Abstract

The path-history-based fluorescence Monte Carlo method used for fluorescence tomography imaging reconstruction has attracted increasing attention. In this paper, we first validate the standard fluorescence Monte Carlo (sfMC) method by experimenting with a cylindrical phantom. Then, we describe a path-history-based decoupled fluorescence Monte Carlo (dfMC) method, analyze different perturbation fluorescence Monte Carlo (pfMC) methods, and compare the calculation accuracy and computational efficiency of the dfMC and pfMC methods using the sfMC method as a reference. The results show that the dfMC method is more accurate and efficient than the pfMC method in heterogeneous medium.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Accelerating fDOT image reconstruction based on path-history fluorescence Monte Carlo model by using three-level parallel architecture

Xu Jiang, Yong Deng, Zhaoyang Luo, and Qingming Luo
Opt. Express 23(20) 25996-26011 (2015)

Accurate quantification of fluorescent targets within turbid media based on a decoupled fluorescence Monte Carlo model

Yong Deng, Zhaoyang Luo, Xu Jiang, Wenhao Xie, and Qingming Luo
Opt. Lett. 40(13) 3129-3132 (2015)

Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues

Carole K. Hayakawa, Jerome Spanier, Frédéric Bevilacqua, Andrew K. Dunn, Joon S. You, Bruce J. Tromberg, and Vasan Venugopalan
Opt. Lett. 26(17) 1335-1337 (2001)

References

  • View by:
  • |
  • |
  • |

  1. J. Lakowicz, Principle of Fluorescence Spectroscopy (Springer, 2006).
  2. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).
    [Crossref] [PubMed]
  3. V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
    [Crossref] [PubMed]
  4. A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grötzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19(4), 327–331 (2001).
    [Crossref] [PubMed]
  5. V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
    [Crossref] [PubMed]
  6. R. Y. Tsien, “Building and breeding molecules to spy on cells and tumors,” FEBS Lett. 579(4), 927–932 (2005).
    [Crossref] [PubMed]
  7. Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
    [Crossref] [PubMed]
  8. F. A. Jaffer, P. Libby, and R. Weissleder, “Optical and multimodality molecular imaging: insights into atherosclerosis,” Arterioscler. Thromb. Vasc. Biol. 29(7), 1017–1024 (2009).
    [Crossref] [PubMed]
  9. J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys. 38(10), 5788–5798 (2011).
    [Crossref] [PubMed]
  10. N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44(247), 335–341 (1949).
    [Crossref] [PubMed]
  11. S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue--I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
    [Crossref] [PubMed]
  12. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  13. J. Barton, T. Pfefer, A. Welch, D. Smithies, J. Nelson, and M. Van Gemert, “Optical Monte Carlo modeling of a true portwine stain anatomy,” Opt. Express 2(9), 391–396 (1998).
    [Crossref] [PubMed]
  14. R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method (John Wiley & Sons, 2011).
  15. I. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, 1991).
  16. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
    [Crossref] [PubMed]
  17. S. E. Skipetrov and S. S. Chesnokov, “Analysis, by the Monte Carlo method, of the validity of the diffusion approximation in a study of dynamic multiple scattering of light in randomly inhomogeneous media,” Quantum Electron. 28(8), 733–737 (1998).
    [Crossref]
  18. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
    [Crossref] [PubMed]
  19. A. J. Welch and R. Richards-Kortum, “Monte Carlo simulation of the propagation of fluorescent light,” in Laser-induced Interstitial Thermotherapy, G. J. Müller, and A. Roggan ed. (SPIE Press, 1995).
  20. A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21(2), 166–178 (1997).
    [Crossref] [PubMed]
  21. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7(6), 1004–1012 (2001).
    [Crossref]
  22. J. Swartling, A. Pifferi, A. M. Enejder, and S. Andersson-Engels, “Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A 20(4), 714–727 (2003).
    [Crossref] [PubMed]
  23. D. Churmakov, I. Meglinski, S. A. Piletsky, and D. Greenhalgh, “Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation,” J. Phys. D Appl. Phys. 36(14), 1722–1728 (2003).
    [Crossref]
  24. D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, “Amending of fluorescence sensor signal localization in human skin by matching of the refractive index,” J. Biomed. Opt. 9(2), 339–346 (2004).
    [Crossref] [PubMed]
  25. K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47(18), 3387–3405 (2002).
    [Crossref] [PubMed]
  26. E. Péry, W. C. Blondel, C. Thomas, and F. Guillemin, “Monte Carlo modeling of multilayer phantoms with multiple fluorophores: simulation algorithm and experimental validation,” J. Biomed. Opt. 14(2), 024048 (2009).
    [Crossref] [PubMed]
  27. C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18(5), 050902 (2013).
    [Crossref] [PubMed]
  28. A. T. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14(25), 12255–12270 (2006).
    [Crossref] [PubMed]
  29. A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
    [Crossref] [PubMed]
  30. A. Liebert, H. Wabnitz, R. Macdonald, and H. Rinneberg, “Monte Carlo simulations of time-resolved fluorescence excited in a layered turbid medium,” in Biomedical Topical Meeting, Technical Digest (Optical Society of America, 2006), paper ME7.
    [Crossref]
  31. A. Liebert, H. Wabnitz, N. Zołek, and R. Macdonald, “Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media,” Opt. Express 16(17), 13188–13202 (2008).
    [Crossref] [PubMed]
  32. J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express 2(4), 871–886 (2011).
    [Crossref] [PubMed]
  33. A. T. Kumar, “Direct Monte Carlo computation of time-resolved fluorescence in heterogeneous turbid media,” Opt. Lett. 37(22), 4783–4785 (2012).
    [Crossref] [PubMed]
  34. C. K. Hayakawa and J. Spanier, Perturbation Monte Carlo Methods for the Solution of Inverse Problems (Springer, 2004).
  35. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
    [Crossref] [PubMed]
  36. N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, “GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues,” Opt. Express 18(7), 6811–6823 (2010).
    [Crossref] [PubMed]
  37. G. Quan, H. Gong, Y. Deng, J. Fu, and Q. Luo, “Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units,” J. Biomed. Opt. 16(2), 026018 (2011).
    [Crossref] [PubMed]
  38. F. Cai and S. He, “Using graphics processing units to accelerate perturbation Monte Carlo simulation in a turbid medium,” J. Biomed. Opt. 17(4), 040502 (2012).
    [Crossref] [PubMed]
  39. X. Yi, W. Chen, L. Wu, W. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte-Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).
    [Crossref]
  40. X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
    [Crossref] [PubMed]
  41. J. W. Fu, X. Q. Yang, G. T. Quan, and H. Gong, “Fluorescence molecular tomography system for in vivo tumor imaging in small animals,” Chin. Opt. Lett. 8(11), 1075–1078 (2010).
    [Crossref]
  42. J. Fu, X. Yang, K. Wang, Q. Luo, and H. Gong, “A generic, geometric cocalibration method for a combined system of fluorescence molecular tomography and microcomputed tomography with arbitrarily shaped objects,” Med. Phys. 38(12), 6561–6570 (2011).
    [Crossref] [PubMed]
  43. X. Liu, D. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express 18(6), 6300–6314 (2010).
    [PubMed]
  44. Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
    [Crossref] [PubMed]
  45. Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14(18), 8211–8223 (2006).
    [Crossref] [PubMed]
  46. T. Correia, N. Ducros, C. D’Andrea, M. Schweiger, and S. Arridge, “Quantitative fluorescence diffuse optical tomography in the presence of heterogeneities,” Opt. Lett. 38(11), 1903–1905 (2013).
    [Crossref] [PubMed]
  47. J. Ye, C. Chi, Z. Xue, P. Wu, Y. An, H. Xu, S. Zhang, and J. Tian, “Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method,” Biomed. Opt. Express 5(2), 387–406 (2014).
    [Crossref] [PubMed]
  48. N. Chen, “Controlled Monte Carlo method for light propagation in tissue of semi-infinite geometry,” Appl. Opt. 46(10), 1597–1603 (2007).
    [Crossref] [PubMed]
  49. A. Sassaroli, “Fast perturbation Monte Carlo method for photon migration in heterogeneous turbid media,” Opt. Lett. 36(11), 2095–2097 (2011).
    [Crossref] [PubMed]

2014 (1)

2013 (2)

2012 (3)

F. Cai and S. He, “Using graphics processing units to accelerate perturbation Monte Carlo simulation in a turbid medium,” J. Biomed. Opt. 17(4), 040502 (2012).
[Crossref] [PubMed]

X. Yi, W. Chen, L. Wu, W. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte-Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).
[Crossref]

A. T. Kumar, “Direct Monte Carlo computation of time-resolved fluorescence in heterogeneous turbid media,” Opt. Lett. 37(22), 4783–4785 (2012).
[Crossref] [PubMed]

2011 (5)

J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express 2(4), 871–886 (2011).
[Crossref] [PubMed]

A. Sassaroli, “Fast perturbation Monte Carlo method for photon migration in heterogeneous turbid media,” Opt. Lett. 36(11), 2095–2097 (2011).
[Crossref] [PubMed]

J. Fu, X. Yang, K. Wang, Q. Luo, and H. Gong, “A generic, geometric cocalibration method for a combined system of fluorescence molecular tomography and microcomputed tomography with arbitrarily shaped objects,” Med. Phys. 38(12), 6561–6570 (2011).
[Crossref] [PubMed]

G. Quan, H. Gong, Y. Deng, J. Fu, and Q. Luo, “Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units,” J. Biomed. Opt. 16(2), 026018 (2011).
[Crossref] [PubMed]

J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys. 38(10), 5788–5798 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (4)

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
[Crossref] [PubMed]

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

E. Péry, W. C. Blondel, C. Thomas, and F. Guillemin, “Monte Carlo modeling of multilayer phantoms with multiple fluorophores: simulation algorithm and experimental validation,” J. Biomed. Opt. 14(2), 024048 (2009).
[Crossref] [PubMed]

F. A. Jaffer, P. Libby, and R. Weissleder, “Optical and multimodality molecular imaging: insights into atherosclerosis,” Arterioscler. Thromb. Vasc. Biol. 29(7), 1017–1024 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (3)

2006 (3)

2005 (1)

R. Y. Tsien, “Building and breeding molecules to spy on cells and tumors,” FEBS Lett. 579(4), 927–932 (2005).
[Crossref] [PubMed]

2004 (2)

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, “Amending of fluorescence sensor signal localization in human skin by matching of the refractive index,” J. Biomed. Opt. 9(2), 339–346 (2004).
[Crossref] [PubMed]

2003 (2)

D. Churmakov, I. Meglinski, S. A. Piletsky, and D. Greenhalgh, “Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation,” J. Phys. D Appl. Phys. 36(14), 1722–1728 (2003).
[Crossref]

J. Swartling, A. Pifferi, A. M. Enejder, and S. Andersson-Engels, “Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A 20(4), 714–727 (2003).
[Crossref] [PubMed]

2002 (3)

D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
[Crossref] [PubMed]

K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47(18), 3387–3405 (2002).
[Crossref] [PubMed]

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[Crossref] [PubMed]

2001 (2)

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grötzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19(4), 327–331 (2001).
[Crossref] [PubMed]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7(6), 1004–1012 (2001).
[Crossref]

1998 (2)

S. E. Skipetrov and S. S. Chesnokov, “Analysis, by the Monte Carlo method, of the validity of the diffusion approximation in a study of dynamic multiple scattering of light in randomly inhomogeneous media,” Quantum Electron. 28(8), 733–737 (1998).
[Crossref]

J. Barton, T. Pfefer, A. Welch, D. Smithies, J. Nelson, and M. Van Gemert, “Optical Monte Carlo modeling of a true portwine stain anatomy,” Opt. Express 2(9), 391–396 (1998).
[Crossref] [PubMed]

1997 (1)

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21(2), 166–178 (1997).
[Crossref] [PubMed]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

1989 (1)

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue--I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

1949 (1)

N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44(247), 335–341 (1949).
[Crossref] [PubMed]

An, Y.

Andersson-Engels, S.

Arridge, S.

Arridge, S. R.

Bacskai, B. J.

Bai, J.

Barton, J.

Becker, A.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grötzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19(4), 327–331 (2001).
[Crossref] [PubMed]

Bessodes, M.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Blondel, W. C.

E. Péry, W. C. Blondel, C. Thomas, and F. Guillemin, “Monte Carlo modeling of multilayer phantoms with multiple fluorophores: simulation algorithm and experimental validation,” J. Biomed. Opt. 14(2), 024048 (2009).
[Crossref] [PubMed]

Boas, D.

Boas, D. A.

Bogdanov, A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

Boverman, G.

Bremer, C.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[Crossref] [PubMed]

Cai, F.

F. Cai and S. He, “Using graphics processing units to accelerate perturbation Monte Carlo simulation in a turbid medium,” J. Biomed. Opt. 17(4), 040502 (2012).
[Crossref] [PubMed]

Cao, W.

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Chan, E.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21(2), 166–178 (1997).
[Crossref] [PubMed]

Chanéac, C.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Chen, J.

J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys. 38(10), 5788–5798 (2011).
[Crossref] [PubMed]

J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express 2(4), 871–886 (2011).
[Crossref] [PubMed]

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Chen, N.

Chen, W.

X. Yi, W. Chen, L. Wu, W. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte-Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).
[Crossref]

Chesnokov, S. S.

S. E. Skipetrov and S. S. Chesnokov, “Analysis, by the Monte Carlo method, of the validity of the diffusion approximation in a study of dynamic multiple scattering of light in randomly inhomogeneous media,” Quantum Electron. 28(8), 733–737 (1998).
[Crossref]

Chi, C.

Choe, R.

Churmakov, D.

D. Churmakov, I. Meglinski, S. A. Piletsky, and D. Greenhalgh, “Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation,” J. Phys. D Appl. Phys. 36(14), 1722–1728 (2003).
[Crossref]

Churmakov, D. Y.

D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, “Amending of fluorescence sensor signal localization in human skin by matching of the refractive index,” J. Biomed. Opt. 9(2), 339–346 (2004).
[Crossref] [PubMed]

Cong, W.

Corbin, I.

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Corlu, A.

Correia, T.

Criswell, G.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21(2), 166–178 (1997).
[Crossref] [PubMed]

Culver, J.

D’Andrea, C.

Deng, Y.

G. Quan, H. Gong, Y. Deng, J. Fu, and Q. Luo, “Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units,” J. Biomed. Opt. 16(2), 026018 (2011).
[Crossref] [PubMed]

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

Ding, L.

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Ducros, N.

Dunn, A.

Durduran, T.

Ebert, B.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grötzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19(4), 327–331 (2001).
[Crossref] [PubMed]

Ediger, M. N.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7(6), 1004–1012 (2001).
[Crossref]

Enejder, A. M.

Erdmann, R.

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

Fang, Q.

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Flock, S. T.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue--I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

Fu, J.

J. Fu, X. Yang, K. Wang, Q. Luo, and H. Gong, “A generic, geometric cocalibration method for a combined system of fluorescence molecular tomography and microcomputed tomography with arbitrarily shaped objects,” Med. Phys. 38(12), 6561–6570 (2011).
[Crossref] [PubMed]

G. Quan, H. Gong, Y. Deng, J. Fu, and Q. Luo, “Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units,” J. Biomed. Opt. 16(2), 026018 (2011).
[Crossref] [PubMed]

Fu, J. W.

Gao, F.

X. Yi, W. Chen, L. Wu, W. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte-Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).
[Crossref]

Gardner, C.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21(2), 166–178 (1997).
[Crossref] [PubMed]

Gong, H.

G. Quan, H. Gong, Y. Deng, J. Fu, and Q. Luo, “Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units,” J. Biomed. Opt. 16(2), 026018 (2011).
[Crossref] [PubMed]

J. Fu, X. Yang, K. Wang, Q. Luo, and H. Gong, “A generic, geometric cocalibration method for a combined system of fluorescence molecular tomography and microcomputed tomography with arbitrarily shaped objects,” Med. Phys. 38(12), 6561–6570 (2011).
[Crossref] [PubMed]

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

J. W. Fu, X. Q. Yang, G. T. Quan, and H. Gong, “Fluorescence molecular tomography system for in vivo tumor imaging in small animals,” Chin. Opt. Lett. 8(11), 1075–1078 (2010).
[Crossref]

Gourier, D.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Graves, E.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

Greenhalgh, D.

D. Churmakov, I. Meglinski, S. A. Piletsky, and D. Greenhalgh, “Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation,” J. Phys. D Appl. Phys. 36(14), 1722–1728 (2003).
[Crossref]

Greenhalgh, D. A.

D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, “Amending of fluorescence sensor signal localization in human skin by matching of the refractive index,” J. Biomed. Opt. 9(2), 339–346 (2004).
[Crossref] [PubMed]

Grötzinger, C.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grötzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19(4), 327–331 (2001).
[Crossref] [PubMed]

Guillemin, F.

E. Péry, W. C. Blondel, C. Thomas, and F. Guillemin, “Monte Carlo modeling of multilayer phantoms with multiple fluorophores: simulation algorithm and experimental validation,” J. Biomed. Opt. 14(2), 024048 (2009).
[Crossref] [PubMed]

He, S.

F. Cai and S. He, “Using graphics processing units to accelerate perturbation Monte Carlo simulation in a turbid medium,” J. Biomed. Opt. 17(4), 040502 (2012).
[Crossref] [PubMed]

Hessenius, C.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grötzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19(4), 327–331 (2001).
[Crossref] [PubMed]

Intes, X.

J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys. 38(10), 5788–5798 (2011).
[Crossref] [PubMed]

J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express 2(4), 871–886 (2011).
[Crossref] [PubMed]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Jaffer, F. A.

F. A. Jaffer, P. Libby, and R. Weissleder, “Optical and multimodality molecular imaging: insights into atherosclerosis,” Arterioscler. Thromb. Vasc. Biol. 29(7), 1017–1024 (2009).
[Crossref] [PubMed]

Jin, H.

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Jolivet, J.-P.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Josephson, L.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

Kumar, A. T.

le Masne de Chermont, Q.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Li, H.

Li, J.

X. Yi, W. Chen, L. Wu, W. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte-Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).
[Crossref]

N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, “GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues,” Opt. Express 18(7), 6811–6823 (2010).
[Crossref] [PubMed]

Liang, J.

Libby, P.

F. A. Jaffer, P. Libby, and R. Weissleder, “Optical and multimodality molecular imaging: insights into atherosclerosis,” Arterioscler. Thromb. Vasc. Biol. 29(7), 1017–1024 (2009).
[Crossref] [PubMed]

Licha, K.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grötzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19(4), 327–331 (2001).
[Crossref] [PubMed]

Liebert, A.

A. Liebert, H. Wabnitz, N. Zołek, and R. Macdonald, “Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media,” Opt. Express 16(17), 13188–13202 (2008).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

Liu, F.

Liu, Q.

C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18(5), 050902 (2013).
[Crossref] [PubMed]

Liu, X.

Lovell, J. F.

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Lu, B.

Luo, J.

Luo, Q.

J. Fu, X. Yang, K. Wang, Q. Luo, and H. Gong, “A generic, geometric cocalibration method for a combined system of fluorescence molecular tomography and microcomputed tomography with arbitrarily shaped objects,” Med. Phys. 38(12), 6561–6570 (2011).
[Crossref] [PubMed]

G. Quan, H. Gong, Y. Deng, J. Fu, and Q. Luo, “Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units,” J. Biomed. Opt. 16(2), 026018 (2011).
[Crossref] [PubMed]

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Lv, Y.

Ma, W.

X. Yi, W. Chen, L. Wu, W. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte-Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).
[Crossref]

Macdonald, R.

A. Liebert, H. Wabnitz, N. Zołek, and R. Macdonald, “Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media,” Opt. Express 16(17), 13188–13202 (2008).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

Maîtrejean, S.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Meglinski, I.

D. Churmakov, I. Meglinski, S. A. Piletsky, and D. Greenhalgh, “Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation,” J. Phys. D Appl. Phys. 36(14), 1722–1728 (2003).
[Crossref]

Meglinski, I. V.

D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, “Amending of fluorescence sensor signal localization in human skin by matching of the refractive index,” J. Biomed. Opt. 9(2), 339–346 (2004).
[Crossref] [PubMed]

Metropolis, N.

N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44(247), 335–341 (1949).
[Crossref] [PubMed]

Möller, M.

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

Mycek, M.-A.

K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47(18), 3387–3405 (2002).
[Crossref] [PubMed]

Nelson, J.

Nishioka, N. S.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7(6), 1004–1012 (2001).
[Crossref]

Ntziachristos, V.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[Crossref] [PubMed]

Obrig, H.

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

Patterson, M. S.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue--I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

Pellé, F.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Péry, E.

E. Péry, W. C. Blondel, C. Thomas, and F. Guillemin, “Monte Carlo modeling of multilayer phantoms with multiple fluorophores: simulation algorithm and experimental validation,” J. Biomed. Opt. 14(2), 024048 (2009).
[Crossref] [PubMed]

Pfefer, J.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21(2), 166–178 (1997).
[Crossref] [PubMed]

Pfefer, T.

Pfefer, T. J.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7(6), 1004–1012 (2001).
[Crossref]

Pifferi, A.

Piletsky, S. A.

D. Churmakov, I. Meglinski, S. A. Piletsky, and D. Greenhalgh, “Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation,” J. Phys. D Appl. Phys. 36(14), 1722–1728 (2003).
[Crossref]

Pogue, B.

K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47(18), 3387–3405 (2002).
[Crossref] [PubMed]

Qu, X.

Quan, G.

G. Quan, H. Gong, Y. Deng, J. Fu, and Q. Luo, “Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units,” J. Biomed. Opt. 16(2), 026018 (2011).
[Crossref] [PubMed]

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

Quan, G. T.

Raymond, S. B.

Ren, N.

Richards-Kortum, R.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21(2), 166–178 (1997).
[Crossref] [PubMed]

Rinneberg, H.

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

Ripoll, J.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

Rosen, M. A.

Sassaroli, A.

Schellenberger, E. A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

Scherman, D.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Schnall, M. D.

Schomacker, K. T.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7(6), 1004–1012 (2001).
[Crossref]

Schweiger, M.

Seguin, J.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Semmler, W.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grötzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19(4), 327–331 (2001).
[Crossref] [PubMed]

Skipetrov, S. E.

S. E. Skipetrov and S. S. Chesnokov, “Analysis, by the Monte Carlo method, of the validity of the diffusion approximation in a study of dynamic multiple scattering of light in randomly inhomogeneous media,” Quantum Electron. 28(8), 733–737 (1998).
[Crossref]

Smithies, D.

Steinbrink, J.

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

Stott, J.

Sukowski, U.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grötzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19(4), 327–331 (2001).
[Crossref] [PubMed]

Swartling, J.

Thomas, C.

E. Péry, W. C. Blondel, C. Thomas, and F. Guillemin, “Monte Carlo modeling of multilayer phantoms with multiple fluorophores: simulation algorithm and experimental validation,” J. Biomed. Opt. 14(2), 024048 (2009).
[Crossref] [PubMed]

Tian, J.

Tsien, R. Y.

R. Y. Tsien, “Building and breeding molecules to spy on cells and tumors,” FEBS Lett. 579(4), 927–932 (2005).
[Crossref] [PubMed]

Tung, C.-H.

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[Crossref] [PubMed]

Ulam, S.

N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44(247), 335–341 (1949).
[Crossref] [PubMed]

Van Gemert, M.

Venugopal, V.

Villringer, A.

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

Vishwanath, K.

K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47(18), 3387–3405 (2002).
[Crossref] [PubMed]

Wabnitz, H.

A. Liebert, H. Wabnitz, N. Zołek, and R. Macdonald, “Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media,” Opt. Express 16(17), 13188–13202 (2008).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

Wang, D.

Wang, G.

Wang, K.

J. Fu, X. Yang, K. Wang, Q. Luo, and H. Gong, “A generic, geometric cocalibration method for a combined system of fluorescence molecular tomography and microcomputed tomography with arbitrarily shaped objects,” Med. Phys. 38(12), 6561–6570 (2011).
[Crossref] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Wang, X.

X. Yi, W. Chen, L. Wu, W. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte-Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).
[Crossref]

Warren, S.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21(2), 166–178 (1997).
[Crossref] [PubMed]

Weissleder, R.

F. A. Jaffer, P. Libby, and R. Weissleder, “Optical and multimodality molecular imaging: insights into atherosclerosis,” Arterioscler. Thromb. Vasc. Biol. 29(7), 1017–1024 (2009).
[Crossref] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[Crossref] [PubMed]

Welch, A.

Welch, A. J.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21(2), 166–178 (1997).
[Crossref] [PubMed]

Wiedenmann, B.

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grötzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19(4), 327–331 (2001).
[Crossref] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

Wilson, B. C.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue--I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

Wu, L.

X. Yi, W. Chen, L. Wu, W. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte-Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).
[Crossref]

Wu, P.

Wyman, D. R.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue--I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

Xu, H.

Xue, Z.

Yang, M.

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Yang, W.

Yang, X.

J. Fu, X. Yang, K. Wang, Q. Luo, and H. Gong, “A generic, geometric cocalibration method for a combined system of fluorescence molecular tomography and microcomputed tomography with arbitrarily shaped objects,” Med. Phys. 38(12), 6561–6570 (2011).
[Crossref] [PubMed]

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

Yang, X. Q.

Ye, J.

Yessayan, D.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

Yi, X.

X. Yi, W. Chen, L. Wu, W. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte-Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).
[Crossref]

Yodh, A. G.

Zhang, S.

Zhang, W.

X. Yi, W. Chen, L. Wu, W. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte-Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).
[Crossref]

Zhang, Z.

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Zheng, G.

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Zhu, C.

C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18(5), 050902 (2013).
[Crossref] [PubMed]

Zolek, N.

Angew. Chem. Int. Ed. Engl. (1)

Z. Zhang, W. Cao, H. Jin, J. F. Lovell, M. Yang, L. Ding, J. Chen, I. Corbin, Q. Luo, and G. Zheng, “Biomimetic nanocarrier for direct cytosolic drug delivery,” Angew. Chem. Int. Ed. Engl. 48(48), 9171–9175 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Arterioscler. Thromb. Vasc. Biol. (1)

F. A. Jaffer, P. Libby, and R. Weissleder, “Optical and multimodality molecular imaging: insights into atherosclerosis,” Arterioscler. Thromb. Vasc. Biol. 29(7), 1017–1024 (2009).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Chin. Opt. Lett. (1)

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

FEBS Lett. (1)

R. Y. Tsien, “Building and breeding molecules to spy on cells and tumors,” FEBS Lett. 579(4), 927–932 (2005).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7(6), 1004–1012 (2001).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue--I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[Crossref] [PubMed]

J. Am. Stat. Assoc. (1)

N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44(247), 335–341 (1949).
[Crossref] [PubMed]

J. Biomed. Opt. (5)

D. Y. Churmakov, I. V. Meglinski, and D. A. Greenhalgh, “Amending of fluorescence sensor signal localization in human skin by matching of the refractive index,” J. Biomed. Opt. 9(2), 339–346 (2004).
[Crossref] [PubMed]

E. Péry, W. C. Blondel, C. Thomas, and F. Guillemin, “Monte Carlo modeling of multilayer phantoms with multiple fluorophores: simulation algorithm and experimental validation,” J. Biomed. Opt. 14(2), 024048 (2009).
[Crossref] [PubMed]

C. Zhu and Q. Liu, “Review of Monte Carlo modeling of light transport in tissues,” J. Biomed. Opt. 18(5), 050902 (2013).
[Crossref] [PubMed]

G. Quan, H. Gong, Y. Deng, J. Fu, and Q. Luo, “Monte Carlo-based fluorescence molecular tomography reconstruction method accelerated by a cluster of graphic processing units,” J. Biomed. Opt. 16(2), 026018 (2011).
[Crossref] [PubMed]

F. Cai and S. He, “Using graphics processing units to accelerate perturbation Monte Carlo simulation in a turbid medium,” J. Biomed. Opt. 17(4), 040502 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

D. Churmakov, I. Meglinski, S. A. Piletsky, and D. Greenhalgh, “Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation,” J. Phys. D Appl. Phys. 36(14), 1722–1728 (2003).
[Crossref]

Lasers Surg. Med. (1)

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21(2), 166–178 (1997).
[Crossref] [PubMed]

Med. Phys. (3)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[Crossref] [PubMed]

J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys. 38(10), 5788–5798 (2011).
[Crossref] [PubMed]

J. Fu, X. Yang, K. Wang, Q. Luo, and H. Gong, “A generic, geometric cocalibration method for a combined system of fluorescence molecular tomography and microcomputed tomography with arbitrarily shaped objects,” Med. Phys. 38(12), 6561–6570 (2011).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grötzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19(4), 327–331 (2001).
[Crossref] [PubMed]

Nat. Med. (1)

V. Ntziachristos, C.-H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8(7), 757–761 (2002).
[Crossref] [PubMed]

Neuroimage (1)

A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Möller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain,” Neuroimage 31(2), 600–608 (2006).
[Crossref] [PubMed]

Opt. Express (9)

A. T. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14(25), 12255–12270 (2006).
[Crossref] [PubMed]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).
[Crossref] [PubMed]

N. Ren, J. Liang, X. Qu, J. Li, B. Lu, and J. Tian, “GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues,” Opt. Express 18(7), 6811–6823 (2010).
[Crossref] [PubMed]

D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
[Crossref] [PubMed]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).
[Crossref] [PubMed]

J. Barton, T. Pfefer, A. Welch, D. Smithies, J. Nelson, and M. Van Gemert, “Optical Monte Carlo modeling of a true portwine stain anatomy,” Opt. Express 2(9), 391–396 (1998).
[Crossref] [PubMed]

X. Liu, D. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express 18(6), 6300–6314 (2010).
[PubMed]

Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14(18), 8211–8223 (2006).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, N. Zołek, and R. Macdonald, “Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media,” Opt. Express 16(17), 13188–13202 (2008).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Med. Biol. (1)

K. Vishwanath, B. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47(18), 3387–3405 (2002).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101(33), 12294–12299 (2004).
[Crossref] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

X. Yi, W. Chen, L. Wu, W. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte-Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).
[Crossref]

Quantum Electron. (1)

S. E. Skipetrov and S. S. Chesnokov, “Analysis, by the Monte Carlo method, of the validity of the diffusion approximation in a study of dynamic multiple scattering of light in randomly inhomogeneous media,” Quantum Electron. 28(8), 733–737 (1998).
[Crossref]

Rev. Sci. Instrum. (1)

X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum. 81(5), 054304 (2010).
[Crossref] [PubMed]

Other (6)

J. Lakowicz, Principle of Fluorescence Spectroscopy (Springer, 2006).

R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method (John Wiley & Sons, 2011).

I. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, 1991).

A. J. Welch and R. Richards-Kortum, “Monte Carlo simulation of the propagation of fluorescent light,” in Laser-induced Interstitial Thermotherapy, G. J. Müller, and A. Roggan ed. (SPIE Press, 1995).

C. K. Hayakawa and J. Spanier, Perturbation Monte Carlo Methods for the Solution of Inverse Problems (Springer, 2004).

A. Liebert, H. Wabnitz, R. Macdonald, and H. Rinneberg, “Monte Carlo simulations of time-resolved fluorescence excited in a layered turbid medium,” in Biomedical Topical Meeting, Technical Digest (Optical Society of America, 2006), paper ME7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Sketch of the experimental system.
Fig. 2
Fig. 2 The cylindrical phantom is composed of a glass box and fluorescent tube.
Fig. 3
Fig. 3 Normalized fluorescence intensity on the CCD camera in (a) the sfMC simulation and (b) the experiment. (c) Comparison of the fluorescence intensity along the center line of the CCD camera. (d) Comparison of the contour lines of the fluorescence intensity on the CCD camera in the sfMC simulation and experiment.
Fig. 4
Fig. 4 Cylindrical model with a source composed of bone (yellow), lungs (blue), heart (red), and muscle (green). The fluorophore is located at the lungs.
Fig. 5
Fig. 5 Mean error at the detectors versus number of photons for pfMC and dfMC methods.
Fig. 6
Fig. 6 Mean error at the detectors versus fluorescence coefficient for pfMC and dfMC methods.
Fig. 7
Fig. 7 Mean error at the detectors versus absorption coefficient of (a) lungs, (b) muscle, and (c) bone for pfMC and dfMC methods.
Fig. 8
Fig. 8 Mean error at the detectors versus scattering coefficient of (a) lungs, (b) muscle, and (c) heart for pfMC and dfMC methods.

Tables (2)

Tables Icon

Table 1 Optical Properties Used in the Cylindrical Phantom

Tables Icon

Table 2 Fixed Value of the Tissue Optical Parameters

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

D= y m (p) g(p)dp = m=0 τ m (p) w m (p) k=0 m d p k dp ,
x(p)= x(p')K(p'p, μ s ex , μ a ex + μ af , g ex )dp'+S(p).
y(p)= y(p')K(p'p, μ s em , μ a em , g em )dp' + x(p') K xm (p'p, μ af )dp' ,
K(p'p, μ s , μ a ,g)=T( r ' r | s ^ ', μ s , μ a )C( s ^ ' s ^ | r , μ s , μ a ,g),
T( r ' r | s ^ ', μ s , μ a )= μ t ( r )exp( μ t ( r '+l s ^ )dl) δ( s ^ ( r r ') / | r r ' |) /| r r ' | 2 ,
C( s ^ ' s ^ | r , μ s , μ a ,g)=η μ s ( r ) P A ( s ^ ' s ^ ,g) / μ t ( r ) ,
y m (p)= m=0 i=0 m S( p 0 )K( p 0 p 1 , μ s ex , μ a ex + μ af , g ex ) K( p i1 p i , μ s ex , μ a ex + μ af , g ex ) × K xm ( p i p i+1 , μ af )×K( p i+1 p i+2 , μ s em , μ a em , g em )K( p m1 p m , μ s em , μ a em , g em ) k=0 m d p k .
K xm (p'p, μ af )=T( r ' r | s ^ ', μ s ex , μ a ex + μ af ) C xm ( s ^ ' s ^ | r , μ af ) =K( r ' r | s ^ ', μ s ex , μ a ex , g ex )exp( 0 | r r ' | μ af ( r '+l s ^ )dl ) × μ t ex ( r )+ μ af ( r ) μ t ex ( r ) C xm ( s ^ ' s ^ | r , μ af ) C( s ^ ' s ^ | r , μ s ex , μ a ex , g ex ) =K(p'p, μ s ex , μ a ex , g ex )exp( 0 | r r ' | μ af ( r '+l s ^ )dl ) η μ af ( r ) μ s ex ( r ) P I ( s ^ ' s ^ ) P A ( s ^ ' s ^ , g ex ( r ')) ,
K(p'p, μ s em , μ a em , g em )=T( r ' r | s ^ ', μ s em , μ a em )C( s ^ ' s ^ | r , μ s em , μ a em , g em ) =T( r ' r | s ^ ', μ s ex , μ a ex )exp( 0 | r r ' | ( μ t em ( r '+l s ^ ) μ t ex ( r '+l s ^ ))dl ) ×C( s ^ ' s ^ | r , μ s ex , μ a ex , g ex ) μ s em ( r ) μ s ex ( r ) =K(p'p, μ s ex , μ a ex , g ex )exp( 0 | r r ' | ( μ t em ( r '+l s ^ ) μ t ex ( r '+l s ^ ))dl ) × μ s em ( r ) μ s ex ( r ) P A ( s ^ ' s ^ , g em ( r ')) P A ( s ^ ' s ^ , g ex ( r ')) ,
τ m (p)=S( p 0 )K( p 0 p 1 , μ s ex , μ a ex , g ex )K( p m1 p m , μ s ex , μ a ex , g ex ),
w m (p)=g(p) i=0 m ( j=0 i exp( 0 | r j+1 r j | ( μ af ( r j +l s ^ j+1 )dl ) ) η μ af ( r i ) μ s ex ( r i ) × P I ( s ^ i s ^ i+1 ) P A ( s ^ i s ^ i+1 , g ex ( r i )) j=i+1 m μ s em ( r j ) μ s ex ( r j ) P A ( s ^ j s ^ j+1 , g em ( r j )) P A ( s ^ j s ^ j+1 , g ex ( r j )) ×exp( 0 | r j+1 r j | ( μ t em ( r j +l s ^ j+1 ) μ t ex ( r j +l s ^ j+1 ))dl ).
w i ( r s ,r)= w i0 exp( j=1 p i ( μ a ex ( r j )+ μ af ( r j )) l i ( r j )),
p i (r)=Φ(1exp( μ af l i (r))),
w i (r, r d )= w i0 ' exp( j= p i +1 q i ( μ a em ( r j )+ μ af ( r j )) l i ( r j )),
W( r s , r d ,r)= i=1 n w i,0 exp( j=1 p i ( μ a ex ( r j )+ μ af ( r j )) l i ( r j ))(1exp( μ af (r) l i (r))) ×exp( j= p i +1 q i ( μ a em ( r j )+ μ af ( r j )) l i ( r j )) Φ.
U F ( r s , r d )= Ω dr G x ( r s ,r) G m (r, r d )η(r),
η(r)= μ af (r)Φ μ a x (r) ,
U F ( r s , r d )= Ω drW'( r s , r d ,r)η(r).
W( r s , r d ,r)=W'( r s , r d ,r)η(r) = i=1 n w i,0 exp( j=1 p i μ a x ( r j ) l i ( r j ))(1exp( μ a x (r) l i (r))exp( j= p i +1 q i μ a m ( r j ) l i ( r j )) η(r),
W( r s , r d ,r)= i=1 n w i,0 exp( j=1 p i ( μ a ex ( r j )+ μ af ( r j )) l i ( r j ))(1exp( μ af (r) l i (r))) ×exp( j= p i +1 q i ( μ a em ( r j )+ μ af ( r j )) l i ( r j )) Φ = i=1 n w i,0 Φexp( j=1 p i ( μ a ex ( r j )+ μ af ( r j )) l i ( r j )) exp( j= p i +1 q i ( μ a em ( r j )+ μ af ( r j )) l i ( r j )) ×( μ af (r) l i (r) ( μ af (r) l i (r)) 2 2! (1) n ( μ af (r) l i (r)) n n! ),
W( r s , r d ,r)=W'( r s , r d ,r)η(r) = i=1 n w i,0 exp( j=1 p i μ a x ( r j ) l i ( r j )) exp( j= p i +1 q i μ a m ( r j ) l i ( r j ))(1exp( μ a x (r) l i (r)) μ af (r)Φ μ a x (r) = i=1 n w i,0 Φexp( j=1 p i μ a x ( r j ) l i ( r j )) exp( j= p i +1 q i μ a m ( r j ) l i ( r j )) ×( μ af (r) l i (r) μ af (r) μ a x (r) l i (r) 2 2! (1) n μ af (r) μ a x (r) n1 l i (r) n n! ).
e(r)=| v(r) v ref (r) v ref (r) |×100%,

Metrics