Abstract

Herein, we will propose a new application possibility of epsilon-near-zero (ENZ) materials: high resolution wide-field imaging. We show that the resolution can be dramatically enhanced by simply inserting a thin epsilon-near-zero (ENZ) material between the sample and substrate. By performing metal half-plane imaging, we experimentally demonstrate that the resolution could be enhanced by about 47% with a 300-nm-thick SiO2 interlayer, an ENZ material at 8-μm-wavelength (1250 cm−1). The physical origin of the resolution enhancement is the strong conversion of diffracted near fields to quasi-zeroth order far fields enabled by the directive emission of ENZ materials.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared nanospectroscopy of Berreman mode and epsilon-near-zero local field confinement in thin films

Timur Shaykhutdinov, Andreas Furchner, Jörg Rappich, and Karsten Hinrichs
Opt. Mater. Express 7(10) 3706-3714 (2017)

Wide-angle transmissions of electromagnetic fields through the sandwiched transparent epsilon-near-zero metamaterial screen

Rui Yang, Pei Yang, Yongchao Chen, Jiacheng Li, and Zhenya Lei
Opt. Lett. 43(1) 5-8 (2018)

Accumulation and directionality of large spontaneous emission enabled by epsilon-near-zero film

Xueke Duan, Fan Zhang, Zhiyuan Qian, He Hao, Lingxiao Shan, Qihuang Gong, and Ying Gu
Opt. Express 27(5) 7426-7434 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2006).
  2. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
    [Crossref]
  3. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
    [Crossref]
  4. J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn, and D. S. Kim, “Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism,” Opt. Commun. 283(24), 4907–4910 (2010).
    [Crossref]
  5. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-Near-Zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
    [Crossref] [PubMed]
  6. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
    [Crossref] [PubMed]
  7. A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antenn. Propag. 54(6), 1632–1643 (2006).
    [Crossref]
  8. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
    [Crossref]
  9. L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett. 86(10), 101101 (2005).
    [Crossref]
  10. A. Ourir, R. Abdeddaim, and J. de Rosny, “Planar metamaterial based on hybridization for directive emission,” Opt. Express 20(16), 17545–17551 (2012).
    [Crossref] [PubMed]
  11. P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
    [Crossref]
  12. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  13. P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).
    [Crossref] [PubMed]
  14. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  15. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  16. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
    [Crossref]
  17. J. H. Kang, D. S. Kim, and Q. H. Park, “Local Capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
    [Crossref] [PubMed]
  18. Y. Jin, P. Zhang, and S. He, “Abnormal enhancement of electric field inside a thin permittivity-near-zero object in free space,” Phys. Rev. B 82(7), 075118 (2010).
    [Crossref]
  19. S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87, 035120 (2013).
    [Crossref]
  20. S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing.
  21. C. Gyu Cheon, C. Hou-Tong, K. Simon, K. Nicholas, and K. Roland, “Apertureless terahertz near-field microscopy,” Semicond. Sci. Technol. 20(7), S286–S292 (2005).
    [Crossref]
  22. L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, “Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy,” Nat. Med. 3(2), 235–237 (1997).
    [Crossref] [PubMed]
  23. M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
    [Crossref] [PubMed]
  24. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of Epsilon-Near-Zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
    [Crossref] [PubMed]
  25. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an Epsilon-Near-Zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
    [Crossref] [PubMed]
  26. E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
    [Crossref] [PubMed]
  27. R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
    [Crossref]

2013 (4)

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87, 035120 (2013).
[Crossref]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

2012 (1)

2011 (1)

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

2010 (2)

J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn, and D. S. Kim, “Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism,” Opt. Commun. 283(24), 4907–4910 (2010).
[Crossref]

Y. Jin, P. Zhang, and S. He, “Abnormal enhancement of electric field inside a thin permittivity-near-zero object in free space,” Phys. Rev. B 82(7), 075118 (2010).
[Crossref]

2009 (2)

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

J. H. Kang, D. S. Kim, and Q. H. Park, “Local Capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[Crossref] [PubMed]

2008 (2)

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of Epsilon-Near-Zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an Epsilon-Near-Zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

2007 (2)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

2006 (4)

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antenn. Propag. 54(6), 1632–1643 (2006).
[Crossref]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-Near-Zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).
[Crossref] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

2005 (2)

C. Gyu Cheon, C. Hou-Tong, K. Simon, K. Nicholas, and K. Roland, “Apertureless terahertz near-field microscopy,” Semicond. Sci. Technol. 20(7), S286–S292 (2005).
[Crossref]

L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett. 86(10), 101101 (2005).
[Crossref]

2002 (1)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

1999 (1)

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[Crossref]

1997 (1)

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, “Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy,” Nat. Med. 3(2), 235–237 (1997).
[Crossref] [PubMed]

1990 (1)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[Crossref]

Abdeddaim, R.

Ahn, K. J.

J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn, and D. S. Kim, “Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism,” Opt. Commun. 283(24), 4907–4910 (2010).
[Crossref]

Alekseyev, L. V.

Alu, A.

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antenn. Propag. 54(6), 1632–1643 (2006).
[Crossref]

Alù, A.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of Epsilon-Near-Zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Anderson, Z.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Bhargava, R.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Bilotti, F.

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antenn. Propag. 54(6), 1632–1643 (2006).
[Crossref]

Briggs, D. P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Caglayan, H.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Campione, S.

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87, 035120 (2013).
[Crossref]

Capolino, F.

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87, 035120 (2013).
[Crossref]

Chan, C. T.

L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett. 86(10), 101101 (2005).
[Crossref]

Cheng, Q.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an Epsilon-Near-Zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Choi, S. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Coenen, T.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Cui, T. J.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an Epsilon-Near-Zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Cummer, S. A.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an Epsilon-Near-Zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

de Ceglia, D.

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87, 035120 (2013).
[Crossref]

de Rosny, J.

Edwards, B.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of Epsilon-Near-Zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Engheta, N.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of Epsilon-Near-Zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antenn. Propag. 54(6), 1632–1643 (2006).
[Crossref]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-Near-Zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

Enoch, S.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Feke, G. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[Crossref]

Ghislain, L. P.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[Crossref]

Grober, R. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[Crossref]

Guérin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Gyu Cheon, C.

C. Gyu Cheon, C. Hou-Tong, K. Simon, K. Nicholas, and K. Roland, “Apertureless terahertz near-field microscopy,” Semicond. Sci. Technol. 20(7), S286–S292 (2005).
[Crossref]

Hand, T.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an Epsilon-Near-Zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

He, S.

Y. Jin, P. Zhang, and S. He, “Abnormal enhancement of electric field inside a thin permittivity-near-zero object in free space,” Phys. Rev. B 82(7), 075118 (2010).
[Crossref]

Hirschmugl, C. J.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Hou-Tong, C.

C. Gyu Cheon, C. Hou-Tong, K. Simon, K. Nicholas, and K. Roland, “Apertureless terahertz near-field microscopy,” Semicond. Sci. Technol. 20(7), S286–S292 (2005).
[Crossref]

Jacob, Z.

Jin, Y.

Y. Jin, P. Zhang, and S. He, “Abnormal enhancement of electric field inside a thin permittivity-near-zero object in free space,” Phys. Rev. B 82(7), 075118 (2010).
[Crossref]

Kajdacsy-Balla, A.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Kalasinsky, V. F.

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, “Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy,” Nat. Med. 3(2), 235–237 (1997).
[Crossref] [PubMed]

Kang, J. H.

J. H. Kang, D. S. Kim, and Q. H. Park, “Local Capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[Crossref] [PubMed]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Kidder, L. H.

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, “Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy,” Nat. Med. 3(2), 235–237 (1997).
[Crossref] [PubMed]

Kim, D. S.

J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn, and D. S. Kim, “Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism,” Opt. Commun. 283(24), 4907–4910 (2010).
[Crossref]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

J. H. Kang, D. S. Kim, and Q. H. Park, “Local Capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[Crossref] [PubMed]

Kino, G. S.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[Crossref]

Koo, S. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Kravchenko, I. I.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Kyoung, J. S.

J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn, and D. S. Kim, “Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism,” Opt. Commun. 283(24), 4907–4910 (2010).
[Crossref]

Lasch, P.

P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).
[Crossref] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Levin, I. W.

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, “Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy,” Nat. Med. 3(2), 235–237 (1997).
[Crossref] [PubMed]

Lewis, E. N.

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, “Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy,” Nat. Med. 3(2), 235–237 (1997).
[Crossref] [PubMed]

Li, H.

L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett. 86(10), 101101 (2005).
[Crossref]

Liu, R.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an Epsilon-Near-Zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Luke, J. L.

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, “Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy,” Nat. Med. 3(2), 235–237 (1997).
[Crossref] [PubMed]

Maas, R.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Macias, V.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[Crossref]

Mattson, E. C.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Mock, J. J.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an Epsilon-Near-Zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Moitra, P.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Narimanov, E.

Nasse, M. J.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Naumann, D.

P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).
[Crossref] [PubMed]

Nicholas, K.

C. Gyu Cheon, C. Hou-Tong, K. Simon, K. Nicholas, and K. Roland, “Apertureless terahertz near-field microscopy,” Semicond. Sci. Technol. 20(7), S286–S292 (2005).
[Crossref]

Ourir, A.

Park, D. J.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Park, G. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Park, H. R.

J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn, and D. S. Kim, “Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism,” Opt. Commun. 283(24), 4907–4910 (2010).
[Crossref]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Park, N. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Park, Q. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

J. H. Kang, D. S. Kim, and Q. H. Park, “Local Capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[Crossref] [PubMed]

Parsons, J.

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Planken, P. C. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Polman, A.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

Qin, Y.

L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett. 86(10), 101101 (2005).
[Crossref]

Reininger, R.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Roland, K.

C. Gyu Cheon, C. Hou-Tong, K. Simon, K. Nicholas, and K. Roland, “Apertureless terahertz near-field microscopy,” Semicond. Sci. Technol. 20(7), S286–S292 (2005).
[Crossref]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Salandrino, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Scalora, M.

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87, 035120 (2013).
[Crossref]

Seo, M. A.

J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn, and D. S. Kim, “Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism,” Opt. Commun. 283(24), 4907–4910 (2010).
[Crossref]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Silveirinha, M.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of Epsilon-Near-Zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-Near-Zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

Silveirinha, M. G.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Simon, K.

C. Gyu Cheon, C. Hou-Tong, K. Simon, K. Nicholas, and K. Roland, “Apertureless terahertz near-field microscopy,” Semicond. Sci. Technol. 20(7), S286–S292 (2005).
[Crossref]

Smith, D. R.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an Epsilon-Near-Zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Smith, S. W.

S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing.

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Suwal, O. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Valentine, J.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Vegni, L.

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antenn. Propag. 54(6), 1632–1643 (2006).
[Crossref]

Vesseur, E. J. R.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

Vincenti, M. A.

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87, 035120 (2013).
[Crossref]

Walsh, M. J.

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Wei, Z.

L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett. 86(10), 101101 (2005).
[Crossref]

Wu, Q.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[Crossref]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Yang, Y.

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

Young, M. E.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of Epsilon-Near-Zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Zhang, P.

Y. Jin, P. Zhang, and S. He, “Abnormal enhancement of electric field inside a thin permittivity-near-zero object in free space,” Phys. Rev. B 82(7), 075118 (2010).
[Crossref]

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Zhou, L.

L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett. 86(10), 101101 (2005).
[Crossref]

Appl. Phys. Lett. (3)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2616 (1990).
[Crossref]

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75(26), 4064–4066 (1999).
[Crossref]

L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett. 86(10), 101101 (2005).
[Crossref]

Biochim. Biophys. Acta (1)

P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).
[Crossref] [PubMed]

IEEE Trans. Antenn. Propag. (1)

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antenn. Propag. 54(6), 1632–1643 (2006).
[Crossref]

Nat. Med. (1)

L. H. Kidder, V. F. Kalasinsky, J. L. Luke, I. W. Levin, and E. N. Lewis, “Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy,” Nat. Med. 3(2), 235–237 (1997).
[Crossref] [PubMed]

Nat. Methods (1)

M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, and C. J. Hirschmugl, “High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams,” Nat. Methods 8(5), 413–416 (2011).
[Crossref] [PubMed]

Nat. Photonics (3)

R. Maas, J. Parsons, N. Engheta, and A. Polman, “Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths,” Nat. Photonics 7(11), 907–912 (2013).
[Crossref]

P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Realization of an all-dielectric zero-index optical metamaterial,” Nat. Photonics 7(10), 791–795 (2013).
[Crossref]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3(3), 152–156 (2009).
[Crossref]

Opt. Commun. (1)

J. S. Kyoung, M. A. Seo, H. R. Park, K. J. Ahn, and D. S. Kim, “Far field detection of terahertz near field enhancement of sub-wavelength slits using Kirchhoff integral formalism,” Opt. Commun. 283(24), 4907–4910 (2010).
[Crossref]

Opt. Express (2)

Phys. Rev. B (3)

Y. Jin, P. Zhang, and S. He, “Abnormal enhancement of electric field inside a thin permittivity-near-zero object in free space,” Phys. Rev. B 82(7), 075118 (2010).
[Crossref]

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87, 035120 (2013).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Phys. Rev. Lett. (6)

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-Near-Zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref] [PubMed]

J. H. Kang, D. S. Kim, and Q. H. Park, “Local Capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett. 102(9), 093906 (2009).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of Epsilon-Near-Zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an Epsilon-Near-Zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref] [PubMed]

Science (1)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

C. Gyu Cheon, C. Hou-Tong, K. Simon, K. Nicholas, and K. Roland, “Apertureless terahertz near-field microscopy,” Semicond. Sci. Technol. 20(7), S286–S292 (2005).
[Crossref]

Other (3)

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University, 2006).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Diffracted light profile (a) without lens, (b) with solid immersion lens and (c) with ENZ meta-lens.
Fig. 2
Fig. 2 (a) Transmission spectrum of 300-nm-thick-SiO2 film on Si substrate. (b) Real part (blue line) and imaginary part (red line) of the dielectric constants of SiO2 film.
Fig. 3
Fig. 3 (a) Microscope image of group number 6 of standard USAF 1951 resolution target. The bar widths are 7.8 μm (6-1), 7.0 μm (6-2), 6.2 μm (6-3), and 5.5 μm (6-4), respectively. Imaging of the resolution target fabricated on (b) Si and (c) SiO2/Si substrates at 8 μm.
Fig. 4
Fig. 4 Plot of Poynting vector (a) without and (b) with the SiO2 layer. Near field distributions around the bar edge (square dotted region in (a) and (b)) (c) without and (d) with the SiO2 layer.
Fig. 5
Fig. 5 Absorbance imaging of metal half plane (a) without and (b) with the SiO2 layer. (c) Edge-response along the white dotted lines in part (a). (d) Edge-response along the white dotted lines in part (b) at 4-μm (red line), 8-μm (green line), and 11-μm wavelength (blue line). (e) Normalized resolution (resolution/wavelength) for Si (black line) and SiO2/Si (red line) substrates.
Fig. 6
Fig. 6 Poynting vector plot at 8-μm-wavelength passing through a GaAs strip placed on ENZ-meta lens shows strong directive emission.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δx=0.61·λ/ NA

Metrics