Abstract

A special design procedure allowing to trap layer thicknesses inside specified limits is applied for designing of antireflection coating (AR) for the infrared spectral band of 8–10 µm. The obtained AR design has no too thick layers that may cause delaminating of the deposited AR coating. A special monitoring procedure taking into account wavelength positions of monitoring signal extrema is applied for coating deposition. The manufactured coating features excellent AR properties in the requested spectral region and possesses high mechanical stability.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design, production, and reverse engineering of two-octave antireflection coatings

Tatiana V. Amotchkina, Michael K. Trubetskov, Vladimir Pervak, and Alexander V. Tikhonravov
Appl. Opt. 50(35) 6468-6475 (2011)

Design and manufacture of low-absorption ZnS–YF3 antireflection coatings in the 3.5–16-μm spectral range

Frederic Lemarquis, Gerard Marchand, and Claude Amra
Appl. Opt. 37(19) 4239-4244 (1998)

Antireflection coatings for both visible and far-infrared spectral regions

Li Li, J. A. Dobrowolski, J. D. Sankey, and J. R. Wimperis
Appl. Opt. 31(28) 6150-6156 (1992)

References

  • View by:
  • |
  • |
  • |

  1. A. Thelen, Design of Optical Interference Coatings, McGraw-Hill Optical and Electro-Optical Engineering Series (McGraw-Hill, 1989).
  2. H. A. Macleod, Thin-Film Optical Filters, 4th ed. (Taylor & Francis, 2010).
  3. J. A. Dobrowolski, “Optical properties of films and coatings,” in Handbook of Optics, 3rd ed. (McGraw Hill Professional, Access Engineering, 2010), Vol. IV, pp. 7.1–7.136.
  4. A. V. Tikhonravov and J. A. Dobrowolski, “Quasi-optimal synthesis for antireflection coatings: a new method,” Appl. Opt. 32(22), 4265–4275 (1993).
    [Crossref] [PubMed]
  5. J. A. Dobrowolski and A. V. Tikhonravov, “Series of optimal or near-optimal solutions to an antireflection problem,” Proc. SPIE 2046, 62–68 (1993).
    [Crossref]
  6. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35(4), 644–658 (1996).
    [Crossref] [PubMed]
  7. A. V. Tikhonravov, M. K. Trubetskov, and G. W. Debell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35(28), 5493–5508 (1996).
    [Crossref] [PubMed]
  8. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
    [Crossref] [PubMed]
  9. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47(13), C124–C130 (2008).
    [Crossref] [PubMed]
  10. U. Schulz, U. B. Schallenberg, and N. Kaiser, “Symmetrical periods in antireflective coatings for plastic optics,” Appl. Opt. 42(7), 1346–1351 (2003).
    [Crossref] [PubMed]
  11. U. B. Schallenberg, “Antireflection design concepts with equivalent layers,” Appl. Opt. 45(7), 1507–1514 (2006).
    [Crossref] [PubMed]
  12. U. Schulz, U. B. Schallenberg, and N. Kaiser, “Antireflection coating design for plastic optics,” Appl. Opt. 41(16), 3107–3110 (2002).
    [Crossref] [PubMed]
  13. U. Schulz, K. Lau, and N. Kaiser, “Antireflection coating with UV-protective properties for polycarbonate,” Appl. Opt. 47(13), C83–C87 (2008).
    [Crossref] [PubMed]
  14. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18(19), 19732–19742 (2010).
    [Crossref] [PubMed]
  15. A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51(30), 7319–7332 (2012).
    [Crossref] [PubMed]
  16. F. C. Sulzbach, “Infrared antireflection coatings without thorium fluoride,” Proc. Soc. Vac. Coaters 36, 102–108 (1993).
  17. J. D. Rancourt, Optical Thin Films: Users’ Handbook (McGraw-Hill, 1987).
  18. Zinc Selenide ZnSe,” http://www.iiviinfrared.com/Optical-Materials/znse.html .
  19. Yttrium Fluoride YF3,” http://www.materion.com/ResourceCenter/ProductData/InorganicChemicals/Fluorides/ .
  20. A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .
  21. O. Vasseur, M. Cathelinaud, M. Claeys-Bruno, and M. Sergent, “Global sensitivity analysis of bandpass and antireflection coating manufacturing by numerical space filling designs,” Appl. Opt. 50(9), C117–C123 (2011).
    [Crossref] [PubMed]
  22. NIRQuest512 - Ocean Optics,” http://oceanoptics.com/product/nirquest512/ .
  23. V. G. Zhupanov, E. V. Klyuev, S. V. Alekseev, I. V. Kozlov, M. K. Trubetskov, M. A. Kokarev, and A. V. Tikhonravov, “Indirect broadband optical monitoring with multiple witness substrates,” Appl. Opt. 48(12), 2315–2320 (2009).
    [Crossref] [PubMed]

2012 (1)

2011 (1)

2010 (1)

2009 (1)

2008 (2)

2007 (1)

2006 (1)

2003 (1)

2002 (1)

1996 (2)

1993 (3)

A. V. Tikhonravov and J. A. Dobrowolski, “Quasi-optimal synthesis for antireflection coatings: a new method,” Appl. Opt. 32(22), 4265–4275 (1993).
[Crossref] [PubMed]

J. A. Dobrowolski and A. V. Tikhonravov, “Series of optimal or near-optimal solutions to an antireflection problem,” Proc. SPIE 2046, 62–68 (1993).
[Crossref]

F. C. Sulzbach, “Infrared antireflection coatings without thorium fluoride,” Proc. Soc. Vac. Coaters 36, 102–108 (1993).

Alekseev, S. V.

Amotchkina, T. V.

Cathelinaud, M.

Claeys-Bruno, M.

DeBell, G. W.

Dobrowolski, J. A.

Kaiser, N.

Klyuev, E. V.

Kokarev, M. A.

Kozlov, I. V.

Lau, K.

Schallenberg, U. B.

Schulz, U.

Sergent, M.

Stenzel, O.

Sullivan, B. T.

Sulzbach, F. C.

F. C. Sulzbach, “Infrared antireflection coatings without thorium fluoride,” Proc. Soc. Vac. Coaters 36, 102–108 (1993).

Tikhonravov, A. V.

A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51(30), 7319–7332 (2012).
[Crossref] [PubMed]

V. G. Zhupanov, E. V. Klyuev, S. V. Alekseev, I. V. Kozlov, M. K. Trubetskov, M. A. Kokarev, and A. V. Tikhonravov, “Indirect broadband optical monitoring with multiple witness substrates,” Appl. Opt. 48(12), 2315–2320 (2009).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47(13), C124–C130 (2008).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
[Crossref] [PubMed]

J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35(4), 644–658 (1996).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. Debell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35(28), 5493–5508 (1996).
[Crossref] [PubMed]

A. V. Tikhonravov and J. A. Dobrowolski, “Quasi-optimal synthesis for antireflection coatings: a new method,” Appl. Opt. 32(22), 4265–4275 (1993).
[Crossref] [PubMed]

J. A. Dobrowolski and A. V. Tikhonravov, “Series of optimal or near-optimal solutions to an antireflection problem,” Proc. SPIE 2046, 62–68 (1993).
[Crossref]

Trubetskov, M. K.

Vasseur, O.

Verly, P. G.

Wilbrandt, S.

Zhupanov, V. G.

Appl. Opt. (12)

J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35(4), 644–658 (1996).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. Debell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35(28), 5493–5508 (1996).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Optical coating design approaches based on the needle optimization technique,” Appl. Opt. 46(5), 704–710 (2007).
[Crossref] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47(13), C124–C130 (2008).
[Crossref] [PubMed]

U. Schulz, U. B. Schallenberg, and N. Kaiser, “Symmetrical periods in antireflective coatings for plastic optics,” Appl. Opt. 42(7), 1346–1351 (2003).
[Crossref] [PubMed]

U. B. Schallenberg, “Antireflection design concepts with equivalent layers,” Appl. Opt. 45(7), 1507–1514 (2006).
[Crossref] [PubMed]

U. Schulz, U. B. Schallenberg, and N. Kaiser, “Antireflection coating design for plastic optics,” Appl. Opt. 41(16), 3107–3110 (2002).
[Crossref] [PubMed]

U. Schulz, K. Lau, and N. Kaiser, “Antireflection coating with UV-protective properties for polycarbonate,” Appl. Opt. 47(13), C83–C87 (2008).
[Crossref] [PubMed]

A. V. Tikhonravov and J. A. Dobrowolski, “Quasi-optimal synthesis for antireflection coatings: a new method,” Appl. Opt. 32(22), 4265–4275 (1993).
[Crossref] [PubMed]

A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt. 51(30), 7319–7332 (2012).
[Crossref] [PubMed]

O. Vasseur, M. Cathelinaud, M. Claeys-Bruno, and M. Sergent, “Global sensitivity analysis of bandpass and antireflection coating manufacturing by numerical space filling designs,” Appl. Opt. 50(9), C117–C123 (2011).
[Crossref] [PubMed]

V. G. Zhupanov, E. V. Klyuev, S. V. Alekseev, I. V. Kozlov, M. K. Trubetskov, M. A. Kokarev, and A. V. Tikhonravov, “Indirect broadband optical monitoring with multiple witness substrates,” Appl. Opt. 48(12), 2315–2320 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Proc. Soc. Vac. Coaters (1)

F. C. Sulzbach, “Infrared antireflection coatings without thorium fluoride,” Proc. Soc. Vac. Coaters 36, 102–108 (1993).

Proc. SPIE (1)

J. A. Dobrowolski and A. V. Tikhonravov, “Series of optimal or near-optimal solutions to an antireflection problem,” Proc. SPIE 2046, 62–68 (1993).
[Crossref]

Other (8)

A. Thelen, Design of Optical Interference Coatings, McGraw-Hill Optical and Electro-Optical Engineering Series (McGraw-Hill, 1989).

H. A. Macleod, Thin-Film Optical Filters, 4th ed. (Taylor & Francis, 2010).

J. A. Dobrowolski, “Optical properties of films and coatings,” in Handbook of Optics, 3rd ed. (McGraw Hill Professional, Access Engineering, 2010), Vol. IV, pp. 7.1–7.136.

J. D. Rancourt, Optical Thin Films: Users’ Handbook (McGraw-Hill, 1987).

Zinc Selenide ZnSe,” http://www.iiviinfrared.com/Optical-Materials/znse.html .

Yttrium Fluoride YF3,” http://www.materion.com/ResourceCenter/ProductData/InorganicChemicals/Fluorides/ .

A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .

NIRQuest512 - Ocean Optics,” http://oceanoptics.com/product/nirquest512/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Refractive indices of ZnSe and YF3 in the range 1-10 µm.
Fig. 2
Fig. 2 Refractive index profile (a) and reflectance (b) of the “classical” AR design.
Fig. 3
Fig. 3 Refractive index profile (a) and reflectance (b) of the AR design with constrained layer thicknesses (black solid curves). The red curve (b) presents the mathematical expectation of the design reflectance and the grey area (b) illustrates the influence of thickness errors on the design reflectance.
Fig. 4
Fig. 4 Comparison of measured transmittance (crosses) with the theoretically predicted transmittance (solid curve) at the end of deposition of layer number 7.
Fig. 5
Fig. 5 Transmittance of the manufactured coating (crosses) and transmittance of the theoretical design (solid curve) in (a): 2–10 µm spectral region, (b): AR spectral region 8–10 µm.

Metrics