).
[Crossref]

Metz, P.

Metz, P. W.

Moglia, F.

Moncorgé, R.

Z. Liu, Z. P. Cai, S. L. Huang, C. H. Zeng, Z. Y. Meng, Y. K. Bu, Z. Q. Luo, B. Xu, H. Y. Xu, C. C. Ye, F. Stareki, P. Camy, and R. Moncorgé, “Diode-pumped Pr3+:LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
[Crossref]

B. Xu, Z. Liu, H. Y. Xu, Z. P. Cai, C. H. Zeng, S. L. Huang, Y. Yan, F. J. Wang, P. Camy, J. L. Doualan, A. Braud, and R. Moncorgé, “Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607nm,” Opt. Commun. 305, 96–99 (2013).
[Crossref]

B. Xu, P. Camy, J. L. Doualan, Z. P. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19(2), 1191–1197 (2011).
[Crossref] [PubMed]

S. Khiari, M. Velazquez, R. Moncorgé, J. L. Doualan, P. Camy, A. Ferrier, and M. Diaf, “Red-luminescence analysis of Pr3+ doped fluoride crystals,” J. Alloy. Comp. 451(1–2), 128–131 (2008).
[Crossref]

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorgé, “Performance of various diode-pumped Nd:laser materials: Influence of inhomogeneous broadening,” IEEE J. Quantum Electron. 28(4), 1179–1187 (1992).
[Crossref]

Morrison, C. A.

L. Esterowitz, F. J. Bartoli, R. E. Allen, D. E. Wortman, C. A. Morrison, and R. P. Leavitt, “Energy levels and line intensities ofPr3+ in LiYF4,” Phys. Rev. B 19(12), 6442–6455 (1979).
[Crossref]

Müller, S.

Reichert, F.

Romero, R.

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorgé, “Performance of various diode-pumped Nd:laser materials: Influence of inhomogeneous broadening,” IEEE J. Quantum Electron. 28(4), 1179–1187 (1992).
[Crossref]

Sandrock, T.

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58(2), 149–151 (1994).
[Crossref]

Shinn, M. D.

Sibley, W. A.

J. L. Adam, W. A. Sibley, and D. R. Gabbe, “Optical absorption and emission of LiYF4:Pr3+,” J. Lumin. 33(4), 391–407 (1985).
[Crossref]

Stareki, F.

Stokowski, S. E.

Velazquez, M.

S. Khiari, M. Velazquez, R. Moncorgé, J. L. Doualan, P. Camy, A. Ferrier, and M. Diaf, “Red-luminescence analysis of Pr3+ doped fluoride crystals,” J. Alloy. Comp. 451(1–2), 128–131 (2008).
[Crossref]

Wang, F. J.

Z. Liu, Z. P. Cai, B. Xu, C. H. Zeng, S. L. Huang, F. J. Wang, Y. Yan, and H. Y. Xu, “Continuous-Wave Ultraviolet Generation at 349 nm by Intracavity Frequency Doubling of a Diode-Pumped Pr:LiYF4 Laser,” IEEE Photon. J. 5(4), 195005 (2013).

B. Xu, Z. Liu, H. Y. Xu, Z. P. Cai, C. H. Zeng, S. L. Huang, Y. Yan, F. J. Wang, P. Camy, J. L. Doualan, A. Braud, and R. Moncorgé, “Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607nm,” Opt. Commun. 305, 96–99 (2013).
[Crossref]

Wortman, D. E.

L. Esterowitz, F. J. Bartoli, R. E. Allen, D. E. Wortman, C. A. Morrison, and R. P. Leavitt, “Energy levels and line intensities ofPr3+ in LiYF4,” Phys. Rev. B 19(12), 6442–6455 (1979).
[Crossref]

Xu, B.

B. Xu, Z. Liu, H. Y. Xu, Z. P. Cai, C. H. Zeng, S. L. Huang, Y. Yan, F. J. Wang, P. Camy, J. L. Doualan, A. Braud, and R. Moncorgé, “Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607nm,” Opt. Commun. 305, 96–99 (2013).
[Crossref]

Z. Liu, Z. P. Cai, B. Xu, C. H. Zeng, S. L. Huang, F. J. Wang, Y. Yan, and H. Y. Xu, “Continuous-Wave Ultraviolet Generation at 349 nm by Intracavity Frequency Doubling of a Diode-Pumped Pr:LiYF4 Laser,” IEEE Photon. J. 5(4), 195005 (2013).

Z. Liu, Z. P. Cai, S. L. Huang, C. H. Zeng, Z. Y. Meng, Y. K. Bu, Z. Q. Luo, B. Xu, H. Y. Xu, C. C. Ye, F. Stareki, P. Camy, and R. Moncorgé, “Diode-pumped Pr3+:LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
[Crossref]

B. Xu, P. Camy, J. L. Doualan, Z. P. Cai, and R. Moncorgé, “Visible laser operation of Pr3+-doped fluoride crystals pumped by a 469 nm blue laser,” Opt. Express 19(2), 1191–1197 (2011).
[Crossref] [PubMed]

Xu, H. Y.

Z. Liu, Z. P. Cai, S. L. Huang, C. H. Zeng, Z. Y. Meng, Y. K. Bu, Z. Q. Luo, B. Xu, H. Y. Xu, C. C. Ye, F. Stareki, P. Camy, and R. Moncorgé, “Diode-pumped Pr3+:LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
[Crossref]

B. Xu, Z. Liu, H. Y. Xu, Z. P. Cai, C. H. Zeng, S. L. Huang, Y. Yan, F. J. Wang, P. Camy, J. L. Doualan, A. Braud, and R. Moncorgé, “Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607nm,” Opt. Commun. 305, 96–99 (2013).
[Crossref]

Z. Liu, Z. P. Cai, B. Xu, C. H. Zeng, S. L. Huang, F. J. Wang, Y. Yan, and H. Y. Xu, “Continuous-Wave Ultraviolet Generation at 349 nm by Intracavity Frequency Doubling of a Diode-Pumped Pr:LiYF4 Laser,” IEEE Photon. J. 5(4), 195005 (2013).

Yan, Y.

B. Xu, Z. Liu, H. Y. Xu, Z. P. Cai, C. H. Zeng, S. L. Huang, Y. Yan, F. J. Wang, P. Camy, J. L. Doualan, A. Braud, and R. Moncorgé, “Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607nm,” Opt. Commun. 305, 96–99 (2013).
[Crossref]

Z. Liu, Z. P. Cai, B. Xu, C. H. Zeng, S. L. Huang, F. J. Wang, Y. Yan, and H. Y. Xu, “Continuous-Wave Ultraviolet Generation at 349 nm by Intracavity Frequency Doubling of a Diode-Pumped Pr:LiYF4 Laser,” IEEE Photon. J. 5(4), 195005 (2013).

Ye, C. C.

Zeng, C. H.

Z. Liu, Z. P. Cai, S. L. Huang, C. H. Zeng, Z. Y. Meng, Y. K. Bu, Z. Q. Luo, B. Xu, H. Y. Xu, C. C. Ye, F. Stareki, P. Camy, and R. Moncorgé, “Diode-pumped Pr3+:LiYF4 continuous-wave deep red laser at 698 nm,” J. Opt. Soc. Am. B 30(2), 302–305 (2013).
[Crossref]

Z. Liu, Z. P. Cai, B. Xu, C. H. Zeng, S. L. Huang, F. J. Wang, Y. Yan, and H. Y. Xu, “Continuous-Wave Ultraviolet Generation at 349 nm by Intracavity Frequency Doubling of a Diode-Pumped Pr:LiYF4 Laser,” IEEE Photon. J. 5(4), 195005 (2013).

B. Xu, Z. Liu, H. Y. Xu, Z. P. Cai, C. H. Zeng, S. L. Huang, Y. Yan, F. J. Wang, P. Camy, J. L. Doualan, A. Braud, and R. Moncorgé, “Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607nm,” Opt. Commun. 305, 96–99 (2013).
[Crossref]

Appl. Phys. B (1)

T. Sandrock, T. Danger, E. Heumann, G. Huber, and B. H. T. Chai, “Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature,” Appl. Phys. B 58(2), 149–151 (1994).
[Crossref]

Appl. Phys. Lett. (1)

T. Gün, P. Metz, and G. Huber, “Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm,” Appl. Phys. Lett. 99(18), 181103 (2011).
[Crossref]

IEEE J. Quantum Electron. (2)

T. Y. Fan and R. Byer, “Diode laser pumped solid state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[Crossref]

N. Mermilliod, R. Romero, I. Chartier, C. Garapon, and R. Moncorgé, “Performance of various diode-pumped Nd:laser materials: Influence of inhomogeneous broadening,” IEEE J. Quantum Electron. 28(4), 1179–1187 (1992).
[Crossref]

IEEE Photon. J. (1)

Z. Liu, Z. P. Cai, B. Xu, C. H. Zeng, S. L. Huang, F. J. Wang, Y. Yan, and H. Y. Xu, “Continuous-Wave Ultraviolet Generation at 349 nm by Intracavity Frequency Doubling of a Diode-Pumped Pr:LiYF4 Laser,” IEEE Photon. J. 5(4), 195005 (2013).

J. Alloy. Comp. (1)

S. Khiari, M. Velazquez, R. Moncorgé, J. L. Doualan, P. Camy, A. Ferrier, and M. Diaf, “Red-luminescence analysis of Pr3+ doped fluoride crystals,” J. Alloy. Comp. 451(1–2), 128–131 (2008).
[Crossref]

J. Lumin. (1)

J. L. Adam, W. A. Sibley, and D. R. Gabbe, “Optical absorption and emission of LiYF4:Pr3+,” J. Lumin. 33(4), 391–407 (1985).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

B. Xu, Z. Liu, H. Y. Xu, Z. P. Cai, C. H. Zeng, S. L. Huang, Y. Yan, F. J. Wang, P. Camy, J. L. Doualan, A. Braud, and R. Moncorgé, “Highly efficient InGaN-LD-pumped bulk Pr:YLF orange laser at 607nm,” Opt. Commun. 305, 96–99 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

L. Esterowitz, F. J. Bartoli, R. E. Allen, D. E. Wortman, C. A. Morrison, and R. P. Leavitt, “Energy levels and line intensities ofPr3+ in LiYF4,” Phys. Rev. B 19(12), 6442–6455 (1979).
[Crossref]

Other (1)

A. Richter, Laser Parameters and Performance of Pr3+-doped Fluorides Operating in the Visible Spectral Region (Cuvillier Verlag, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Energy levels and laser transitions in the around Pr3+:LiYF4 laser crystal. emission domains.
Fig. 2
Fig. 2 Polarized emission spectra of Pr3+:LiYF4 900 nm, and assignment of the main.
Fig. 3
Fig. 3 Output power versus absorbed pump power laser power laser curves at 907 nm.
Fig. 4
Fig. 4 Output power versus absorbed pump curves at 915 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ ε ( P 3 0 G 1 4 )= 3 λ 5 β( P 3 0 G 1 4 ) 8π n 2 c τ rad I ε (λ) λ[ I π (λ)+2 I σ (λ) ]dλ
P th = πh ν p 4 σ e τ f ( ω p 2 + ω l 2 )[ γln(1T) ]
η slope = λ p λ l T T+γ η m ,

Metrics