Abstract

We investigated the inter-core differential mode delay (DMD) characteristic of a weakly-coupled homogeneous multi-core fiber with a view to utilizing inter-core crosstalk compensation with MIMO processing. We confirmed experimentally that the bend induced inter-core DMD is lower than the simulated results, which we expected owing to the twist of the fiber. We also revealed numerically that the refractive index profile variation of each core greatly increases inter-core DMD. Finally, we conducted a 4 × 4 MIMO transmission experiment using a weakly-coupled 4-core fiber and successfully compensated for the inter-core crosstalk.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Heterogeneous trench-assisted few-mode multi-core fiber with low differential mode delay

Jiajing Tu, Kunimasa Saitoh, Katsuhiro Takenaga, and Shoichiro Matsuo
Opt. Express 22(4) 4329-4341 (2014)

Ultra-dense spatial-division-multiplexed optical fiber transmission over 6-mode 19-core fibers

Koji Igarashi, Daiki Soma, Yuta Wakayama, Koki Takeshima, Yu Kawaguchi, Noboru Yoshikane, Takehiro Tsuritani, Itsuro Morita, and Masatoshi Suzuki
Opt. Express 24(10) 10213-10231 (2016)

Large-effective-area uncoupled few-mode multi-core fiber

Yusuke Sasaki, Katsuhiro Takenaga, Ning Guan, Shoichiro Matsuo, Kunimasa Saitoh, and Masanori Koshiba
Opt. Express 20(26) B77-B84 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Sakamoto, K. Saitoh, N. Hanzawa, K. Tsujikawa, L. Ma, M. Koshiba, and F. Yamamoto, “Crosstalk suppressed hole-assisted 6-core fiber with cladding diameter of 125 μm,” in Proc. 39th European Conference and Exhibition on Optical Communication (ECOC), paper Mo.3.A.3 (2013).
  2. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011).
    [Crossref] [PubMed]
  3. S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, and M. Kosihba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express 20(27), 28398–28408 (2012).
    [Crossref] [PubMed]
  4. J. Sakaguchi, W. Klaus, B. J. Puttnam, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tsuchida, K. Maeda, M. Tadakuma, K. Imamura, R. Sugizaki, T. Kobayashi, Y. Tottori, M. Watanabe, and R. V. Jensen, “19-core MCF transmission system using EDFA with shared core pumping coupled in free-space optics,” in Proc. 39th European Conference and Exhibition on Optical Communication (ECOC), paper Th.1.C.6 (2013).
    [Crossref]
  5. H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) Crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in Proc. 38th European Conference and Exhibition on Optical Communication (ECOC), paper Th.3.C.1 (2012).
    [Crossref]
  6. T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, and F. Yamamoto, “Moderately coupled 125-µm cladding 2 LP-mode 6-core fiber for realizing low MIMO-DSP and high spatial density, ” in Proc. 40th European Conference and Exhibition on Optical Communication (ECOC), paper Tu.4.1.3 (2014).
  7. R. Ryf, N. K. Fontaine, M. Montoliu, S. Randel, S. H. Chang, H. Chen, S. Chandrasekhar, A. H. Gnauck, R. J. Essiambre, P. J. Winzer, T. Taru, T. Hayashi, and T. Sasaki, “Space-division multiplexed transmission over 3×3 coupled-core multicore fiber,” in Proc. 37th Optical Fiber Communication Conference and Exposition (OFC), paper Tu2J.4 (2014).
    [Crossref]
  8. T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Few-mode fibers supporting more than two LP modes for mode-division-multiplexed transmission with MIMO DSP,” J. Lightwave Technol. 32(14), 2468–2479 (2014).
    [Crossref]
  9. R. Maruyama, N. Kuwaki, S. Matsuo, and M. Ohashi, “Two mode optical fibers with low and flattened differential modal delay suitable for WDM-MIMO combined system,” Opt. Express 22(12), 14311–14321 (2014).
    [Crossref] [PubMed]
  10. L. Shenping, D. L. Butler, M.-J. Li, A. Koklyushkin, V. N. Nazarov, R. Khrapko, Y. Geng, and R. L. McCollum, “Bending effects in multicore optical fibers.” Photonics Conference, paper TuF3.2 (2013).
  11. Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Trench-assisted low-crosstalk few-mode multicore fiber,” in Proc. 39th European Conference and Exhibition on Optical Communication (ECOC), paper Mo.3.A.5 (2013).
  12. C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
    [Crossref]
  13. T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, “12-core x 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization,” in Proc. 37th Optical Fiber Communication Conference and Exposition (OFC), paper Th.5.B.2 (2014).
    [Crossref]
  14. S. Haykin, Adaptive Filter Theory, 4th ed. (Prentice Hall, 2001).
  15. J. G. Proakis, Digital Communications, 5th ed. (McGraw Hill, 2008).
  16. T. Mori, T. Sakamoto, T. Yamamoto, and S. Tomita, “Modal dispersion compensation by using digital coherent receiver with adaptive equalization in multi-mode fiber transmission,” Opt. Fiber Technol. 19(2), 132–138 (2013).
    [Crossref]

2014 (2)

2013 (1)

T. Mori, T. Sakamoto, T. Yamamoto, and S. Tomita, “Modal dispersion compensation by using digital coherent receiver with adaptive equalization in multi-mode fiber transmission,” Opt. Fiber Technol. 19(2), 132–138 (2013).
[Crossref]

2012 (2)

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

S. Matsuo, Y. Sasaki, T. Akamatsu, I. Ishida, K. Takenaga, K. Okuyama, K. Saitoh, and M. Kosihba, “12-core fiber with one ring structure for extremely large capacity transmission,” Opt. Express 20(27), 28398–28408 (2012).
[Crossref] [PubMed]

2011 (1)

Akamatsu, T.

Amezcua-Correa, R.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Antonio-Lopez, E.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Arrioja, D. M.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Bai, N.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Hayashi, T.

Ishida, I.

Kosihba, M.

Kuwaki, N.

Li, G.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Liñares, J.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Maruyama, R.

Mateo, E.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Matsuo, S.

Montero, C.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Mori, T.

T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Few-mode fibers supporting more than two LP modes for mode-division-multiplexed transmission with MIMO DSP,” J. Lightwave Technol. 32(14), 2468–2479 (2014).
[Crossref]

T. Mori, T. Sakamoto, T. Yamamoto, and S. Tomita, “Modal dispersion compensation by using digital coherent receiver with adaptive equalization in multi-mode fiber transmission,” Opt. Fiber Technol. 19(2), 132–138 (2013).
[Crossref]

Ohashi, M.

Okuyama, K.

Richardson, M.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Saitoh, K.

Sakamoto, T.

T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Few-mode fibers supporting more than two LP modes for mode-division-multiplexed transmission with MIMO DSP,” J. Lightwave Technol. 32(14), 2468–2479 (2014).
[Crossref]

T. Mori, T. Sakamoto, T. Yamamoto, and S. Tomita, “Modal dispersion compensation by using digital coherent receiver with adaptive equalization in multi-mode fiber transmission,” Opt. Fiber Technol. 19(2), 132–138 (2013).
[Crossref]

Sasaki, T.

Sasaki, Y.

Sasaoka, E.

Schulzgen, A.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Shimakawa, O.

Takenaga, K.

Taru, T.

Tomita, S.

T. Mori, T. Sakamoto, T. Yamamoto, and S. Tomita, “Modal dispersion compensation by using digital coherent receiver with adaptive equalization in multi-mode fiber transmission,” Opt. Fiber Technol. 19(2), 132–138 (2013).
[Crossref]

Wada, M.

Xia, C.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

Yamamoto, F.

Yamamoto, T.

T. Mori, T. Sakamoto, M. Wada, T. Yamamoto, and F. Yamamoto, “Few-mode fibers supporting more than two LP modes for mode-division-multiplexed transmission with MIMO DSP,” J. Lightwave Technol. 32(14), 2468–2479 (2014).
[Crossref]

T. Mori, T. Sakamoto, T. Yamamoto, and S. Tomita, “Modal dispersion compensation by using digital coherent receiver with adaptive equalization in multi-mode fiber transmission,” Opt. Fiber Technol. 19(2), 132–138 (2013).
[Crossref]

Zhou, X.

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. Xia, R. Amezcua-Correa, N. Bai, E. Antonio-Lopez, D. M. Arrioja, A. Schulzgen, M. Richardson, J. Liñares, C. Montero, E. Mateo, X. Zhou, and G. Li, “Hole-assisted few-mode multicore fiber for high-density space-division multiplexing,” IEEE Photon. Technol. Lett. 24(21), 1914–1917 (2012).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Fiber Technol. (1)

T. Mori, T. Sakamoto, T. Yamamoto, and S. Tomita, “Modal dispersion compensation by using digital coherent receiver with adaptive equalization in multi-mode fiber transmission,” Opt. Fiber Technol. 19(2), 132–138 (2013).
[Crossref]

Other (10)

T. Sakamoto, K. Saitoh, N. Hanzawa, K. Tsujikawa, L. Ma, M. Koshiba, and F. Yamamoto, “Crosstalk suppressed hole-assisted 6-core fiber with cladding diameter of 125 μm,” in Proc. 39th European Conference and Exhibition on Optical Communication (ECOC), paper Mo.3.A.3 (2013).

T. Mizuno, T. Kobayashi, H. Takara, A. Sano, H. Kawakami, T. Nakagawa, Y. Miyamoto, Y. Abe, T. Goh, M. Oguma, T. Sakamoto, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, and T. Morioka, “12-core x 3-mode dense space division multiplexed transmission over 40 km employing multi-carrier signals with parallel MIMO equalization,” in Proc. 37th Optical Fiber Communication Conference and Exposition (OFC), paper Th.5.B.2 (2014).
[Crossref]

S. Haykin, Adaptive Filter Theory, 4th ed. (Prentice Hall, 2001).

J. G. Proakis, Digital Communications, 5th ed. (McGraw Hill, 2008).

J. Sakaguchi, W. Klaus, B. J. Puttnam, J.-M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tsuchida, K. Maeda, M. Tadakuma, K. Imamura, R. Sugizaki, T. Kobayashi, Y. Tottori, M. Watanabe, and R. V. Jensen, “19-core MCF transmission system using EDFA with shared core pumping coupled in free-space optics,” in Proc. 39th European Conference and Exhibition on Optical Communication (ECOC), paper Th.1.C.6 (2013).
[Crossref]

H. Takara, A. Sano, T. Kobayashi, H. Kubota, H. Kawakami, A. Matsuura, Y. Miyamoto, Y. Abe, H. Ono, K. Shikama, Y. Goto, K. Tsujikawa, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Koshiba, and T. Morioka, “1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) Crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency,” in Proc. 38th European Conference and Exhibition on Optical Communication (ECOC), paper Th.3.C.1 (2012).
[Crossref]

T. Sakamoto, T. Mori, M. Wada, T. Yamamoto, and F. Yamamoto, “Moderately coupled 125-µm cladding 2 LP-mode 6-core fiber for realizing low MIMO-DSP and high spatial density, ” in Proc. 40th European Conference and Exhibition on Optical Communication (ECOC), paper Tu.4.1.3 (2014).

R. Ryf, N. K. Fontaine, M. Montoliu, S. Randel, S. H. Chang, H. Chen, S. Chandrasekhar, A. H. Gnauck, R. J. Essiambre, P. J. Winzer, T. Taru, T. Hayashi, and T. Sasaki, “Space-division multiplexed transmission over 3×3 coupled-core multicore fiber,” in Proc. 37th Optical Fiber Communication Conference and Exposition (OFC), paper Tu2J.4 (2014).
[Crossref]

L. Shenping, D. L. Butler, M.-J. Li, A. Koklyushkin, V. N. Nazarov, R. Khrapko, Y. Geng, and R. L. McCollum, “Bending effects in multicore optical fibers.” Photonics Conference, paper TuF3.2 (2013).

Y. Sasaki, Y. Amma, K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Trench-assisted low-crosstalk few-mode multicore fiber,” in Proc. 39th European Conference and Exhibition on Optical Communication (ECOC), paper Mo.3.A.5 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Channel multiplicity normalized by standard SMF vs. cladding diameter of recently reported MCFs.
Fig. 2
Fig. 2 Conceptual diagram of (a) a transmission system using 2-core fiber with a MIMO equalizer and (b) the configuration of an FIR filter.
Fig. 3
Fig. 3 Cross-sectional image and refractive index profile of fabricated homogeneous 4-core fiber.
Fig. 4
Fig. 4 Crosstalk properties from core 1 to other cores in our 4-core fiber.
Fig. 5
Fig. 5 Impulse responses (a) when signal is input from each core and received at the same core, or (b) when signal is input from only core 4 and received at cores 1~4.
Fig. 6
Fig. 6 Bending radius dependence of (a) simulated and measured maximum inter-core DMD and (b) measured inter-core DMD of each core combination.
Fig. 7
Fig. 7 Calculated bending direction dependence of group delay in homogeneous 4-core fiber.
Fig. 8
Fig. 8 Calculated inter-core DMD and DMD slope change as a function of (a) a1 or (b) Δ1 variation.
Fig. 9
Fig. 9 Wavelength properties of normalized inter-core DMD.
Fig. 10
Fig. 10 Experimental setup for 4 × 4 MIMO transmission over 10 km-long 4-core fiber.
Fig. 11
Fig. 11 Q factors of back-to-back and transmitted signals.
Fig. 12
Fig. 12 BER properties of recovered signals with 1 × 1, 3 × 3 or 4 × 4 MIMO configuration.

Tables (1)

Tables Icon

Table 1 Structural parameters of our 4-core fiber

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n eff = n eff0 ( 1+ x R ),
n g = n eff λ d n eff dλ .
n g = n g0 ( 1+ x R ).
DMD= 1 c ( n g0 (1+ x R ) n g0 )= v g0 ( x R ),

Metrics