Abstract

We demonstrate a multiwavelength laser at 2 µm based on a hybrid gain scheme consisting of a Brillouin gain medium and a thulium-doped fiber. The laser has switchable frequency spacing, corresponding to the single and double Brillouin frequency shifts. In the 20 dB bandwidth, seven lasing channels with a frequency spacing of 0.1 nm (7.62 GHz) and eleven channels with a double-spacing of 0.2 nm (15.24 GHz) are obtained. A wavelength tunability of 1.3 nm is realized for both laser configurations by shifting the pump wavelength. Strong four wave mixing is observed in the double-spacing laser resulting in an improved performance: larger number of channels and better temporal stability.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
S-band multiwavelength ring Brillouin/Raman fiber laser with 20 GHz channel spacing

H. Ahmad, M. Z. Zulkifli, N. A. Hassan, and S. W. Harun
Appl. Opt. 51(11) 1811-1815 (2012)

Triple Brillouin frequency spacing multiwavelength fiber laser with double Brillouin cavities and its application in microwave signal generation

Zhen Wang, Tianshu Wang, Qingsong Jia, Wanzhuo Ma, Qingchao Su, and Peng Zhang
Appl. Opt. 56(26) 7419-7426 (2017)

Frequency spacing switchable multiwavelength Brillouin erbium fiber laser utilizing cascaded Brillouin gain fibers

Xiaorui Wang, Yanfu Yang, Meng Liu, Yijun Yuan, Yunxu Sun, Yinglong Gu, and Yong Yao
Appl. Opt. 55(23) 6475-6479 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. G. Shee, M. H. Al-Mansoori, S. Yaakob, A. Man, A. K. Zamzuri, F. R. Adikan, and M. A. Mahdi, “Millimeter wave carrier generation based on a double-Brillouin-frequency spaced fiber laser,” Opt. Express 20(12), 13402–13408 (2012).
    [Crossref] [PubMed]
  2. Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
    [Crossref]
  3. A. Bellemare, M. Rochette, and S. LaRochelle, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18(6), 825–831 (2000).
    [Crossref]
  4. L. Talaverano, S. Abad, S. Jarabo, and M. Lopez-Amo, “Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability,” J. Lightwave Technol. 19(4), 553–558 (2001).
    [Crossref]
  5. R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B 87(1), 157–162 (2007).
    [Crossref]
  6. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
    [Crossref]
  7. M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
    [Crossref] [PubMed]
  8. N. M. Suibhne, Z. Li, B. Baeuerle, J. Zhao, J. Wooler, S. Alam, F. Poletti, M. Petrovich, A. Heidt, N. Wheeler, N. Baddela, E. R. N. Fokoua, I. Giles, D. Giles, R. Phelan, J. O'Carroll, B. Kelly, B. Corbett, D. Murphy, A. D. Ellis, D. J. Richardson, and F. Garcia Gunning, “WDM Transmission at 2μm over Low-Loss Hollow Core Photonic Bandgap Fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, (Optical Society of America,2013), paper OW1I.6.
  9. S. Zhao, P. Lu, D. Liu, and J. Zhang, “Switchable multiwavelength thulium-doped fiber ring lasers,” Opt. Eng. 52(8), 086105 (2013).
    [Crossref]
  10. X. Wang, Y. Zhu, P. Zhou, X. Wang, H. Xiao, and L. Si, “Tunable, multiwavelength Tm-doped fiber laser based on polarization rotation and four-wave-mixing effect,” Opt. Express 21(22), 25977–25984 (2013).
    [Crossref] [PubMed]
  11. W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
    [Crossref]
  12. X. Wang, P. Zhou, H. Xiao, and L. Si, “Multiwavelength Brillouin-thulium fiber laser,” Photonics J. 6(1), 1500507 (2014).
  13. Y. Luo, Y. Tang, J. Yang, Y. Wang, S. Wang, K. Tao, L. Zhan, and J. Xu, “High signal-to-noise ratio, single-frequency 2 μm Brillouin fiber laser,” Opt. Lett. 39(9), 2626–2628 (2014).
    [Crossref] [PubMed]
  14. S. Qin, D. Chen, Y. Tang, and S. He, “Stable and uniform multi-wavelength fiber laser based on hybrid Raman and Erbium-doped fiber gains,” Opt. Express 14(22), 10522–10527 (2006).
    [Crossref] [PubMed]
  15. D. N. Wang, F. W. Tong, X. Fang, W. Jin, P. K. A. Wai, and J. M. Gong, “Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium,” Opt. Commun. 228(4), 295–301 (2003).
    [Crossref]
  16. Y. S. Hurh, G. S. Hwang, J. Y. Jeon, K. G. Lee, K. W. Shin, S. S. Lee, K. Y. Yi, and J. S. Lee, “1-Tb/s (100× 12.4 gb/s) transmission of 12.5-GHz-spaced ultradense WDM channels over a standard single-mode fiber of 1200 km,” IEEE Photon. Technol. Lett. 17(3), 696–698 (2005).
    [Crossref]
  17. G. S. Hwang, U. S. Pyun, S. H. Kim, Y. Chung, J. S. Lee, and B. W. Kim, “2.5-Tb/s (256× 12.4 Gb/s) Transmission of 12.5-GHz-Spaced Ultra-dense WDM Channels over a Standard Single-Mode Fiber of 2000 km,” in Optical Fiber Communication Conference 2007, (Optical Society of America,2007), paper JWA42.
  18. Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
    [Crossref] [PubMed]
  19. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold,” Opt. Lett. 7(10), 509–511 (1982).
    [Crossref] [PubMed]
  20. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academinc, 2003).
  21. Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing,” Opt. Express 19(3), 1699–1706 (2011).
    [Crossref] [PubMed]
  22. D. Chen, “Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter,” Laser Phys. Lett. 4(6), 437–439 (2007).
    [Crossref]
  23. J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multiwavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express 19(15), 14682–14689 (2011).
    [Crossref] [PubMed]
  24. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21(5), 336–338 (1996).
    [Crossref] [PubMed]
  25. I. V. Kabakova, R. Pant, D.-Y. Choi, S. Debbarma, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Narrow linewidth Brillouin laser based on chalcogenide photonic chip,” Opt. Lett. 38(17), 3208–3211 (2013).
    [PubMed]
  26. K. Hu, I. V. Kabakova, T. F. S. Büttner, S. Lefrancois, D. D. Hudson, S. He, and B. J. Eggleton, “Low-threshold Brillouin laser at 2 μm based on suspended-core chalcogenide fiber,” Opt. Lett. 39(16), 4651–4654 (2014).
    [Crossref] [PubMed]
  27. T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and Pulse Generation in Multi-Frequency Brillouin Oscillator via Four Wave Mixing,” Sci. Rep. 4, 5032 (2014).
    [Crossref] [PubMed]

2014 (4)

X. Wang, P. Zhou, H. Xiao, and L. Si, “Multiwavelength Brillouin-thulium fiber laser,” Photonics J. 6(1), 1500507 (2014).

Y. Luo, Y. Tang, J. Yang, Y. Wang, S. Wang, K. Tao, L. Zhan, and J. Xu, “High signal-to-noise ratio, single-frequency 2 μm Brillouin fiber laser,” Opt. Lett. 39(9), 2626–2628 (2014).
[Crossref] [PubMed]

K. Hu, I. V. Kabakova, T. F. S. Büttner, S. Lefrancois, D. D. Hudson, S. He, and B. J. Eggleton, “Low-threshold Brillouin laser at 2 μm based on suspended-core chalcogenide fiber,” Opt. Lett. 39(16), 4651–4654 (2014).
[Crossref] [PubMed]

T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and Pulse Generation in Multi-Frequency Brillouin Oscillator via Four Wave Mixing,” Sci. Rep. 4, 5032 (2014).
[Crossref] [PubMed]

2013 (6)

I. V. Kabakova, R. Pant, D.-Y. Choi, S. Debbarma, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Narrow linewidth Brillouin laser based on chalcogenide photonic chip,” Opt. Lett. 38(17), 3208–3211 (2013).
[PubMed]

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

S. Zhao, P. Lu, D. Liu, and J. Zhang, “Switchable multiwavelength thulium-doped fiber ring lasers,” Opt. Eng. 52(8), 086105 (2013).
[Crossref]

X. Wang, Y. Zhu, P. Zhou, X. Wang, H. Xiao, and L. Si, “Tunable, multiwavelength Tm-doped fiber laser based on polarization rotation and four-wave-mixing effect,” Opt. Express 21(22), 25977–25984 (2013).
[Crossref] [PubMed]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

2012 (1)

2011 (2)

2009 (1)

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

2007 (2)

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B 87(1), 157–162 (2007).
[Crossref]

D. Chen, “Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter,” Laser Phys. Lett. 4(6), 437–439 (2007).
[Crossref]

2006 (2)

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
[Crossref]

S. Qin, D. Chen, Y. Tang, and S. He, “Stable and uniform multi-wavelength fiber laser based on hybrid Raman and Erbium-doped fiber gains,” Opt. Express 14(22), 10522–10527 (2006).
[Crossref] [PubMed]

2005 (1)

Y. S. Hurh, G. S. Hwang, J. Y. Jeon, K. G. Lee, K. W. Shin, S. S. Lee, K. Y. Yi, and J. S. Lee, “1-Tb/s (100× 12.4 gb/s) transmission of 12.5-GHz-spaced ultradense WDM channels over a standard single-mode fiber of 1200 km,” IEEE Photon. Technol. Lett. 17(3), 696–698 (2005).
[Crossref]

2003 (1)

D. N. Wang, F. W. Tong, X. Fang, W. Jin, P. K. A. Wai, and J. M. Gong, “Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium,” Opt. Commun. 228(4), 295–301 (2003).
[Crossref]

2001 (1)

2000 (1)

1996 (1)

1982 (1)

Abad, S.

Adikan, F. R.

Alam, S. U.

Al-Mansoori, M. H.

Baddela, N. K.

Becker, M.

Bellemare, A.

Bergano, N. S.

Büttner, T. F. S.

T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and Pulse Generation in Multi-Frequency Brillouin Oscillator via Four Wave Mixing,” Sci. Rep. 4, 5032 (2014).
[Crossref] [PubMed]

K. Hu, I. V. Kabakova, T. F. S. Büttner, S. Lefrancois, D. D. Hudson, S. He, and B. J. Eggleton, “Low-threshold Brillouin laser at 2 μm based on suspended-core chalcogenide fiber,” Opt. Lett. 39(16), 4651–4654 (2014).
[Crossref] [PubMed]

Chen, D.

D. Chen, “Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter,” Laser Phys. Lett. 4(6), 437–439 (2007).
[Crossref]

S. Qin, D. Chen, Y. Tang, and S. He, “Stable and uniform multi-wavelength fiber laser based on hybrid Raman and Erbium-doped fiber gains,” Opt. Express 14(22), 10522–10527 (2006).
[Crossref] [PubMed]

Chen, T.

Chen, X.

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
[Crossref]

Chodorow, M.

Choi, D.-Y.

Dai, Y.

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
[Crossref]

Daniel, J. M. O.

Davidson, C. R.

Debbarma, S.

Eggleton, B. J.

Ellis, A. D.

Fang, X.

D. N. Wang, F. W. Tong, X. Fang, W. Jin, P. K. A. Wai, and J. M. Gong, “Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium,” Opt. Commun. 228(4), 295–301 (2003).
[Crossref]

Feng, T.

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

Gong, J. M.

D. N. Wang, F. W. Tong, X. Fang, W. Jin, P. K. A. Wai, and J. M. Gong, “Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium,” Opt. Commun. 228(4), 295–301 (2003).
[Crossref]

Gray, D. R.

Gruner-Nielsen, L.

Gunning, F. C.

Hayes, J. R.

He, S.

Heidt, A. M.

Hitam, S.

Hu, K.

Huang, T.

Hudson, D. D.

K. Hu, I. V. Kabakova, T. F. S. Büttner, S. Lefrancois, D. D. Hudson, S. He, and B. J. Eggleton, “Low-threshold Brillouin laser at 2 μm based on suspended-core chalcogenide fiber,” Opt. Lett. 39(16), 4651–4654 (2014).
[Crossref] [PubMed]

T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and Pulse Generation in Multi-Frequency Brillouin Oscillator via Four Wave Mixing,” Sci. Rep. 4, 5032 (2014).
[Crossref] [PubMed]

Hurh, Y. S.

Y. S. Hurh, G. S. Hwang, J. Y. Jeon, K. G. Lee, K. W. Shin, S. S. Lee, K. Y. Yi, and J. S. Lee, “1-Tb/s (100× 12.4 gb/s) transmission of 12.5-GHz-spaced ultradense WDM channels over a standard single-mode fiber of 1200 km,” IEEE Photon. Technol. Lett. 17(3), 696–698 (2005).
[Crossref]

Hwang, G. S.

Y. S. Hurh, G. S. Hwang, J. Y. Jeon, K. G. Lee, K. W. Shin, S. S. Lee, K. Y. Yi, and J. S. Lee, “1-Tb/s (100× 12.4 gb/s) transmission of 12.5-GHz-spaced ultradense WDM channels over a standard single-mode fiber of 1200 km,” IEEE Photon. Technol. Lett. 17(3), 696–698 (2005).
[Crossref]

Ismail, A.

Jarabo, S.

Jeon, J. Y.

Y. S. Hurh, G. S. Hwang, J. Y. Jeon, K. G. Lee, K. W. Shin, S. S. Lee, K. Y. Yi, and J. S. Lee, “1-Tb/s (100× 12.4 gb/s) transmission of 12.5-GHz-spaced ultradense WDM channels over a standard single-mode fiber of 1200 km,” IEEE Photon. Technol. Lett. 17(3), 696–698 (2005).
[Crossref]

Jin, W.

D. N. Wang, F. W. Tong, X. Fang, W. Jin, P. K. A. Wai, and J. M. Gong, “Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium,” Opt. Commun. 228(4), 295–301 (2003).
[Crossref]

Judge, A. C.

T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and Pulse Generation in Multi-Frequency Brillouin Oscillator via Four Wave Mixing,” Sci. Rep. 4, 5032 (2014).
[Crossref] [PubMed]

Judkins, J. B.

Jung, Y.

Kabakova, I. V.

Kelly, B.

Kosterev, A. A.

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B 87(1), 157–162 (2007).
[Crossref]

LaRochelle, S.

Lee, J. S.

Y. S. Hurh, G. S. Hwang, J. Y. Jeon, K. G. Lee, K. W. Shin, S. S. Lee, K. Y. Yi, and J. S. Lee, “1-Tb/s (100× 12.4 gb/s) transmission of 12.5-GHz-spaced ultradense WDM channels over a standard single-mode fiber of 1200 km,” IEEE Photon. Technol. Lett. 17(3), 696–698 (2005).
[Crossref]

Lee, K. G.

Y. S. Hurh, G. S. Hwang, J. Y. Jeon, K. G. Lee, K. W. Shin, S. S. Lee, K. Y. Yi, and J. S. Lee, “1-Tb/s (100× 12.4 gb/s) transmission of 12.5-GHz-spaced ultradense WDM channels over a standard single-mode fiber of 1200 km,” IEEE Photon. Technol. Lett. 17(3), 696–698 (2005).
[Crossref]

Lee, S. S.

Y. S. Hurh, G. S. Hwang, J. Y. Jeon, K. G. Lee, K. W. Shin, S. S. Lee, K. Y. Yi, and J. S. Lee, “1-Tb/s (100× 12.4 gb/s) transmission of 12.5-GHz-spaced ultradense WDM channels over a standard single-mode fiber of 1200 km,” IEEE Photon. Technol. Lett. 17(3), 696–698 (2005).
[Crossref]

Lefrancois, S.

Lemaire, P. J.

Lewicki, R.

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B 87(1), 157–162 (2007).
[Crossref]

Li, Q.

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

Li, Z.

Liu, D.

S. Zhao, P. Lu, D. Liu, and J. Zhang, “Switchable multiwavelength thulium-doped fiber ring lasers,” Opt. Eng. 52(8), 086105 (2013).
[Crossref]

Liu, S.

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

Lopez-Amo, M.

Lu, P.

S. Zhao, P. Lu, D. Liu, and J. Zhang, “Switchable multiwavelength thulium-doped fiber ring lasers,” Opt. Eng. 52(8), 086105 (2013).
[Crossref]

Luo, Y.

Luther-Davies, B.

MacSuibhne, N.

Madden, S. J.

Mahdi, M. A.

Man, A.

Numkam, E.

O’Carroll, J.

Pálsdóttir, B.

Pant, R.

T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and Pulse Generation in Multi-Frequency Brillouin Oscillator via Four Wave Mixing,” Sci. Rep. 4, 5032 (2014).
[Crossref] [PubMed]

I. V. Kabakova, R. Pant, D.-Y. Choi, S. Debbarma, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Narrow linewidth Brillouin laser based on chalcogenide photonic chip,” Opt. Lett. 38(17), 3208–3211 (2013).
[PubMed]

Parmigiani, F.

Pedrazzani, J. R.

Peng, W.

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

Petropoulos, P.

Petrovich, M. N.

Phelan, R.

Poletti, F.

Poulton, C. G.

T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and Pulse Generation in Multi-Frequency Brillouin Oscillator via Four Wave Mixing,” Sci. Rep. 4, 5032 (2014).
[Crossref] [PubMed]

Qin, S.

Richardson, D. J.

Rochette, M.

Shaw, H. J.

Shee, Y. G.

Shin, K. W.

Y. S. Hurh, G. S. Hwang, J. Y. Jeon, K. G. Lee, K. W. Shin, S. S. Lee, K. Y. Yi, and J. S. Lee, “1-Tb/s (100× 12.4 gb/s) transmission of 12.5-GHz-spaced ultradense WDM channels over a standard single-mode fiber of 1200 km,” IEEE Photon. Technol. Lett. 17(3), 696–698 (2005).
[Crossref]

Si, L.

Slavík, R.

Stokes, L. F.

Sun, J.

Talaverano, L.

Tan, S.

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

Tang, J.

Tang, Y.

Tao, K.

Tittel, F. K.

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B 87(1), 157–162 (2007).
[Crossref]

Tong, F. W.

D. N. Wang, F. W. Tong, X. Fang, W. Jin, P. K. A. Wai, and J. M. Gong, “Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium,” Opt. Commun. 228(4), 295–301 (2003).
[Crossref]

Vengsarkar, A. M.

Wai, P. K. A.

D. N. Wang, F. W. Tong, X. Fang, W. Jin, P. K. A. Wai, and J. M. Gong, “Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium,” Opt. Commun. 228(4), 295–301 (2003).
[Crossref]

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

Wang, D. N.

D. N. Wang, F. W. Tong, X. Fang, W. Jin, P. K. A. Wai, and J. M. Gong, “Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium,” Opt. Commun. 228(4), 295–301 (2003).
[Crossref]

Wang, S.

Wang, X.

Wang, Y.

Wheeler, N. V.

Wooler, J. P.

Wysocki, G.

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B 87(1), 157–162 (2007).
[Crossref]

Xiao, H.

Xie, S.

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
[Crossref]

Xu, J.

Yaakob, S.

Yan, F.

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

Yang, J.

Yao, Y.

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
[Crossref]

Yi, K. Y.

Y. S. Hurh, G. S. Hwang, J. Y. Jeon, K. G. Lee, K. W. Shin, S. S. Lee, K. Y. Yi, and J. S. Lee, “1-Tb/s (100× 12.4 gb/s) transmission of 12.5-GHz-spaced ultradense WDM channels over a standard single-mode fiber of 1200 km,” IEEE Photon. Technol. Lett. 17(3), 696–698 (2005).
[Crossref]

Zamzuri, A. K.

Zhan, L.

Zhang, J.

S. Zhao, P. Lu, D. Liu, and J. Zhang, “Switchable multiwavelength thulium-doped fiber ring lasers,” Opt. Eng. 52(8), 086105 (2013).
[Crossref]

Zhao, J.

Zhao, L.

Zhao, S.

S. Zhao, P. Lu, D. Liu, and J. Zhang, “Switchable multiwavelength thulium-doped fiber ring lasers,” Opt. Eng. 52(8), 086105 (2013).
[Crossref]

Zhou, P.

Zhou, Y.

Zhu, Y.

Appl. Phys. B (1)

R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B 87(1), 157–162 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18(1), 187–189 (2006).
[Crossref]

Y. S. Hurh, G. S. Hwang, J. Y. Jeon, K. G. Lee, K. W. Shin, S. S. Lee, K. Y. Yi, and J. S. Lee, “1-Tb/s (100× 12.4 gb/s) transmission of 12.5-GHz-spaced ultradense WDM channels over a standard single-mode fiber of 1200 km,” IEEE Photon. Technol. Lett. 17(3), 696–698 (2005).
[Crossref]

J. Lightwave Technol. (2)

Laser Phys. (1)

B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

Laser Phys. Lett. (2)

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

D. Chen, “Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter,” Laser Phys. Lett. 4(6), 437–439 (2007).
[Crossref]

Opt. Commun. (1)

D. N. Wang, F. W. Tong, X. Fang, W. Jin, P. K. A. Wai, and J. M. Gong, “Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium,” Opt. Commun. 228(4), 295–301 (2003).
[Crossref]

Opt. Eng. (1)

S. Zhao, P. Lu, D. Liu, and J. Zhang, “Switchable multiwavelength thulium-doped fiber ring lasers,” Opt. Eng. 52(8), 086105 (2013).
[Crossref]

Opt. Express (7)

X. Wang, Y. Zhu, P. Zhou, X. Wang, H. Xiao, and L. Si, “Tunable, multiwavelength Tm-doped fiber laser based on polarization rotation and four-wave-mixing effect,” Opt. Express 21(22), 25977–25984 (2013).
[Crossref] [PubMed]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

S. Qin, D. Chen, Y. Tang, and S. He, “Stable and uniform multi-wavelength fiber laser based on hybrid Raman and Erbium-doped fiber gains,” Opt. Express 14(22), 10522–10527 (2006).
[Crossref] [PubMed]

Y. G. Shee, M. H. Al-Mansoori, S. Yaakob, A. Man, A. K. Zamzuri, F. R. Adikan, and M. A. Mahdi, “Millimeter wave carrier generation based on a double-Brillouin-frequency spaced fiber laser,” Opt. Express 20(12), 13402–13408 (2012).
[Crossref] [PubMed]

J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multiwavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express 19(15), 14682–14689 (2011).
[Crossref] [PubMed]

Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
[Crossref] [PubMed]

Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing,” Opt. Express 19(3), 1699–1706 (2011).
[Crossref] [PubMed]

Opt. Lett. (5)

Photonics J. (1)

X. Wang, P. Zhou, H. Xiao, and L. Si, “Multiwavelength Brillouin-thulium fiber laser,” Photonics J. 6(1), 1500507 (2014).

Sci. Rep. (1)

T. F. S. Büttner, I. V. Kabakova, D. D. Hudson, R. Pant, C. G. Poulton, A. C. Judge, and B. J. Eggleton, “Phase-locking and Pulse Generation in Multi-Frequency Brillouin Oscillator via Four Wave Mixing,” Sci. Rep. 4, 5032 (2014).
[Crossref] [PubMed]

Other (3)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academinc, 2003).

G. S. Hwang, U. S. Pyun, S. H. Kim, Y. Chung, J. S. Lee, and B. W. Kim, “2.5-Tb/s (256× 12.4 Gb/s) Transmission of 12.5-GHz-Spaced Ultra-dense WDM Channels over a Standard Single-Mode Fiber of 2000 km,” in Optical Fiber Communication Conference 2007, (Optical Society of America,2007), paper JWA42.

N. M. Suibhne, Z. Li, B. Baeuerle, J. Zhao, J. Wooler, S. Alam, F. Poletti, M. Petrovich, A. Heidt, N. Wheeler, N. Baddela, E. R. N. Fokoua, I. Giles, D. Giles, R. Phelan, J. O'Carroll, B. Kelly, B. Corbett, D. Murphy, A. D. Ellis, D. J. Richardson, and F. Garcia Gunning, “WDM Transmission at 2μm over Low-Loss Hollow Core Photonic Bandgap Fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, (Optical Society of America,2013), paper OW1I.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Configuration of the multiwavelength Brillouin/thulium fiber laser (MW-BTFL) with switchable (a) single-Brillouin-frequency spacing, and (b) double-Brillouin-frequency spacing outputs, respectively.
Fig. 2
Fig. 2 Output spectrum of the single-Brillouin-frequency spacing MW-BTFL with different 1560 nm pump powers. Inset shows the figure of Stokes power versus 1560 pump power, with linear fitting line (dashed).
Fig. 3
Fig. 3 Frequency domain measurement of single-Brillouin-frequency MW-BTFL.
Fig. 4
Fig. 4 Temporal stability measurement for the single-Brillouin-frequency spacing MW-BTFL during an hour.
Fig. 5
Fig. 5 Output spectrum of the double-Brillouin-frequency spacing MW-BTFL with different 1560 nm pump powers. Inset shows the figure of Stokes power versus 1560 pump power, with linear fitting line (dashed).
Fig. 6
Fig. 6 Frequency domain measurement of the double-Brillouin-frequency MW-BTFL.
Fig. 7
Fig. 7 Temporal stability measurement for the double-Brillouin-frequency spacing MW-BTFL during an hour.
Fig. 8
Fig. 8 Wavelength tuning for the (a) single-Brillouin-frequency spacing, and (b) double-Brillouin-frequency spacing MW-BTFLs.

Metrics