Abstract

Characteristics of polarization insensitivity of carrier-induced refractive index change of 1.55 μm tensile-strained multiple quantum well (MQW) are theoretically investigated. A comprehensive MQW model is proposed to effectively extend the application range of previous models. The model considers the temperature variation as well as the nonuniform distribution of injected carrier in MQW. Tensile-strained MQW is expected to achieve polarization insensitivity of carrier-induced refractive index change over a wide wavelength range as temperature varies from 0°C to 40°C, while the magnitude of refractive index change keeps a large value (more than 3 × 10−3). And that the polarization insensitivity of refractive index change can maintain for a wide range of carrier concentration. Multiple quantum well with different material and structure parameters is anticipated to have the similar polarization insensitivity of refractive index change, which shows the design flexibility.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical study of polarization dependence of carrier-induced refractive index change of quantum dot

Qingyuan Miao, Ziyi Yang, Jianji Dong, Ping-An He, and Dexiu Huang
Opt. Express 26(3) 2252-2260 (2018)

Carrier refraction in quantum well waveguides

Richard A. Soref and Brian R. Bennett
Appl. Opt. 28(17) 3577-3580 (1989)

Theoretical analysis of optical gain in uniaxial tensile strained and n+-doped Ge/GeSi quantum well

Jialin Jiang and Junqiang Sun
Opt. Express 24(13) 14525-14537 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Ravindran, A. Datta, K. Alameh, and Y. T. Lee, “GaAs based long-wavelength microring resonator optical switches utilising bias assisted carrier-injection induced refractive index change,” Opt. Express 20(14), 15610–15627 (2012).
    [PubMed]
  2. R. Geldenhuys, J. S. van der Merwe, K. Thakulsukanant, Z. Wang, N. Chi, and S. Yu, “Contention resolution and variable length optical packet switching using the active vertical-coupler-based optical Crosspoint switch,” Opt. Switch. Netw. 8(2), 86–92 (2011).
    [Crossref]
  3. J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
    [Crossref]
  4. M. J. Connelly, “Theoretical calculations of the carrier induced refractive index change in tensile-strained InGaAsP for use in 1550 nm semiconductor optical amplifiers,” Appl. Phys. Lett. 93(18), 181111 (2008).
    [Crossref]
  5. S. Shin and C. B. Su, “Strong increase of the derivative of the carrier-induced index change of semiconductor lasers at low injected carrier density,” IEEE Photon. Technol. Lett. 5(9), 981–983 (1993).
    [Crossref]
  6. L. R. Huang, D. X. Huang, D. M. Liu, and X. L. Zhang, “Semiconductor optical amplifier with polarization-insensitive gain and polarization-insensitive phase modulation,” Semicond. Sci. Technol. 21(12), 1643–1650 (2006).
    [Crossref]
  7. H. Wenzel, G. Erbert, and P. M. Enders, “Improved Theory of the Refractive-Index Change in Quantum-Well Lasers,” IEEE J. Sel. Top. Quantum Electron. 5(3), 637–642 (1999).
    [Crossref]
  8. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive GaAs, and InGaAsP Index of InP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
    [Crossref]
  9. S. L. Chuang, Physics of Photonic Devices, 2nd ed. (John Wiley & Sonc, Inc., Hoboken, 2009).
  10. K. S. Jepsen, N. Storkfelt, M. Vaa, and K. E. Stubkjaer, “Polarization Dependence of Linewidth Enhancement Factor in InGaAs/InGaAsP MQW Material,” IEEE J. Quantum Electron. 30(3), 635–639 (1994).
    [Crossref]
  11. E. H. Li, “Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures,” Physica E 5(4), 215–273 (2000).
    [Crossref]
  12. A. D. Vandermeer and D. T. Cassidy, “A Rate Equation Model of Asymmetric Multiple Quantum-Well Lasers,” IEEE J. Quantum Electron. 41(7), 917–924 (2005).
    [Crossref]
  13. R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High Speed Quantum-Well Lasers and Carrier Transport Effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
    [Crossref]

2012 (1)

2011 (1)

R. Geldenhuys, J. S. van der Merwe, K. Thakulsukanant, Z. Wang, N. Chi, and S. Yu, “Contention resolution and variable length optical packet switching using the active vertical-coupler-based optical Crosspoint switch,” Opt. Switch. Netw. 8(2), 86–92 (2011).
[Crossref]

2009 (1)

J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
[Crossref]

2008 (1)

M. J. Connelly, “Theoretical calculations of the carrier induced refractive index change in tensile-strained InGaAsP for use in 1550 nm semiconductor optical amplifiers,” Appl. Phys. Lett. 93(18), 181111 (2008).
[Crossref]

2006 (1)

L. R. Huang, D. X. Huang, D. M. Liu, and X. L. Zhang, “Semiconductor optical amplifier with polarization-insensitive gain and polarization-insensitive phase modulation,” Semicond. Sci. Technol. 21(12), 1643–1650 (2006).
[Crossref]

2005 (1)

A. D. Vandermeer and D. T. Cassidy, “A Rate Equation Model of Asymmetric Multiple Quantum-Well Lasers,” IEEE J. Quantum Electron. 41(7), 917–924 (2005).
[Crossref]

2000 (1)

E. H. Li, “Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures,” Physica E 5(4), 215–273 (2000).
[Crossref]

1999 (1)

H. Wenzel, G. Erbert, and P. M. Enders, “Improved Theory of the Refractive-Index Change in Quantum-Well Lasers,” IEEE J. Sel. Top. Quantum Electron. 5(3), 637–642 (1999).
[Crossref]

1994 (1)

K. S. Jepsen, N. Storkfelt, M. Vaa, and K. E. Stubkjaer, “Polarization Dependence of Linewidth Enhancement Factor in InGaAs/InGaAsP MQW Material,” IEEE J. Quantum Electron. 30(3), 635–639 (1994).
[Crossref]

1993 (1)

S. Shin and C. B. Su, “Strong increase of the derivative of the carrier-induced index change of semiconductor lasers at low injected carrier density,” IEEE Photon. Technol. Lett. 5(9), 981–983 (1993).
[Crossref]

1992 (1)

R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High Speed Quantum-Well Lasers and Carrier Transport Effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[Crossref]

1990 (1)

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive GaAs, and InGaAsP Index of InP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Alameh, K.

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive GaAs, and InGaAsP Index of InP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Bowers, J. E.

R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High Speed Quantum-Well Lasers and Carrier Transport Effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[Crossref]

Cassidy, D. T.

A. D. Vandermeer and D. T. Cassidy, “A Rate Equation Model of Asymmetric Multiple Quantum-Well Lasers,” IEEE J. Quantum Electron. 41(7), 917–924 (2005).
[Crossref]

Chi, N.

R. Geldenhuys, J. S. van der Merwe, K. Thakulsukanant, Z. Wang, N. Chi, and S. Yu, “Contention resolution and variable length optical packet switching using the active vertical-coupler-based optical Crosspoint switch,” Opt. Switch. Netw. 8(2), 86–92 (2011).
[Crossref]

Connelly, M. J.

M. J. Connelly, “Theoretical calculations of the carrier induced refractive index change in tensile-strained InGaAsP for use in 1550 nm semiconductor optical amplifiers,” Appl. Phys. Lett. 93(18), 181111 (2008).
[Crossref]

Datta, A.

Del Alamo, J. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive GaAs, and InGaAsP Index of InP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Enders, P. M.

H. Wenzel, G. Erbert, and P. M. Enders, “Improved Theory of the Refractive-Index Change in Quantum-Well Lasers,” IEEE J. Sel. Top. Quantum Electron. 5(3), 637–642 (1999).
[Crossref]

Erbert, G.

H. Wenzel, G. Erbert, and P. M. Enders, “Improved Theory of the Refractive-Index Change in Quantum-Well Lasers,” IEEE J. Sel. Top. Quantum Electron. 5(3), 637–642 (1999).
[Crossref]

Fukushima, T.

R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High Speed Quantum-Well Lasers and Carrier Transport Effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[Crossref]

Geels, R. S.

R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High Speed Quantum-Well Lasers and Carrier Transport Effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[Crossref]

Geldenhuys, R.

R. Geldenhuys, J. S. van der Merwe, K. Thakulsukanant, Z. Wang, N. Chi, and S. Yu, “Contention resolution and variable length optical packet switching using the active vertical-coupler-based optical Crosspoint switch,” Opt. Switch. Netw. 8(2), 86–92 (2011).
[Crossref]

Han, S.-K.

J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
[Crossref]

Huang, D. X.

L. R. Huang, D. X. Huang, D. M. Liu, and X. L. Zhang, “Semiconductor optical amplifier with polarization-insensitive gain and polarization-insensitive phase modulation,” Semicond. Sci. Technol. 21(12), 1643–1650 (2006).
[Crossref]

Huang, L. R.

L. R. Huang, D. X. Huang, D. M. Liu, and X. L. Zhang, “Semiconductor optical amplifier with polarization-insensitive gain and polarization-insensitive phase modulation,” Semicond. Sci. Technol. 21(12), 1643–1650 (2006).
[Crossref]

Ishikawa, M.

R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High Speed Quantum-Well Lasers and Carrier Transport Effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[Crossref]

Jepsen, K. S.

K. S. Jepsen, N. Storkfelt, M. Vaa, and K. E. Stubkjaer, “Polarization Dependence of Linewidth Enhancement Factor in InGaAs/InGaAsP MQW Material,” IEEE J. Quantum Electron. 30(3), 635–639 (1994).
[Crossref]

Kang, J.-M.

J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
[Crossref]

Kim, J.-Y.

J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
[Crossref]

Kim, T.-Y.

J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
[Crossref]

Kwon, H.-C.

J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
[Crossref]

Lee, S.-H.

J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
[Crossref]

Lee, Y. T.

Li, E. H.

E. H. Li, “Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures,” Physica E 5(4), 215–273 (2000).
[Crossref]

Liu, D. M.

L. R. Huang, D. X. Huang, D. M. Liu, and X. L. Zhang, “Semiconductor optical amplifier with polarization-insensitive gain and polarization-insensitive phase modulation,” Semicond. Sci. Technol. 21(12), 1643–1650 (2006).
[Crossref]

Nagarajan, R.

R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High Speed Quantum-Well Lasers and Carrier Transport Effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[Crossref]

Ravindran, S.

Shin, S.

S. Shin and C. B. Su, “Strong increase of the derivative of the carrier-induced index change of semiconductor lasers at low injected carrier density,” IEEE Photon. Technol. Lett. 5(9), 981–983 (1993).
[Crossref]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive GaAs, and InGaAsP Index of InP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Storkfelt, N.

K. S. Jepsen, N. Storkfelt, M. Vaa, and K. E. Stubkjaer, “Polarization Dependence of Linewidth Enhancement Factor in InGaAs/InGaAsP MQW Material,” IEEE J. Quantum Electron. 30(3), 635–639 (1994).
[Crossref]

Stubkjaer, K. E.

K. S. Jepsen, N. Storkfelt, M. Vaa, and K. E. Stubkjaer, “Polarization Dependence of Linewidth Enhancement Factor in InGaAs/InGaAsP MQW Material,” IEEE J. Quantum Electron. 30(3), 635–639 (1994).
[Crossref]

Su, C. B.

S. Shin and C. B. Su, “Strong increase of the derivative of the carrier-induced index change of semiconductor lasers at low injected carrier density,” IEEE Photon. Technol. Lett. 5(9), 981–983 (1993).
[Crossref]

Thakulsukanant, K.

R. Geldenhuys, J. S. van der Merwe, K. Thakulsukanant, Z. Wang, N. Chi, and S. Yu, “Contention resolution and variable length optical packet switching using the active vertical-coupler-based optical Crosspoint switch,” Opt. Switch. Netw. 8(2), 86–92 (2011).
[Crossref]

Vaa, M.

K. S. Jepsen, N. Storkfelt, M. Vaa, and K. E. Stubkjaer, “Polarization Dependence of Linewidth Enhancement Factor in InGaAs/InGaAsP MQW Material,” IEEE J. Quantum Electron. 30(3), 635–639 (1994).
[Crossref]

van der Merwe, J. S.

R. Geldenhuys, J. S. van der Merwe, K. Thakulsukanant, Z. Wang, N. Chi, and S. Yu, “Contention resolution and variable length optical packet switching using the active vertical-coupler-based optical Crosspoint switch,” Opt. Switch. Netw. 8(2), 86–92 (2011).
[Crossref]

Vandermeer, A. D.

A. D. Vandermeer and D. T. Cassidy, “A Rate Equation Model of Asymmetric Multiple Quantum-Well Lasers,” IEEE J. Quantum Electron. 41(7), 917–924 (2005).
[Crossref]

Wang, Z.

R. Geldenhuys, J. S. van der Merwe, K. Thakulsukanant, Z. Wang, N. Chi, and S. Yu, “Contention resolution and variable length optical packet switching using the active vertical-coupler-based optical Crosspoint switch,” Opt. Switch. Netw. 8(2), 86–92 (2011).
[Crossref]

Wenzel, H.

H. Wenzel, G. Erbert, and P. M. Enders, “Improved Theory of the Refractive-Index Change in Quantum-Well Lasers,” IEEE J. Sel. Top. Quantum Electron. 5(3), 637–642 (1999).
[Crossref]

Yu, S.

R. Geldenhuys, J. S. van der Merwe, K. Thakulsukanant, Z. Wang, N. Chi, and S. Yu, “Contention resolution and variable length optical packet switching using the active vertical-coupler-based optical Crosspoint switch,” Opt. Switch. Netw. 8(2), 86–92 (2011).
[Crossref]

Zhang, X. L.

L. R. Huang, D. X. Huang, D. M. Liu, and X. L. Zhang, “Semiconductor optical amplifier with polarization-insensitive gain and polarization-insensitive phase modulation,” Semicond. Sci. Technol. 21(12), 1643–1650 (2006).
[Crossref]

Appl. Phys. Lett. (1)

M. J. Connelly, “Theoretical calculations of the carrier induced refractive index change in tensile-strained InGaAsP for use in 1550 nm semiconductor optical amplifiers,” Appl. Phys. Lett. 93(18), 181111 (2008).
[Crossref]

IEEE J. Quantum Electron. (4)

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, “Carrier-induced change in refractive GaAs, and InGaAsP Index of InP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

K. S. Jepsen, N. Storkfelt, M. Vaa, and K. E. Stubkjaer, “Polarization Dependence of Linewidth Enhancement Factor in InGaAs/InGaAsP MQW Material,” IEEE J. Quantum Electron. 30(3), 635–639 (1994).
[Crossref]

A. D. Vandermeer and D. T. Cassidy, “A Rate Equation Model of Asymmetric Multiple Quantum-Well Lasers,” IEEE J. Quantum Electron. 41(7), 917–924 (2005).
[Crossref]

R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High Speed Quantum-Well Lasers and Carrier Transport Effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Wenzel, G. Erbert, and P. M. Enders, “Improved Theory of the Refractive-Index Change in Quantum-Well Lasers,” IEEE J. Sel. Top. Quantum Electron. 5(3), 637–642 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. Shin and C. B. Su, “Strong increase of the derivative of the carrier-induced index change of semiconductor lasers at low injected carrier density,” IEEE Photon. Technol. Lett. 5(9), 981–983 (1993).
[Crossref]

Opt. Express (1)

Opt. Quantum Electron. (1)

J.-M. Kang, S.-H. Lee, J.-Y. Kim, H.-C. Kwon, T.-Y. Kim, and S.-K. Han, “Theoretical investigation of the input power dynamic range enhancement of XPM wavelength converter using a CW holding beam,” Opt. Quantum Electron. 41(5), 349–362 (2009).
[Crossref]

Opt. Switch. Netw. (1)

R. Geldenhuys, J. S. van der Merwe, K. Thakulsukanant, Z. Wang, N. Chi, and S. Yu, “Contention resolution and variable length optical packet switching using the active vertical-coupler-based optical Crosspoint switch,” Opt. Switch. Netw. 8(2), 86–92 (2011).
[Crossref]

Physica E (1)

E. H. Li, “Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures,” Physica E 5(4), 215–273 (2000).
[Crossref]

Semicond. Sci. Technol. (1)

L. R. Huang, D. X. Huang, D. M. Liu, and X. L. Zhang, “Semiconductor optical amplifier with polarization-insensitive gain and polarization-insensitive phase modulation,” Semicond. Sci. Technol. 21(12), 1643–1650 (2006).
[Crossref]

Other (1)

S. L. Chuang, Physics of Photonic Devices, 2nd ed. (John Wiley & Sonc, Inc., Hoboken, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Refractive index change spectrum; (b) ρ versus wavelength at different temperatures.
Fig. 2
Fig. 2 ρ versus carrier concentration at different temperatures at 1.55 μm wavelength.
Fig. 3
Fig. 3 (a) Refractive index change spectrum for 1st group; (b) Refractive index change spectrum for 2nd group.

Tables (2)

Tables Icon

Table 1 Carrier concentration in each well

Tables Icon

Table 2 Two sets of material and structural parameters

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ n BF = 2c e 2 p 0 α(N,P,E) α 0 (E) E 2 E 2 d E
α p (ω)= π e 2 n e c ε 0 m 0 2 ω 2 L z η,σ n,m 0 k t d k t 2π M nm p,σ ( k t ) γ/π ( E cv nmσ ( k t )ω) 2 + γ 2 ( f v σm f c n )
Δ E g (χ)=( e 2π ε 0 ε s ) ( 3 π ) 1/3 χ 1/3
Δ n BF+BGS = 2c e 2 p 0 α(χ, E g ,E) α 0 ( E g ,E) E 2 E 2 d E
Δ n FCA = e 2 λ 2 8 π 2 c 2 ε 0 n e ( N m e + P m h )
Δ n total =Γ( Δ n BF+BGS +Δ n FCA )
E g (T)= E g (0) α T 2 T+β
ρ=| Δ n total TE Δ n total TM Δ n total TE +Δ n total TM |×100%

Metrics