Abstract

Digital chemical etching is used to trim the output mirror thickness of wafer-fused VCSELs emitting at a wavelength near 1.5µm. The fine control of the photon cavity lifetime thus achieved is employed to extract important device parameters and optimize the combination of the threshold current, output power, and direct current modulation characteristics. The fabrication process is compatible with industrial production and should help in improving device yield and in reducing manufacturing costs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
25 Gbps direct modulation and 10 km data transmission with 1310 nm waveband wafer fused VCSELs

A. Caliman, A. Mereuta, P. Wolf, A. Sirbu, V. Iakovlev, D. Bimberg, and E. Kapon
Opt. Express 24(15) 16329-16335 (2016)

8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band

Andrei Caliman, Alexandru Mereuta, Grigore Suruceanu, Vladimir Iakovlev, Alexei Sirbu, and Eli Kapon
Opt. Express 19(18) 16996-17001 (2011)

Silicon-integrated short-wavelength hybrid-cavity VCSEL

Emanuel P. Haglund, Sulakshna Kumari, Petter Westbergh, Johan S. Gustavsson, Gunther Roelkens, Roel Baets, and Anders Larsson
Opt. Express 23(26) 33634-33640 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Iga, “Surface-Emitting Laser—Its Birth and Generation of New Optoelectronics Field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
    [Crossref]
  2. M. Rainer, “Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers,” Springer Series in Optical Sciences 166, 560 (2013).
  3. E. Kapon and A. Sirbu, “Long wavelength VCSELs: power efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
    [Crossref]
  4. P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of Photon Lifetime on High-Speed VCSEL Performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
    [Crossref]
  5. A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, and G. Suruceanu, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
    [Crossref]
  6. A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW Single-Mode Operation of Wafer-Fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
    [Crossref]
  7. V. Iakovlev, A. Sirbu, Z. Mickovic, D. Ellafi, G. Suruceanu, A. Mereuta, A. Caliman, and E. Kapon, “Progress and challenges in industrial fabrication of wafer-fused VCSELs emitting in the 1310 nm band for high speed wavelength division multiplexing applications,” Proc. SPIE 8639, 863904 (2013).
    [Crossref]
  8. D. Ellafi, V. Iakovlev, A. Sirbu, G. Suruceanu, A. Mereuta, A. Caliman, and E. Kapon, “Impact of Photon Lifetime on the High-Speed Performance of 1.3-μm Wavelength Wafer-Fused VCSELs,” presented at the European Conference on Lasers and Electro-Optics, Munich, Germany, 12–16 May 2013.
  9. G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
    [Crossref]
  10. T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
    [Crossref]
  11. G. R. Hadley, “Effective index model for vertical-cavity surface-emitting lasers,” Opt. Lett. 20(13), 1483–1485 (1995).
    [Crossref] [PubMed]
  12. P. Yeh, Optical Waves in Layered Media (Wiley New York, 1988).
  13. S. J. Sweeney, D. McConville, N. F. Masse, R.-X. Bouyssou, A. R. Adams, C. N. Ahmad, and C. Hanke, “Temperature and pressure dependence of recombination processes in 1.5μm InGaAlAs/InP-based quantum well lasers,” Phys. Status Solidi B 241(14), 3391–3398 (2004).
    [Crossref]
  14. N. Volet and E. Kapon, “Turn-on delay and Auger recombination in long-wavelength vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 97(13), 131102 (2010).
    [Crossref]
  15. E. P. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “Impact of damping on high-speed VCSEL dynamics,” IEEE J. Lightwave Technol. PP(99) (2014).

2013 (3)

M. Rainer, “Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers,” Springer Series in Optical Sciences 166, 560 (2013).

V. Iakovlev, A. Sirbu, Z. Mickovic, D. Ellafi, G. Suruceanu, A. Mereuta, A. Caliman, and E. Kapon, “Progress and challenges in industrial fabrication of wafer-fused VCSELs emitting in the 1310 nm band for high speed wavelength division multiplexing applications,” Proc. SPIE 8639, 863904 (2013).
[Crossref]

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

2011 (2)

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of Photon Lifetime on High-Speed VCSEL Performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, and G. Suruceanu, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[Crossref]

2010 (1)

N. Volet and E. Kapon, “Turn-on delay and Auger recombination in long-wavelength vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 97(13), 131102 (2010).
[Crossref]

2009 (1)

E. Kapon and A. Sirbu, “Long wavelength VCSELs: power efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[Crossref]

2004 (2)

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW Single-Mode Operation of Wafer-Fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[Crossref]

S. J. Sweeney, D. McConville, N. F. Masse, R.-X. Bouyssou, A. R. Adams, C. N. Ahmad, and C. Hanke, “Temperature and pressure dependence of recombination processes in 1.5μm InGaAlAs/InP-based quantum well lasers,” Phys. Status Solidi B 241(14), 3391–3398 (2004).
[Crossref]

2000 (1)

K. Iga, “Surface-Emitting Laser—Its Birth and Generation of New Optoelectronics Field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

1996 (1)

G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

1995 (1)

Achtenhagen, M.

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW Single-Mode Operation of Wafer-Fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[Crossref]

Adams, A. R.

S. J. Sweeney, D. McConville, N. F. Masse, R.-X. Bouyssou, A. R. Adams, C. N. Ahmad, and C. Hanke, “Temperature and pressure dependence of recombination processes in 1.5μm InGaAlAs/InP-based quantum well lasers,” Phys. Status Solidi B 241(14), 3391–3398 (2004).
[Crossref]

Ahmad, C. N.

S. J. Sweeney, D. McConville, N. F. Masse, R.-X. Bouyssou, A. R. Adams, C. N. Ahmad, and C. Hanke, “Temperature and pressure dependence of recombination processes in 1.5μm InGaAlAs/InP-based quantum well lasers,” Phys. Status Solidi B 241(14), 3391–3398 (2004).
[Crossref]

Amann, M.-C.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

Barrette, J. P.

G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Berseth, C.-A.

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW Single-Mode Operation of Wafer-Fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[Crossref]

Bohm, G.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

Bouyssou, R.-X.

S. J. Sweeney, D. McConville, N. F. Masse, R.-X. Bouyssou, A. R. Adams, C. N. Ahmad, and C. Hanke, “Temperature and pressure dependence of recombination processes in 1.5μm InGaAlAs/InP-based quantum well lasers,” Phys. Status Solidi B 241(14), 3391–3398 (2004).
[Crossref]

Bozada, C. A.

G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Caliman, A.

V. Iakovlev, A. Sirbu, Z. Mickovic, D. Ellafi, G. Suruceanu, A. Mereuta, A. Caliman, and E. Kapon, “Progress and challenges in industrial fabrication of wafer-fused VCSELs emitting in the 1310 nm band for high speed wavelength division multiplexing applications,” Proc. SPIE 8639, 863904 (2013).
[Crossref]

A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, and G. Suruceanu, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[Crossref]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW Single-Mode Operation of Wafer-Fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[Crossref]

Cerny, C. L. A.

G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Debernardi, P.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

DeSalvo, G. C.

G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Dettmer, R. W.

G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Ebel, J.

G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Ebert, P.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

Ellafi, D.

V. Iakovlev, A. Sirbu, Z. Mickovic, D. Ellafi, G. Suruceanu, A. Mereuta, A. Caliman, and E. Kapon, “Progress and challenges in industrial fabrication of wafer-fused VCSELs emitting in the 1310 nm band for high speed wavelength division multiplexing applications,” Proc. SPIE 8639, 863904 (2013).
[Crossref]

Geiger, K.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

Gillespie, J. K.

G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Grasse, C.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

Gründl, T.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

Gustavsson, J. S.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of Photon Lifetime on High-Speed VCSEL Performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Hadley, G. R.

Haglund, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of Photon Lifetime on High-Speed VCSEL Performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Hanke, C.

S. J. Sweeney, D. McConville, N. F. Masse, R.-X. Bouyssou, A. R. Adams, C. N. Ahmad, and C. Hanke, “Temperature and pressure dependence of recombination processes in 1.5μm InGaAlAs/InP-based quantum well lasers,” Phys. Status Solidi B 241(14), 3391–3398 (2004).
[Crossref]

Havasy, C. K.

G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Iakovlev, V.

V. Iakovlev, A. Sirbu, Z. Mickovic, D. Ellafi, G. Suruceanu, A. Mereuta, A. Caliman, and E. Kapon, “Progress and challenges in industrial fabrication of wafer-fused VCSELs emitting in the 1310 nm band for high speed wavelength division multiplexing applications,” Proc. SPIE 8639, 863904 (2013).
[Crossref]

A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, and G. Suruceanu, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[Crossref]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW Single-Mode Operation of Wafer-Fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[Crossref]

Iga, K.

K. Iga, “Surface-Emitting Laser—Its Birth and Generation of New Optoelectronics Field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

Jenkins, T. J.

G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Kapon, E.

V. Iakovlev, A. Sirbu, Z. Mickovic, D. Ellafi, G. Suruceanu, A. Mereuta, A. Caliman, and E. Kapon, “Progress and challenges in industrial fabrication of wafer-fused VCSELs emitting in the 1310 nm band for high speed wavelength division multiplexing applications,” Proc. SPIE 8639, 863904 (2013).
[Crossref]

N. Volet and E. Kapon, “Turn-on delay and Auger recombination in long-wavelength vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 97(13), 131102 (2010).
[Crossref]

E. Kapon and A. Sirbu, “Long wavelength VCSELs: power efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[Crossref]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW Single-Mode Operation of Wafer-Fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[Crossref]

Kögel, B.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of Photon Lifetime on High-Speed VCSEL Performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Larsson, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of Photon Lifetime on High-Speed VCSEL Performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Look, D. C.

G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Masse, N. F.

S. J. Sweeney, D. McConville, N. F. Masse, R.-X. Bouyssou, A. R. Adams, C. N. Ahmad, and C. Hanke, “Temperature and pressure dependence of recombination processes in 1.5μm InGaAlAs/InP-based quantum well lasers,” Phys. Status Solidi B 241(14), 3391–3398 (2004).
[Crossref]

McConville, D.

S. J. Sweeney, D. McConville, N. F. Masse, R.-X. Bouyssou, A. R. Adams, C. N. Ahmad, and C. Hanke, “Temperature and pressure dependence of recombination processes in 1.5μm InGaAlAs/InP-based quantum well lasers,” Phys. Status Solidi B 241(14), 3391–3398 (2004).
[Crossref]

Mereuta, A.

V. Iakovlev, A. Sirbu, Z. Mickovic, D. Ellafi, G. Suruceanu, A. Mereuta, A. Caliman, and E. Kapon, “Progress and challenges in industrial fabrication of wafer-fused VCSELs emitting in the 1310 nm band for high speed wavelength division multiplexing applications,” Proc. SPIE 8639, 863904 (2013).
[Crossref]

A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, and G. Suruceanu, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[Crossref]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW Single-Mode Operation of Wafer-Fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[Crossref]

Meyer, R.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

Mickovic, Z.

V. Iakovlev, A. Sirbu, Z. Mickovic, D. Ellafi, G. Suruceanu, A. Mereuta, A. Caliman, and E. Kapon, “Progress and challenges in industrial fabrication of wafer-fused VCSELs emitting in the 1310 nm band for high speed wavelength division multiplexing applications,” Proc. SPIE 8639, 863904 (2013).
[Crossref]

Mircea, A.

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW Single-Mode Operation of Wafer-Fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[Crossref]

Müller, M.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

Nakano, K.

G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Ortsiefer, M.

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

Peitilord, C. I.

G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Quach, T. K.

G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Rainer, M.

M. Rainer, “Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers,” Springer Series in Optical Sciences 166, 560 (2013).

Rudra, A.

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW Single-Mode Operation of Wafer-Fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[Crossref]

Sewell, J. S.

G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Sirbu, A.

V. Iakovlev, A. Sirbu, Z. Mickovic, D. Ellafi, G. Suruceanu, A. Mereuta, A. Caliman, and E. Kapon, “Progress and challenges in industrial fabrication of wafer-fused VCSELs emitting in the 1310 nm band for high speed wavelength division multiplexing applications,” Proc. SPIE 8639, 863904 (2013).
[Crossref]

A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, and G. Suruceanu, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[Crossref]

E. Kapon and A. Sirbu, “Long wavelength VCSELs: power efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[Crossref]

Suruceanu, G.

V. Iakovlev, A. Sirbu, Z. Mickovic, D. Ellafi, G. Suruceanu, A. Mereuta, A. Caliman, and E. Kapon, “Progress and challenges in industrial fabrication of wafer-fused VCSELs emitting in the 1310 nm band for high speed wavelength division multiplexing applications,” Proc. SPIE 8639, 863904 (2013).
[Crossref]

A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, and G. Suruceanu, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[Crossref]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW Single-Mode Operation of Wafer-Fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[Crossref]

Sweeney, S. J.

S. J. Sweeney, D. McConville, N. F. Masse, R.-X. Bouyssou, A. R. Adams, C. N. Ahmad, and C. Hanke, “Temperature and pressure dependence of recombination processes in 1.5μm InGaAlAs/InP-based quantum well lasers,” Phys. Status Solidi B 241(14), 3391–3398 (2004).
[Crossref]

Syrbu, A.

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW Single-Mode Operation of Wafer-Fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[Crossref]

Via, G. D.

G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Volet, N.

N. Volet and E. Kapon, “Turn-on delay and Auger recombination in long-wavelength vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 97(13), 131102 (2010).
[Crossref]

Westbergh, P.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of Photon Lifetime on High-Speed VCSEL Performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Appl. Phys. Lett. (1)

N. Volet and E. Kapon, “Turn-on delay and Auger recombination in long-wavelength vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 97(13), 131102 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

T. Gründl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, and M.-C. Amann, “Record single-mode, high-power VCSELs by inhibition of spatial hole burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

K. Iga, “Surface-Emitting Laser—Its Birth and Generation of New Optoelectronics Field,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1201–1215 (2000).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of Photon Lifetime on High-Speed VCSEL Performance,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW Single-Mode Operation of Wafer-Fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[Crossref]

J. Electrochem. Soc. (1)

G. C. DeSalvo, C. A. Bozada, J. Ebel, D. C. Look, J. P. Barrette, C. L. A. Cerny, R. W. Dettmer, J. K. Gillespie, C. K. Havasy, T. J. Jenkins, K. Nakano, C. I. Peitilord, T. K. Quach, J. S. Sewell, and G. D. Via, “Wet Chemical Digital Etching of GaAs at Room Temperature,” J. Electrochem. Soc. 143(11), 3652–3656 (1996).
[Crossref]

Nat. Photonics (1)

E. Kapon and A. Sirbu, “Long wavelength VCSELs: power efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[Crossref]

Opt. Lett. (1)

Phys. Status Solidi B (1)

S. J. Sweeney, D. McConville, N. F. Masse, R.-X. Bouyssou, A. R. Adams, C. N. Ahmad, and C. Hanke, “Temperature and pressure dependence of recombination processes in 1.5μm InGaAlAs/InP-based quantum well lasers,” Phys. Status Solidi B 241(14), 3391–3398 (2004).
[Crossref]

Proc. SPIE (1)

V. Iakovlev, A. Sirbu, Z. Mickovic, D. Ellafi, G. Suruceanu, A. Mereuta, A. Caliman, and E. Kapon, “Progress and challenges in industrial fabrication of wafer-fused VCSELs emitting in the 1310 nm band for high speed wavelength division multiplexing applications,” Proc. SPIE 8639, 863904 (2013).
[Crossref]

Semicond. Sci. Technol. (1)

A. Sirbu, V. Iakovlev, A. Mereuta, A. Caliman, and G. Suruceanu, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[Crossref]

Springer Series in Optical Sciences (1)

M. Rainer, “Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers,” Springer Series in Optical Sciences 166, 560 (2013).

Other (3)

D. Ellafi, V. Iakovlev, A. Sirbu, G. Suruceanu, A. Mereuta, A. Caliman, and E. Kapon, “Impact of Photon Lifetime on the High-Speed Performance of 1.3-μm Wavelength Wafer-Fused VCSELs,” presented at the European Conference on Lasers and Electro-Optics, Munich, Germany, 12–16 May 2013.

P. Yeh, Optical Waves in Layered Media (Wiley New York, 1988).

E. P. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “Impact of damping on high-speed VCSEL dynamics,” IEEE J. Lightwave Technol. PP(99) (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic crossing section of the VCSEL device (left) and enlarged view of the topmost GaAs DBR layer and its adjacent AlGaAs DBR layer with an indication of the thickness of the GaAs (dGaAs) and the depth of the “digital etching” t (right). The GaAs substrate is undoped.
Fig. 2
Fig. 2 Room temperature light output power-current characteristics of ~1490 nm VCSELs with a 7- μm-diameter tunnel junction current source with different etch depth t values. The inset shows a typical emission spectrum of an un-etched VCSEL (t = 0) at I = 14 mA.
Fig. 3
Fig. 3 (a) The inverse of the measured differential quantum efficiency of ~1490 nm VCSELs with a 7-μm-diameter tunnel junction current source with different values of etch depth t versus the inverse of the calculated top DBR losses at two different temperatures. (b) The calculated photon lifetime at different etch depth values t at room temperature.
Fig. 4
Fig. 4 (a) The measured small-signal modulation response (s21) for different values of etch depth t, at room temperature (doted curves) at the bias current (I) giving a maximum −3 dB bandwidth frequency. The fits (solid curves) to the 3-pole transfer function are also plotted. (b) Plots of the extracted K-factor and the maximum −3 dB frequency versus the etch t, at room temperature.
Fig. 5
Fig. 5 Room temperature BTB data transmission experiment with the cavity-adjusted 1490 nm VCSELs, showing optical eye diagrams for t = 0 nm (a) and at t = 80 nm (b).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η d = qλ hc SEff( unitless )
η d = η i α m T α i + α m T + α m B ( unitless )
τ p = 1 α i + α m T + α m B ( ps )
γ=K f R 2 + γ 0 ( ns 1 )
K=4 π 2 ( τ p + εχ ν g dg / dn )( ns )

Metrics