Abstract

We propose and experimentally demonstrate a novel scheme which can simultaneously realize wavelength-preserving and phase-preserving amplitude noise compression of a 40 Gb/s distorted non-return-to-zero differential-phase-shift keying (NRZ-DPSK) signal. In the scheme, two semiconductor optical amplifiers (SOAs) are exploited. The first one (SOA1) is used to generate the inverted signal based on SOA’s transient cross-phase modulation (T-XPM) effect and the second one (SOA2) to regenerate the distorted NRZ-DPSK signal using SOA’s cross-gain compression (XGC) effect. In the experiment, the bit error ratio (BER) measurements show that power penalties of constructive and destructive demodulation at BER of 10−9 are −1.75 and −1.01 dB, respectively. As the nonlinear effects and the requirements of the two SOAs are completely different, quantum-well (QW) structures has been separately optimized. A complicated theoretical model by combining QW band structure calculation with SOA’s dynamic model is exploited to optimize the SOAs, in which both interband effect (carrier density variation) and intraband effect (carrier temperature variation) are taken into account. Regarding SOA1, we choose the tensile strained QW structure and large optical confinement factor to enhance the T-XPM effect. Regarding SOA2, the compressively strained QW structure is selected to reduce the impact of excess phase noise induced by amplitude fluctuations. Exploiting the optimized QW SOAs, better amplitude regeneration performance is demonstrated successfully through numerical simulation. The proposed scheme is intrinsically stable comparing with the interferometer structure and can be integrated on a chip, making it a practical candidate for all-optical amplitude regeneration of high-speed NRZ-DPSK signal.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast gain recovery in a QW-SOA and its application for 40  Gb/s regenerative format conversion from NRZ-DPSK to RZ-OOK

Tong Cao, Liao Chen, Yu Yu, and Xinliang Zhang
J. Opt. Soc. Am. B 33(6) 1291-1297 (2016)

All-optical parallel NRZ-DPSK to RZ-DPSK format conversion at 40 Gb/s based on XPM effect in a single SOA

Yu Yu, Bingrong Zou, Wenhan Wu, and Xinliang Zhang
Opt. Express 19(15) 14720-14725 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agarwal, S. Banerjee, D. Grosz, S. Hunsche, A. Kung, A. Marhelyuk, D. Maywar, M. Movassaghi, X. Liu, C. Xu, X. Wei, and D. M. Gill, “2.5 Tb/s (64x42.7 Gb/s) transmission over 40x100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans,” in Optical Fiber Communications Conference, Vol. 70 of 2002 OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper FC2.
    [Crossref]
  2. K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Opt. Lett. 29(20), 2357–2359 (2004).
    [Crossref] [PubMed]
  3. K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, “Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Opt. Express 14(6), 2085–2094 (2006).
    [Crossref] [PubMed]
  4. Y. Meng, J. Lian, S. Fu, M. Tang, P. Shum, and D. Liu, “All-optical DPSK regenerative one-to-nine wavelength multicasting using dual-pump degenerate phase sensitive amplifier,” J. Lightwave Technol. 32(15), 2605–2612 (2014).
    [Crossref]
  5. I. Kang, C. Dorrer, L. Zhang, M. Rasras, L. Buhl, A. Bhardwaj, S. Cabot, M. Dinu, X. Liu, M. Cappuzzo, L. Gomez, A. Wong-Foy, Y. F. Chen, S. Patel, D. T. Neilson, J. Jacques, and C. R. Giles, “Regenerative all optical wavelength conversion of 40-Gb/s DPSK signals using a SOA-MZI,” in Proceedings of the European Conference and Exhibition on Optical Communication (ECOC, Glasgow, Scotland, 2005), paper Th.4.3.3.
  6. V. S. Grigoryan, S. Myunghun, P. Devgan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase-noise-degraded DPSK signals: dynamic analysis and demonstration,” J. Lightwave Technol. 24(1), 135–142 (2006).
    [Crossref]
  7. P. Johannisson, G. Adolfsson, and M. Karlsson, “Suppression of phase error in differential phase-shift keying data by amplitude regeneration,” Opt. Lett. 31(10), 1385–1387 (2006).
    [Crossref] [PubMed]
  8. P. Vorreau, A. Marculescu, J. Wang, G. Bottger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
    [Crossref]
  9. C. Kouloumentas, M. Bougioukos, A. Maziotis, and H. Avramopoulos, “DPSK regeneration at 40 Gb/s and beyond using a fiber-Sagnac interferometer,” IEEE Photon. Technol. Lett. 22(16), 1187–1189 (2010).
    [Crossref]
  10. A. Striegler and B. Schmauss, “All-optical DPSK signal regeneration based on cross-phase modulation,” IEEE Photon. Technol. Lett. 16(4), 1083–1085 (2004).
    [Crossref]
  11. M. Matsumoto, “Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators,” IEEE Photon. Technol. Lett. 17(5), 1055–1057 (2005).
    [Crossref]
  12. A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
    [Crossref]
  13. X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. Zhang, “Optimized quantum well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47(6), 819–826 (2011).
    [Crossref]
  14. C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett. 24(18), 1597–1599 (2012).
    [Crossref]
  15. Y. Yu, W. Wu, X. Huang, B. Zou, S. Hu, and X. Zhang, “Multichannel all-optical RZ-PSK amplitude regeneration based on the XPM effect in a single SOA,” J. Lightwave Technol. 30(23), 3633–3639 (2012).
    [Crossref]
  16. C. Porzi, A. Bogoni, and G. Contestabile, “Regenerative wavelength conversion of DPSK signals through FWM in an SOA,” IEEE Photon. Technol. Lett. 25(2), 175–178 (2013).
    [Crossref]
  17. B. Zou, Y. Yu, W. Wu, X. Huang, and X. Zhang, “All-optical amplitude regeneration of non-return-to-zero differential-phase-shift-keying signal,” Opt. Commun. 298(1–2), 83–87 (2013).
    [Crossref]
  18. C. Porzi, G. Serafino, A. Bogoni, and G. Contestabile, “Phase-preserving amplitude noise compression of 40 Gb/s DPSK signals in a single SOA,” J. Lightwave Technol. 32(10), 1966–1972 (2014).
    [Crossref]
  19. G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Reshaping capability of cross-gain compression in semiconductor amplifiers,” IEEE Photon. Technol. Lett. 17(12), 2523–2525 (2005).
    [Crossref]
  20. G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: an effective technique for WDM multicasting,” IEEE Photon. Technol. Lett. 18(1), 181–183 (2006).
    [Crossref]
  21. G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Cross-gain compression in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 915–921 (2007).
    [Crossref]
  22. F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” IEEE Photon. Technol. Lett. 25(22), 2178–2181 (2013).
    [Crossref]
  23. N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
    [Crossref] [PubMed]
  24. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990).
    [Crossref] [PubMed]
  25. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave Technol. 24(1), 230–236 (2006).
    [Crossref]
  26. C. Chih-Sheng and C. Shun-Lien, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1(2), 218–229 (1995).
    [Crossref]
  27. J. M. Dailey and T. L. Koch, “Simple rules for optimizing asymmetries in SOA-based Mach-Zehnder wavelength converters,” J. Lightwave Technol. 27(11), 1480–1488 (2009).
    [Crossref]
  28. J. Xu, X. L. Zhang, and J. Mork, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron. 46(1), 87–94 (2010).
    [Crossref]

2014 (2)

2013 (4)

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

C. Porzi, A. Bogoni, and G. Contestabile, “Regenerative wavelength conversion of DPSK signals through FWM in an SOA,” IEEE Photon. Technol. Lett. 25(2), 175–178 (2013).
[Crossref]

B. Zou, Y. Yu, W. Wu, X. Huang, and X. Zhang, “All-optical amplitude regeneration of non-return-to-zero differential-phase-shift-keying signal,” Opt. Commun. 298(1–2), 83–87 (2013).
[Crossref]

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” IEEE Photon. Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

2012 (2)

C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett. 24(18), 1597–1599 (2012).
[Crossref]

Y. Yu, W. Wu, X. Huang, B. Zou, S. Hu, and X. Zhang, “Multichannel all-optical RZ-PSK amplitude regeneration based on the XPM effect in a single SOA,” J. Lightwave Technol. 30(23), 3633–3639 (2012).
[Crossref]

2011 (1)

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. Zhang, “Optimized quantum well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47(6), 819–826 (2011).
[Crossref]

2010 (2)

C. Kouloumentas, M. Bougioukos, A. Maziotis, and H. Avramopoulos, “DPSK regeneration at 40 Gb/s and beyond using a fiber-Sagnac interferometer,” IEEE Photon. Technol. Lett. 22(16), 1187–1189 (2010).
[Crossref]

J. Xu, X. L. Zhang, and J. Mork, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron. 46(1), 87–94 (2010).
[Crossref]

2009 (1)

2007 (1)

2006 (6)

2005 (3)

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Reshaping capability of cross-gain compression in semiconductor amplifiers,” IEEE Photon. Technol. Lett. 17(12), 2523–2525 (2005).
[Crossref]

M. Matsumoto, “Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators,” IEEE Photon. Technol. Lett. 17(5), 1055–1057 (2005).
[Crossref]

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

2004 (2)

A. Striegler and B. Schmauss, “All-optical DPSK signal regeneration based on cross-phase modulation,” IEEE Photon. Technol. Lett. 16(4), 1083–1085 (2004).
[Crossref]

K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Opt. Lett. 29(20), 2357–2359 (2004).
[Crossref] [PubMed]

1995 (1)

C. Chih-Sheng and C. Shun-Lien, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1(2), 218–229 (1995).
[Crossref]

1990 (1)

Adolfsson, G.

Andriolli, N.

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” IEEE Photon. Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

Avramopoulos, H.

C. Kouloumentas, M. Bougioukos, A. Maziotis, and H. Avramopoulos, “DPSK regeneration at 40 Gb/s and beyond using a fiber-Sagnac interferometer,” IEEE Photon. Technol. Lett. 22(16), 1187–1189 (2010).
[Crossref]

Bogoni, A.

C. Porzi, G. Serafino, A. Bogoni, and G. Contestabile, “Phase-preserving amplitude noise compression of 40 Gb/s DPSK signals in a single SOA,” J. Lightwave Technol. 32(10), 1966–1972 (2014).
[Crossref]

C. Porzi, A. Bogoni, and G. Contestabile, “Regenerative wavelength conversion of DPSK signals through FWM in an SOA,” IEEE Photon. Technol. Lett. 25(2), 175–178 (2013).
[Crossref]

C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett. 24(18), 1597–1599 (2012).
[Crossref]

Bontempi, F.

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” IEEE Photon. Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

Bornholdt, C.

P. Vorreau, A. Marculescu, J. Wang, G. Bottger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[Crossref]

Bottger, G.

P. Vorreau, A. Marculescu, J. Wang, G. Bottger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[Crossref]

Bougioukos, M.

C. Kouloumentas, M. Bougioukos, A. Maziotis, and H. Avramopoulos, “DPSK regeneration at 40 Gb/s and beyond using a fiber-Sagnac interferometer,” IEEE Photon. Technol. Lett. 22(16), 1187–1189 (2010).
[Crossref]

Calabretta, N.

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Cross-gain compression in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 915–921 (2007).
[Crossref]

G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: an effective technique for WDM multicasting,” IEEE Photon. Technol. Lett. 18(1), 181–183 (2006).
[Crossref]

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Reshaping capability of cross-gain compression in semiconductor amplifiers,” IEEE Photon. Technol. Lett. 17(12), 2523–2525 (2005).
[Crossref]

Chih-Sheng, C.

C. Chih-Sheng and C. Shun-Lien, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1(2), 218–229 (1995).
[Crossref]

Ciaramella, E.

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Cross-gain compression in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 915–921 (2007).
[Crossref]

G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: an effective technique for WDM multicasting,” IEEE Photon. Technol. Lett. 18(1), 181–183 (2006).
[Crossref]

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Reshaping capability of cross-gain compression in semiconductor amplifiers,” IEEE Photon. Technol. Lett. 17(12), 2523–2525 (2005).
[Crossref]

Contestabile, G.

C. Porzi, G. Serafino, A. Bogoni, and G. Contestabile, “Phase-preserving amplitude noise compression of 40 Gb/s DPSK signals in a single SOA,” J. Lightwave Technol. 32(10), 1966–1972 (2014).
[Crossref]

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” IEEE Photon. Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

C. Porzi, A. Bogoni, and G. Contestabile, “Regenerative wavelength conversion of DPSK signals through FWM in an SOA,” IEEE Photon. Technol. Lett. 25(2), 175–178 (2013).
[Crossref]

C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett. 24(18), 1597–1599 (2012).
[Crossref]

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Cross-gain compression in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 915–921 (2007).
[Crossref]

G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: an effective technique for WDM multicasting,” IEEE Photon. Technol. Lett. 18(1), 181–183 (2006).
[Crossref]

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Reshaping capability of cross-gain compression in semiconductor amplifiers,” IEEE Photon. Technol. Lett. 17(12), 2523–2525 (2005).
[Crossref]

Croussore, K.

Cvecek, K.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

Dailey, J. M.

Devgan, P.

Dorren, H. J. S.

Faralli, S.

N. Andriolli, S. Faralli, F. Bontempi, and G. Contestabile, “A wavelength-preserving photonic integrated regenerator for NRZ and RZ signals,” Opt. Express 21(18), 20649–20655 (2013).
[Crossref] [PubMed]

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” IEEE Photon. Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

Freude, W.

P. Vorreau, A. Marculescu, J. Wang, G. Bottger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[Crossref]

Fu, S.

Gordon, J. P.

Grigoryan, V. S.

Han, Y.

Hu, S.

Huang, X.

B. Zou, Y. Yu, W. Wu, X. Huang, and X. Zhang, “All-optical amplitude regeneration of non-return-to-zero differential-phase-shift-keying signal,” Opt. Commun. 298(1–2), 83–87 (2013).
[Crossref]

Y. Yu, W. Wu, X. Huang, B. Zou, S. Hu, and X. Zhang, “Multichannel all-optical RZ-PSK amplitude regeneration based on the XPM effect in a single SOA,” J. Lightwave Technol. 30(23), 3633–3639 (2012).
[Crossref]

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. Zhang, “Optimized quantum well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47(6), 819–826 (2011).
[Crossref]

Johannisson, P.

Karlsson, M.

Khoe, G. D.

Kim, C.

Kim, I.

Koch, T. L.

Kouloumentas, C.

C. Kouloumentas, M. Bougioukos, A. Maziotis, and H. Avramopoulos, “DPSK regeneration at 40 Gb/s and beyond using a fiber-Sagnac interferometer,” IEEE Photon. Technol. Lett. 22(16), 1187–1189 (2010).
[Crossref]

Kumar, P.

Lasri, J.

Leuchs, G.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

Leuthold, J.

P. Vorreau, A. Marculescu, J. Wang, G. Bottger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[Crossref]

Li, G.

Li, Z.

Lian, J.

Liu, D.

Liu, Y.

Marculescu, A.

P. Vorreau, A. Marculescu, J. Wang, G. Bottger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[Crossref]

Matsumoto, M.

M. Matsumoto, “Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators,” IEEE Photon. Technol. Lett. 17(5), 1055–1057 (2005).
[Crossref]

Maziotis, A.

C. Kouloumentas, M. Bougioukos, A. Maziotis, and H. Avramopoulos, “DPSK regeneration at 40 Gb/s and beyond using a fiber-Sagnac interferometer,” IEEE Photon. Technol. Lett. 22(16), 1187–1189 (2010).
[Crossref]

Meissner, M.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

Meng, Y.

Mollenauer, L. F.

Mork, J.

J. Xu, X. L. Zhang, and J. Mork, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron. 46(1), 87–94 (2010).
[Crossref]

Myunghun, S.

Porzi, C.

C. Porzi, G. Serafino, A. Bogoni, and G. Contestabile, “Phase-preserving amplitude noise compression of 40 Gb/s DPSK signals in a single SOA,” J. Lightwave Technol. 32(10), 1966–1972 (2014).
[Crossref]

C. Porzi, A. Bogoni, and G. Contestabile, “Regenerative wavelength conversion of DPSK signals through FWM in an SOA,” IEEE Photon. Technol. Lett. 25(2), 175–178 (2013).
[Crossref]

C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett. 24(18), 1597–1599 (2012).
[Crossref]

Proietti, R.

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Cross-gain compression in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 915–921 (2007).
[Crossref]

G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: an effective technique for WDM multicasting,” IEEE Photon. Technol. Lett. 18(1), 181–183 (2006).
[Crossref]

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Reshaping capability of cross-gain compression in semiconductor amplifiers,” IEEE Photon. Technol. Lett. 17(12), 2523–2525 (2005).
[Crossref]

Qin, C.

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. Zhang, “Optimized quantum well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47(6), 819–826 (2011).
[Crossref]

Sartorius, B.

P. Vorreau, A. Marculescu, J. Wang, G. Bottger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[Crossref]

Schlak, M.

P. Vorreau, A. Marculescu, J. Wang, G. Bottger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[Crossref]

Schmauss, B.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

A. Striegler and B. Schmauss, “All-optical DPSK signal regeneration based on cross-phase modulation,” IEEE Photon. Technol. Lett. 16(4), 1083–1085 (2004).
[Crossref]

Schmidt, C.

P. Vorreau, A. Marculescu, J. Wang, G. Bottger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[Crossref]

Serafino, G.

Shum, P.

Shun-Lien, C.

C. Chih-Sheng and C. Shun-Lien, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1(2), 218–229 (1995).
[Crossref]

Slovak, J.

P. Vorreau, A. Marculescu, J. Wang, G. Bottger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[Crossref]

Sponsel, K.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

Striegler, A.

A. Striegler and B. Schmauss, “All-optical DPSK signal regeneration based on cross-phase modulation,” IEEE Photon. Technol. Lett. 16(4), 1083–1085 (2004).
[Crossref]

Striegler, A. G.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

Tang, M.

Tangdiongga, E.

Tsadka, S.

P. Vorreau, A. Marculescu, J. Wang, G. Bottger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[Crossref]

Vorreau, P.

P. Vorreau, A. Marculescu, J. Wang, G. Bottger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[Crossref]

Waardt, H.

Wang, J.

P. Vorreau, A. Marculescu, J. Wang, G. Bottger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[Crossref]

Wu, W.

B. Zou, Y. Yu, W. Wu, X. Huang, and X. Zhang, “All-optical amplitude regeneration of non-return-to-zero differential-phase-shift-keying signal,” Opt. Commun. 298(1–2), 83–87 (2013).
[Crossref]

Y. Yu, W. Wu, X. Huang, B. Zou, S. Hu, and X. Zhang, “Multichannel all-optical RZ-PSK amplitude regeneration based on the XPM effect in a single SOA,” J. Lightwave Technol. 30(23), 3633–3639 (2012).
[Crossref]

Xu, J.

J. Xu, X. L. Zhang, and J. Mork, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron. 46(1), 87–94 (2010).
[Crossref]

Yu, Y.

B. Zou, Y. Yu, W. Wu, X. Huang, and X. Zhang, “All-optical amplitude regeneration of non-return-to-zero differential-phase-shift-keying signal,” Opt. Commun. 298(1–2), 83–87 (2013).
[Crossref]

Y. Yu, W. Wu, X. Huang, B. Zou, S. Hu, and X. Zhang, “Multichannel all-optical RZ-PSK amplitude regeneration based on the XPM effect in a single SOA,” J. Lightwave Technol. 30(23), 3633–3639 (2012).
[Crossref]

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. Zhang, “Optimized quantum well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47(6), 819–826 (2011).
[Crossref]

Zhang, S.

Zhang, X.

B. Zou, Y. Yu, W. Wu, X. Huang, and X. Zhang, “All-optical amplitude regeneration of non-return-to-zero differential-phase-shift-keying signal,” Opt. Commun. 298(1–2), 83–87 (2013).
[Crossref]

Y. Yu, W. Wu, X. Huang, B. Zou, S. Hu, and X. Zhang, “Multichannel all-optical RZ-PSK amplitude regeneration based on the XPM effect in a single SOA,” J. Lightwave Technol. 30(23), 3633–3639 (2012).
[Crossref]

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. Zhang, “Optimized quantum well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47(6), 819–826 (2011).
[Crossref]

Zhang, X. L.

J. Xu, X. L. Zhang, and J. Mork, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron. 46(1), 87–94 (2010).
[Crossref]

Zhang, Z.

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. Zhang, “Optimized quantum well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47(6), 819–826 (2011).
[Crossref]

Zou, B.

B. Zou, Y. Yu, W. Wu, X. Huang, and X. Zhang, “All-optical amplitude regeneration of non-return-to-zero differential-phase-shift-keying signal,” Opt. Commun. 298(1–2), 83–87 (2013).
[Crossref]

Y. Yu, W. Wu, X. Huang, B. Zou, S. Hu, and X. Zhang, “Multichannel all-optical RZ-PSK amplitude regeneration based on the XPM effect in a single SOA,” J. Lightwave Technol. 30(23), 3633–3639 (2012).
[Crossref]

IEEE J. Quantum Electron. (2)

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. Zhang, “Optimized quantum well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron. 47(6), 819–826 (2011).
[Crossref]

J. Xu, X. L. Zhang, and J. Mork, “Investigation of patterning effects in ultrafast SOA-based optical switches,” IEEE J. Quantum Electron. 46(1), 87–94 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Chih-Sheng and C. Shun-Lien, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1(2), 218–229 (1995).
[Crossref]

IEEE Photon. Technol. Lett. (10)

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Reshaping capability of cross-gain compression in semiconductor amplifiers,” IEEE Photon. Technol. Lett. 17(12), 2523–2525 (2005).
[Crossref]

G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: an effective technique for WDM multicasting,” IEEE Photon. Technol. Lett. 18(1), 181–183 (2006).
[Crossref]

F. Bontempi, S. Faralli, N. Andriolli, and G. Contestabile, “An InP monolithically integrated unicast and multicast wavelength converter,” IEEE Photon. Technol. Lett. 25(22), 2178–2181 (2013).
[Crossref]

C. Porzi, A. Bogoni, and G. Contestabile, “Regeneration of DPSK signals in a saturated SOA,” IEEE Photon. Technol. Lett. 24(18), 1597–1599 (2012).
[Crossref]

C. Porzi, A. Bogoni, and G. Contestabile, “Regenerative wavelength conversion of DPSK signals through FWM in an SOA,” IEEE Photon. Technol. Lett. 25(2), 175–178 (2013).
[Crossref]

P. Vorreau, A. Marculescu, J. Wang, G. Bottger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, W. Freude, and J. Leuthold, “Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters,” IEEE Photon. Technol. Lett. 18(18), 1970–1972 (2006).
[Crossref]

C. Kouloumentas, M. Bougioukos, A. Maziotis, and H. Avramopoulos, “DPSK regeneration at 40 Gb/s and beyond using a fiber-Sagnac interferometer,” IEEE Photon. Technol. Lett. 22(16), 1187–1189 (2010).
[Crossref]

A. Striegler and B. Schmauss, “All-optical DPSK signal regeneration based on cross-phase modulation,” IEEE Photon. Technol. Lett. 16(4), 1083–1085 (2004).
[Crossref]

M. Matsumoto, “Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators,” IEEE Photon. Technol. Lett. 17(5), 1055–1057 (2005).
[Crossref]

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17(3), 639–641 (2005).
[Crossref]

J. Lightwave Technol. (7)

Y. Meng, J. Lian, S. Fu, M. Tang, P. Shum, and D. Liu, “All-optical DPSK regenerative one-to-nine wavelength multicasting using dual-pump degenerate phase sensitive amplifier,” J. Lightwave Technol. 32(15), 2605–2612 (2014).
[Crossref]

C. Porzi, G. Serafino, A. Bogoni, and G. Contestabile, “Phase-preserving amplitude noise compression of 40 Gb/s DPSK signals in a single SOA,” J. Lightwave Technol. 32(10), 1966–1972 (2014).
[Crossref]

Y. Yu, W. Wu, X. Huang, B. Zou, S. Hu, and X. Zhang, “Multichannel all-optical RZ-PSK amplitude regeneration based on the XPM effect in a single SOA,” J. Lightwave Technol. 30(23), 3633–3639 (2012).
[Crossref]

V. S. Grigoryan, S. Myunghun, P. Devgan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase-noise-degraded DPSK signals: dynamic analysis and demonstration,” J. Lightwave Technol. 24(1), 135–142 (2006).
[Crossref]

G. Contestabile, R. Proietti, N. Calabretta, and E. Ciaramella, “Cross-gain compression in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 915–921 (2007).
[Crossref]

J. M. Dailey and T. L. Koch, “Simple rules for optimizing asymmetries in SOA-based Mach-Zehnder wavelength converters,” J. Lightwave Technol. 27(11), 1480–1488 (2009).
[Crossref]

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. Waardt, G. D. Khoe, and H. J. S. Dorren, “Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter,” J. Lightwave Technol. 24(1), 230–236 (2006).
[Crossref]

Opt. Commun. (1)

B. Zou, Y. Yu, W. Wu, X. Huang, and X. Zhang, “All-optical amplitude regeneration of non-return-to-zero differential-phase-shift-keying signal,” Opt. Commun. 298(1–2), 83–87 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Other (2)

A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agarwal, S. Banerjee, D. Grosz, S. Hunsche, A. Kung, A. Marhelyuk, D. Maywar, M. Movassaghi, X. Liu, C. Xu, X. Wei, and D. M. Gill, “2.5 Tb/s (64x42.7 Gb/s) transmission over 40x100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans,” in Optical Fiber Communications Conference, Vol. 70 of 2002 OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper FC2.
[Crossref]

I. Kang, C. Dorrer, L. Zhang, M. Rasras, L. Buhl, A. Bhardwaj, S. Cabot, M. Dinu, X. Liu, M. Cappuzzo, L. Gomez, A. Wong-Foy, Y. F. Chen, S. Patel, D. T. Neilson, J. Jacques, and C. R. Giles, “Regenerative all optical wavelength conversion of 40-Gb/s DPSK signals using a SOA-MZI,” in Proceedings of the European Conference and Exhibition on Optical Communication (ECOC, Glasgow, Scotland, 2005), paper Th.4.3.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic illustration of T-XPM effect in SOA1 to obtain the intensity inverted signal. (b) Schematic illustration of XGC effect in SOA2 between two signals having opposite intensity and different wavelength.
Fig. 2
Fig. 2 Experimental setup.
Fig. 3
Fig. 3 Eye diagrams of the regenerative process.
Fig. 4
Fig. 4 Measured BER curves of constructive demodulation (a) and destructive demodulation (b).
Fig. 5
Fig. 5 (a) Experimental spectrum of probe signal after SOA1 and definition of parameter PTXPM (b) calculated PTXPM as a function of quantum well width at x = 0.47.
Fig. 6
Fig. 6 Constructive demodulation eye diagrams of experiment (a), at point A (b), and at point B (c). (a1), (b1) and (c1) are the distorted signal demodulation results, while (a2), (b2), and (c2) are the regenerative demodulation results.
Fig. 7
Fig. 7 The maximal blue chirp component (a) and average power of converted signal (b) as functions of quantum well width and strain. The optical confinement factor is fixed to 0.30.
Fig. 8
Fig. 8 The maximal blue chirp component (a) and average power of converted signal (b) as functions of quantum well width and optical confinement factor.
Fig. 9
Fig. 9 Converted eye diagrams based on the initial QW SOA (a) and the optimized QW SOA for SOA1 (b).
Fig. 10
Fig. 10 Regenerative NRZ-DPSK amplitude fluctuations(a), phase fluctuations(b), constructive demodulation Q factor (c) and destructive demodulation Q factor (d) as functions of quantum well width and strain. The optical confinement factor is fixed to 0.30.
Fig. 11
Fig. 11 Constellation diagrams of input NRZ-DPSK signal (a), initial QW SOAs output (b) and optimized QW SOAs output (c).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

2 2 z 1 m(z) z ϕ(z)+V(z)ϕ(z)= E cn ϕ(z)
H 3×3 σ ( k z =i z )[ g m,hh σ (z; k t ) g m,lh σ (z; k t ) g m,so σ (z; k t ) ]= E σm v [ g m,hh σ (z; k t ) g m,lh σ (z; k t ) g m,so σ (z; k t ) ]
g i (ω)= q 2 π n r c ε 0 m 0 2 ω L w η=, σ=U,L n,m | e M nm ησ ( k t ) | 2 × (γ/π) ( E σ,nm cv ( k t )ω) 2 + γ 2 ×( f n c ( k t )+ f σm v ( k t )1)× k t d k t 2π
Δ n i = q 2 2 ε 0 m 0 2 n r L w η=, σ=U,L n,m | e M nm ησ ( k t ) | 2 × ( f n c ( k t )+ f σm v ( k t )1) ( E σ,nm cv ( k t )ω) 2 + γ 2 × E σ,nm cv ( k t )ω E σ,nm cv ( k t )( E σ,nm cv ( k t )+ω) × k t d k t 2π
d S i dz =(Γ g i α Fc N α int ) S i
d Φ i dz =Γ 2π λ (Δ n i +Δ n Fc )
dN dt = I qV i v g g i S i ANB N 2 C N 3
dT dt = 1 U/T [ i ( ω i E g ) v g g i S i + i ω i v g α Fc N S i U N dN dt ] T T 0 τ T

Metrics