Abstract

We report the cw-laser-induced oxidation of molecular-beam-epitaxy grown GaAsBi bismuth surface microdroplets investigated in situ by micro-Raman spectroscopy under ambient conditions as a function of irradiation power and time. Our results reveal the surface droplets are high-purity crystalline bismuth and the resultant Bi2O3 transformation to be β-phase and stable at room temperature. A detailed Raman study of Bi microdroplet oxidation kinetics yields insights into the laser-induced oxidation process and offers useful real-time diagnostics. The temporal evolution of new β-Bi2O3 Raman modes is shown to be well described by Johnson-Mehl-Avrami-Kolmogorov kinetic transformation theory and while this study limits itself to the laser-induced oxidation of GaAsBi bismuth surface droplets, the results will find application within the wider context of bismuth laser-induced oxidation and direct Raman laser processing.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In situ micro-Raman studies of laser-induced bismuth oxidation reveals metastability of β-Bi2O3 microislands

J. A. Steele and R. A. Lewis
Opt. Mater. Express 4(10) 2133-2142 (2014)

Laser-induced periodic surface structures on bismuth thin films with ns laser pulses below ablation threshold

A. Reyes-Contreras, M. Camacho-López, S. Camacho-López, O. Olea-Mejía, A. Esparza-García, J. G. Bañuelos-Muñetón, and M. A. Camacho-López
Opt. Mater. Express 7(6) 1777-1786 (2017)

The study of optical band edge property of bismuth oxide nanowires α-Bi2O3

Ching-Hwa Ho, Ching-Hsiang Chan, Ying-Sheng Huang, Li-Chia Tien, and Liang-Chiun Chao
Opt. Express 21(10) 11965-11972 (2013)

References

  • View by:
  • |
  • |
  • |

  1. X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and M. B. Whitwick, “Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1−xBix,” Appl. Phys. Lett. 92(19), 192110 (2008).
    [Crossref]
  2. G. Vardar, S. W. Paleg, M. V. Warren, M. Kang, S. Jeon, and R. S. Goldman, “Mechanisms of droplet formation and Bi incorporation during molecular beam epitaxy of GaAsBi,” Appl. Phys. Lett. 102(4), 042106 (2013).
    [Crossref]
  3. A. J. Ptak, R. France, D. A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C.-S. Jiang, “Kinetically limited growth of GaAsBi by molecular-beam epitaxy,” J. Cryst. Growth 338(1), 107–110 (2012).
    [Crossref]
  4. K. Oe, “Characteristics of semiconductor alloy GaAs1−xBix,” Jpn. J. Appl. Phys. 41, 2801–2806 (2002).
    [Crossref]
  5. K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaAs1−xBix,” Appl. Phys. Lett. 91(5), 051909 (2007).
    [Crossref]
  6. B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1−xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
    [Crossref] [PubMed]
  7. J. Yoshida, T. Kita, O. Wada, and K. Oe, “Temperature dependence of GaAs1−xBix band gap studied by photoreflectance spectroscopy,” Jpn. J. Appl. Phys. 42, 371–374 (2003).
    [Crossref]
  8. S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x <3.6%,” Appl. Phys. Lett. 82(22), 3874 (2003).
    [Crossref]
  9. M. Ferhat and A. Zaoui, “Structural and electronic properties of III–V bismuth compounds,” Phys. Rev. B 73(11), 115107 (2006).
    [Crossref]
  10. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
    [Crossref]
  11. C. Li, Z. Q. Zeng, D. S. Fan, Y. Hirono, J. Wu, T. A. Morgan, X. Hu, S. Q. Yu, Zh. M. Wang, and G. J. Salamo, “Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy,” Appl. Phys. Lett. 99(24), 243113 (2011).
    [Crossref]
  12. H. Fitouri, R. Boussaha, A. Rabey, and B. El Jani, “Oxidation of bismuth nanodroplets deposit on GaAs substrate,” Appl. Phys. A 112(3), 701–710 (2013).
    [Crossref]
  13. N. M. Sammes, G. A. Tompsett, H. Näfea, and F. Aldingera, “Bismuth based oxide electrolytes – structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
    [Crossref]
  14. J. W. Fergus, “Electrolytes for solid oxide fuel cells,” J. Power Sources 162(1), 30–40 (2006).
    [Crossref]
  15. H. J. Fan, P. Werner, and M. Zacharias, “Semiconductor nanowires: from self-organization to patterned growth,” Small 2(6), 700–717 (2006).
    [Crossref] [PubMed]
  16. X. Lin, F. Huang, W. Wang, and J. Shi, “Photocatalytic activity of Bi24Ga2O39 for degrading methylene blue,” Scr. Mater. 56(3), 189–192 (2007).
    [Crossref]
  17. Q. Hu, J. Wang, Y. Zhao, and D. Li, “A light-trapping structure based on Bi2O3 nano-islands with highly crystallized sputtered silicon for thin-film solar cells,” Opt. Express 19(S1), A20–A27 (2011).
    [Crossref]
  18. H. A. Harwig, “On the structure of bismuthsesquioxide: the α, β, γ, and δ-phase,” Z. Anorg. Allg. Chem. 444(1), 151–166 (1978).
    [Crossref]
  19. M. Miyayama, S. Katsuta, Y. Suenaga, and H. Yanagida, “Electrical conduction in β-Bi2O3 doped with Sb2O3,” J. Am. Ceram. Soc. 66(6), 585–588 (1983).
    [Crossref]
  20. H. A. Harwig and A. G. Gerards, “Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide,” J. Solid State Chem. 26(3), 265–274 (1978).
    [Crossref]
  21. J. W. Medermach and R. L. Snyder, “Powder diffraction patterns and structures of the bismuth oxides,” J. Am. Ceram. Soc. 61(11–12), 494–497 (1978).
    [Crossref]
  22. J. A. Steele and R. A. Lewis, “In situ micro-Raman studies of laser-induced bismuth oxidation reveals metastability of β-Bi2O3 microislands,” Opt. Mater. Express 4(10), 2133 (2014).
    [Crossref]
  23. L. Leontie, M. Caraman, M. Alexe, and C. Harnagea, “Structural and optical characteristics of bismuth oxide thin films,” Surf. Sci. 507–510, 480–485 (2002).
    [Crossref]
  24. R. A. Ismail, “Characteristics of bismuth trioxide film prepared by rapid thermal oxidation,” Surf. Sci. Nanotech. 4, 563–565 (2006).
    [Crossref]
  25. Z. Chine, H. Fitouri, I. Zaied, A. Rebey, and B. El Jani, “Photoreflectance and photoluminescence study of annealing effects on GaAsBi layers grown by metalorganic vapor phase epitaxy,” Semicond. Sci. Technol. 25(6), 065009 (2010).
    [Crossref]
  26. S. Mazzucato, P. Boonpeng, H. Carrère, D. Lagarde, A. Arnoult, G. Lacoste, T. Zhang, A. Balocchi, T. Amand, X. Marie, and C. Fontaine, “Reduction of defect density by rapid thermal annealing in GaAsBi studied by time-resolved photoluminescence,” Semicond. Sci. Technol. 28(2), 022001 (2013).
    [Crossref]
  27. P. C. Grant, D. Fan, A. Mosleh, S.-Q. Yu, V. G. Dorogan, M. E. Hawkridge, Y. I. Mazur, M. Benamara, G. J. Salamo, and S. R. Johnson, “Rapid thermal annealing effect on GaAsBi/GaAs single quantum wells grown by molecular beam epitaxy,” J. Vac. Sci. Technol. B 32(2), 02C119 (2014).
    [Crossref]
  28. I. Moussa, H. Fitouri, Z. Chine, A. Rebey, and B. El Jani, “Effect of thermal annealing on structural and optical properties of the GaAs0.963Bi0.037 alloy,” Semicond. Sci. Technol. 23(12), 125034 (2008).
    [Crossref]
  29. O. M. Lemine, A. Alkaoud, H. V. A. Galeti, V. O. Gordo, Y. G. Gobato, H. Bouzid, A. Hajry, and M. Henini, “Thermal annealing effects on the optical and structural properties of (100) GaAs1−xBix layers grown by Molecular Beam Epitaxy,” Superlattice. Microst. 65, 48–55 (2014).
    [Crossref]
  30. O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation,” J. Raman Spectrosc. 34(11), 845–852 (2003).
    [Crossref]
  31. M. Vila, C. Diaz-Guerra, and J. Piqueras, “Laser irradiation-induced α to δ phase transformation in Bi2O3 ceramics and nanowires,” Appl. Phys. Lett. 101(7), 071905 (2012).
    [Crossref]
  32. D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
    [Crossref]
  33. M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
    [Crossref]
  34. L. Nánai, R. Vajtai, and T. F. George, “Laser-induced oxidation of metals: state of the art,” Thin Solid Films 298, 160–164 (1997).
    [Crossref]
  35. J. A. Steele, R. A. Lewis, M. Henini, O. M. Lemine, and A. Alkaoud, “Raman scattering studies of strain effects in (100) and (311)B GaAs1−xBix epitaxial layers,” J. Appl. Phys. 114(19), 193516 (2013).
    [Crossref]
  36. X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Yong Zhang, “Composition dependence of photoluminescence of GaAs1−xBix alloys,” Appl. Phys. Lett. 95(4), 041903 (2009).
    [Crossref]
  37. J. A. Steele, R. A. Lewis, M. Henini, O. M. Lemine, D. Fan, Y. I. Mazur, V. G. Dorogan, P. C. Grant, S.-Q. Yu, and G. J. Salamo, “Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration,” Opt. Express 22(10), 11680–11689 (2014).
    [Crossref] [PubMed]
  38. M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, and J. S. Lannin, “Phase transition in ultrathin Bi films,” Phys. Rev. Lett. 67(7), 875–878 (1991).
    [Crossref] [PubMed]
  39. G. Ciatto, M. Thomasset, F. Glas, X. Lu, and T. Tiedje, “Formation and vanishing of short range ordering in GaAs1−xBix thin films,” Phys. Rev. B 82(20), 201304 (2010).
    [Crossref]
  40. K. Trentelman, “A note on the characterization of bismuth black by Raman microspectroscopy,” J. Raman Spectrosc. 40(5), 585–589 (2009).
    [Crossref]
  41. J. S. Lannin, J. M. Calleja, and M. Cardona, “Second-order Raman scattering in the group-Vb semimetals: Bi, Sb, and As,” Phys. Rev. B 12(2), 585–593 (1975).
    [Crossref]
  42. L. Kumari, J.-H. Lin, and Y.-R. Ma, “Laser oxidation and wide-band photoluminescence of thermal evaporated bismuth thin films,” J. Phys. D 41(2), 025405 (2008).
    [Crossref]
  43. M. A. Zepeda, M. Picquart, and E. Haro-Poniatowski, “Laser induced oxidation effects in bismuth thin films,” MRS Proceedings1477, (2012).
  44. W. Wang, M. Liu, Z. Yang, W. Mai, and J. Gong, “Synthesis and Raman optical properties of single-crystalline Bi nanowires,” Physica E 44(7–8), 1142–1145 (2012).
    [Crossref]
  45. F. D. Hardcastle and I. E. Wachs, “The molecular structure of bismuth oxide by Raman spectroscopy,” J. Solid State Chem. 97(2), 319–331 (1992).
    [Crossref]
  46. J. L. Yarnell, J. L. Warren, R. G. Wenzel, and S. H. Koenig, “Phonon dispersion curves in bismuth,” IBM J. Res. Dev. 8(3), 234 (1964).
    [Crossref]
  47. J. Höhne, U. Wenning, H. Shulz, and S. Hüfner, “Temperature dependence of the k=0 optical phonons of Bi and Sb,” Z. Phys. B 27(4), 297–302 (1977).
    [Crossref]
  48. M. K. Zayed and H. E. Elsayed-Ali, “Condensation on (002) graphite of liquid bismuth far below its bulk melting point,” Phys. Rev. B. 72(20), 205426 (2005).
    [Crossref]
  49. G. K. White, “Thermal expansion of bismuth at low temperatures,” J. Phys. C 2(3), 575–576 (1969).
    [Crossref]
  50. I. O. Herman, “Peak temperatures from Raman Stokes/anti-Stokes ratios during laser heating by a Gaussian beam,” J. App. Phys. 109(1), 016103 (2011).
    [Crossref]
  51. G. K. White, “Thermal expansion of trigonal elements at low temperatures: As, Sb and Bi,” J. Phys. C 5(19), 2731–2745 (1972).
    [Crossref]
  52. B. G. Childs, “The thermal expansion of anisotropic metals,” Rev. Mod. Phys. 25(3), 665–670 (1953).
    [Crossref]
  53. M. F. DeCamp, D. A. Reis, P. H. Bucksbaum, and R. Merlin, “Dynamics and coherent control of high-amplitude optical phonons in bismuth,” Phys. Rev. B 64(9), 092301 (2001).
    [Crossref]
  54. J. B. Renucci, W Richter, M. Cardona, and E. Schönheer, “Resonance Raman Scattering in Group Vb semimetals: As, Sb, and Bi,” Phys. Stat. Sol. (b) 60(1), 299–308 (1973).
    [Crossref]
  55. P. Kofstad, High Temperature Oxidation of Metals (Wiley, 1966).
  56. A. N. Kolmogorov, “On the statistical theory of crystallization of metals,” Izv. Akad. Nauk. SSSR Ser. Mat. 1, 355–359 (1937).
  57. W. A. Johnson and R. F. Mehl, “Reaction kinetics in processes of nucleation and growth,” Trans. Soc. Min. Eng. AIME 135, 416–442 (1939).
  58. M. Avrami, “Kinetics of phase change. I General theory,” J. Chem. Phys. 7(12), 1103–1112 (1939).
    [Crossref]
  59. J. C. Yang, D. Evan, and L. Tropia, “From nucleation to coalescence of Cu2O islands during in situ oxidation of Cu(001),” Appl. Phys. Lett. 81(2), 241–243 (2002).
    [Crossref]

2014 (4)

J. A. Steele and R. A. Lewis, “In situ micro-Raman studies of laser-induced bismuth oxidation reveals metastability of β-Bi2O3 microislands,” Opt. Mater. Express 4(10), 2133 (2014).
[Crossref]

P. C. Grant, D. Fan, A. Mosleh, S.-Q. Yu, V. G. Dorogan, M. E. Hawkridge, Y. I. Mazur, M. Benamara, G. J. Salamo, and S. R. Johnson, “Rapid thermal annealing effect on GaAsBi/GaAs single quantum wells grown by molecular beam epitaxy,” J. Vac. Sci. Technol. B 32(2), 02C119 (2014).
[Crossref]

O. M. Lemine, A. Alkaoud, H. V. A. Galeti, V. O. Gordo, Y. G. Gobato, H. Bouzid, A. Hajry, and M. Henini, “Thermal annealing effects on the optical and structural properties of (100) GaAs1−xBix layers grown by Molecular Beam Epitaxy,” Superlattice. Microst. 65, 48–55 (2014).
[Crossref]

J. A. Steele, R. A. Lewis, M. Henini, O. M. Lemine, D. Fan, Y. I. Mazur, V. G. Dorogan, P. C. Grant, S.-Q. Yu, and G. J. Salamo, “Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration,” Opt. Express 22(10), 11680–11689 (2014).
[Crossref] [PubMed]

2013 (4)

J. A. Steele, R. A. Lewis, M. Henini, O. M. Lemine, and A. Alkaoud, “Raman scattering studies of strain effects in (100) and (311)B GaAs1−xBix epitaxial layers,” J. Appl. Phys. 114(19), 193516 (2013).
[Crossref]

S. Mazzucato, P. Boonpeng, H. Carrère, D. Lagarde, A. Arnoult, G. Lacoste, T. Zhang, A. Balocchi, T. Amand, X. Marie, and C. Fontaine, “Reduction of defect density by rapid thermal annealing in GaAsBi studied by time-resolved photoluminescence,” Semicond. Sci. Technol. 28(2), 022001 (2013).
[Crossref]

G. Vardar, S. W. Paleg, M. V. Warren, M. Kang, S. Jeon, and R. S. Goldman, “Mechanisms of droplet formation and Bi incorporation during molecular beam epitaxy of GaAsBi,” Appl. Phys. Lett. 102(4), 042106 (2013).
[Crossref]

H. Fitouri, R. Boussaha, A. Rabey, and B. El Jani, “Oxidation of bismuth nanodroplets deposit on GaAs substrate,” Appl. Phys. A 112(3), 701–710 (2013).
[Crossref]

2012 (3)

A. J. Ptak, R. France, D. A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C.-S. Jiang, “Kinetically limited growth of GaAsBi by molecular-beam epitaxy,” J. Cryst. Growth 338(1), 107–110 (2012).
[Crossref]

M. Vila, C. Diaz-Guerra, and J. Piqueras, “Laser irradiation-induced α to δ phase transformation in Bi2O3 ceramics and nanowires,” Appl. Phys. Lett. 101(7), 071905 (2012).
[Crossref]

W. Wang, M. Liu, Z. Yang, W. Mai, and J. Gong, “Synthesis and Raman optical properties of single-crystalline Bi nanowires,” Physica E 44(7–8), 1142–1145 (2012).
[Crossref]

2011 (4)

I. O. Herman, “Peak temperatures from Raman Stokes/anti-Stokes ratios during laser heating by a Gaussian beam,” J. App. Phys. 109(1), 016103 (2011).
[Crossref]

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
[Crossref]

C. Li, Z. Q. Zeng, D. S. Fan, Y. Hirono, J. Wu, T. A. Morgan, X. Hu, S. Q. Yu, Zh. M. Wang, and G. J. Salamo, “Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy,” Appl. Phys. Lett. 99(24), 243113 (2011).
[Crossref]

Q. Hu, J. Wang, Y. Zhao, and D. Li, “A light-trapping structure based on Bi2O3 nano-islands with highly crystallized sputtered silicon for thin-film solar cells,” Opt. Express 19(S1), A20–A27 (2011).
[Crossref]

2010 (2)

Z. Chine, H. Fitouri, I. Zaied, A. Rebey, and B. El Jani, “Photoreflectance and photoluminescence study of annealing effects on GaAsBi layers grown by metalorganic vapor phase epitaxy,” Semicond. Sci. Technol. 25(6), 065009 (2010).
[Crossref]

G. Ciatto, M. Thomasset, F. Glas, X. Lu, and T. Tiedje, “Formation and vanishing of short range ordering in GaAs1−xBix thin films,” Phys. Rev. B 82(20), 201304 (2010).
[Crossref]

2009 (2)

K. Trentelman, “A note on the characterization of bismuth black by Raman microspectroscopy,” J. Raman Spectrosc. 40(5), 585–589 (2009).
[Crossref]

X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Yong Zhang, “Composition dependence of photoluminescence of GaAs1−xBix alloys,” Appl. Phys. Lett. 95(4), 041903 (2009).
[Crossref]

2008 (4)

L. Kumari, J.-H. Lin, and Y.-R. Ma, “Laser oxidation and wide-band photoluminescence of thermal evaporated bismuth thin films,” J. Phys. D 41(2), 025405 (2008).
[Crossref]

I. Moussa, H. Fitouri, Z. Chine, A. Rebey, and B. El Jani, “Effect of thermal annealing on structural and optical properties of the GaAs0.963Bi0.037 alloy,” Semicond. Sci. Technol. 23(12), 125034 (2008).
[Crossref]

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and M. B. Whitwick, “Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1−xBix,” Appl. Phys. Lett. 92(19), 192110 (2008).
[Crossref]

2007 (3)

K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaAs1−xBix,” Appl. Phys. Lett. 91(5), 051909 (2007).
[Crossref]

D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
[Crossref]

X. Lin, F. Huang, W. Wang, and J. Shi, “Photocatalytic activity of Bi24Ga2O39 for degrading methylene blue,” Scr. Mater. 56(3), 189–192 (2007).
[Crossref]

2006 (5)

R. A. Ismail, “Characteristics of bismuth trioxide film prepared by rapid thermal oxidation,” Surf. Sci. Nanotech. 4, 563–565 (2006).
[Crossref]

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1−xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
[Crossref] [PubMed]

M. Ferhat and A. Zaoui, “Structural and electronic properties of III–V bismuth compounds,” Phys. Rev. B 73(11), 115107 (2006).
[Crossref]

J. W. Fergus, “Electrolytes for solid oxide fuel cells,” J. Power Sources 162(1), 30–40 (2006).
[Crossref]

H. J. Fan, P. Werner, and M. Zacharias, “Semiconductor nanowires: from self-organization to patterned growth,” Small 2(6), 700–717 (2006).
[Crossref] [PubMed]

2005 (1)

M. K. Zayed and H. E. Elsayed-Ali, “Condensation on (002) graphite of liquid bismuth far below its bulk melting point,” Phys. Rev. B. 72(20), 205426 (2005).
[Crossref]

2003 (3)

J. Yoshida, T. Kita, O. Wada, and K. Oe, “Temperature dependence of GaAs1−xBix band gap studied by photoreflectance spectroscopy,” Jpn. J. Appl. Phys. 42, 371–374 (2003).
[Crossref]

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x <3.6%,” Appl. Phys. Lett. 82(22), 3874 (2003).
[Crossref]

O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation,” J. Raman Spectrosc. 34(11), 845–852 (2003).
[Crossref]

2002 (3)

L. Leontie, M. Caraman, M. Alexe, and C. Harnagea, “Structural and optical characteristics of bismuth oxide thin films,” Surf. Sci. 507–510, 480–485 (2002).
[Crossref]

K. Oe, “Characteristics of semiconductor alloy GaAs1−xBix,” Jpn. J. Appl. Phys. 41, 2801–2806 (2002).
[Crossref]

J. C. Yang, D. Evan, and L. Tropia, “From nucleation to coalescence of Cu2O islands during in situ oxidation of Cu(001),” Appl. Phys. Lett. 81(2), 241–243 (2002).
[Crossref]

2001 (1)

M. F. DeCamp, D. A. Reis, P. H. Bucksbaum, and R. Merlin, “Dynamics and coherent control of high-amplitude optical phonons in bismuth,” Phys. Rev. B 64(9), 092301 (2001).
[Crossref]

1999 (1)

N. M. Sammes, G. A. Tompsett, H. Näfea, and F. Aldingera, “Bismuth based oxide electrolytes – structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

1997 (1)

L. Nánai, R. Vajtai, and T. F. George, “Laser-induced oxidation of metals: state of the art,” Thin Solid Films 298, 160–164 (1997).
[Crossref]

1992 (1)

F. D. Hardcastle and I. E. Wachs, “The molecular structure of bismuth oxide by Raman spectroscopy,” J. Solid State Chem. 97(2), 319–331 (1992).
[Crossref]

1991 (1)

M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, and J. S. Lannin, “Phase transition in ultrathin Bi films,” Phys. Rev. Lett. 67(7), 875–878 (1991).
[Crossref] [PubMed]

1983 (1)

M. Miyayama, S. Katsuta, Y. Suenaga, and H. Yanagida, “Electrical conduction in β-Bi2O3 doped with Sb2O3,” J. Am. Ceram. Soc. 66(6), 585–588 (1983).
[Crossref]

1978 (3)

H. A. Harwig and A. G. Gerards, “Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide,” J. Solid State Chem. 26(3), 265–274 (1978).
[Crossref]

J. W. Medermach and R. L. Snyder, “Powder diffraction patterns and structures of the bismuth oxides,” J. Am. Ceram. Soc. 61(11–12), 494–497 (1978).
[Crossref]

H. A. Harwig, “On the structure of bismuthsesquioxide: the α, β, γ, and δ-phase,” Z. Anorg. Allg. Chem. 444(1), 151–166 (1978).
[Crossref]

1977 (1)

J. Höhne, U. Wenning, H. Shulz, and S. Hüfner, “Temperature dependence of the k=0 optical phonons of Bi and Sb,” Z. Phys. B 27(4), 297–302 (1977).
[Crossref]

1975 (1)

J. S. Lannin, J. M. Calleja, and M. Cardona, “Second-order Raman scattering in the group-Vb semimetals: Bi, Sb, and As,” Phys. Rev. B 12(2), 585–593 (1975).
[Crossref]

1973 (1)

J. B. Renucci, W Richter, M. Cardona, and E. Schönheer, “Resonance Raman Scattering in Group Vb semimetals: As, Sb, and Bi,” Phys. Stat. Sol. (b) 60(1), 299–308 (1973).
[Crossref]

1972 (1)

G. K. White, “Thermal expansion of trigonal elements at low temperatures: As, Sb and Bi,” J. Phys. C 5(19), 2731–2745 (1972).
[Crossref]

1969 (1)

G. K. White, “Thermal expansion of bismuth at low temperatures,” J. Phys. C 2(3), 575–576 (1969).
[Crossref]

1964 (1)

J. L. Yarnell, J. L. Warren, R. G. Wenzel, and S. H. Koenig, “Phonon dispersion curves in bismuth,” IBM J. Res. Dev. 8(3), 234 (1964).
[Crossref]

1953 (1)

B. G. Childs, “The thermal expansion of anisotropic metals,” Rev. Mod. Phys. 25(3), 665–670 (1953).
[Crossref]

1939 (2)

W. A. Johnson and R. F. Mehl, “Reaction kinetics in processes of nucleation and growth,” Trans. Soc. Min. Eng. AIME 135, 416–442 (1939).

M. Avrami, “Kinetics of phase change. I General theory,” J. Chem. Phys. 7(12), 1103–1112 (1939).
[Crossref]

1937 (1)

A. N. Kolmogorov, “On the statistical theory of crystallization of metals,” Izv. Akad. Nauk. SSSR Ser. Mat. 1, 355–359 (1937).

Adamcyk, M.

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x <3.6%,” Appl. Phys. Lett. 82(22), 3874 (2003).
[Crossref]

Alberi, K.

A. J. Ptak, R. France, D. A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C.-S. Jiang, “Kinetically limited growth of GaAsBi by molecular-beam epitaxy,” J. Cryst. Growth 338(1), 107–110 (2012).
[Crossref]

K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaAs1−xBix,” Appl. Phys. Lett. 91(5), 051909 (2007).
[Crossref]

Aldingera, F.

N. M. Sammes, G. A. Tompsett, H. Näfea, and F. Aldingera, “Bismuth based oxide electrolytes – structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

Alexe, M.

L. Leontie, M. Caraman, M. Alexe, and C. Harnagea, “Structural and optical characteristics of bismuth oxide thin films,” Surf. Sci. 507–510, 480–485 (2002).
[Crossref]

Alkaoud, A.

O. M. Lemine, A. Alkaoud, H. V. A. Galeti, V. O. Gordo, Y. G. Gobato, H. Bouzid, A. Hajry, and M. Henini, “Thermal annealing effects on the optical and structural properties of (100) GaAs1−xBix layers grown by Molecular Beam Epitaxy,” Superlattice. Microst. 65, 48–55 (2014).
[Crossref]

J. A. Steele, R. A. Lewis, M. Henini, O. M. Lemine, and A. Alkaoud, “Raman scattering studies of strain effects in (100) and (311)B GaAs1−xBix epitaxial layers,” J. Appl. Phys. 114(19), 193516 (2013).
[Crossref]

Amand, T.

S. Mazzucato, P. Boonpeng, H. Carrère, D. Lagarde, A. Arnoult, G. Lacoste, T. Zhang, A. Balocchi, T. Amand, X. Marie, and C. Fontaine, “Reduction of defect density by rapid thermal annealing in GaAsBi studied by time-resolved photoluminescence,” Semicond. Sci. Technol. 28(2), 022001 (2013).
[Crossref]

Arnoult, A.

S. Mazzucato, P. Boonpeng, H. Carrère, D. Lagarde, A. Arnoult, G. Lacoste, T. Zhang, A. Balocchi, T. Amand, X. Marie, and C. Fontaine, “Reduction of defect density by rapid thermal annealing in GaAsBi studied by time-resolved photoluminescence,” Semicond. Sci. Technol. 28(2), 022001 (2013).
[Crossref]

Arroyo, R.

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
[Crossref]

Atwater, H. A.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

Avrami, M.

M. Avrami, “Kinetics of phase change. I General theory,” J. Chem. Phys. 7(12), 1103–1112 (1939).
[Crossref]

Balocchi, A.

S. Mazzucato, P. Boonpeng, H. Carrère, D. Lagarde, A. Arnoult, G. Lacoste, T. Zhang, A. Balocchi, T. Amand, X. Marie, and C. Fontaine, “Reduction of defect density by rapid thermal annealing in GaAsBi studied by time-resolved photoluminescence,” Semicond. Sci. Technol. 28(2), 022001 (2013).
[Crossref]

Beaton, D. A.

A. J. Ptak, R. France, D. A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C.-S. Jiang, “Kinetically limited growth of GaAsBi by molecular-beam epitaxy,” J. Cryst. Growth 338(1), 107–110 (2012).
[Crossref]

X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Yong Zhang, “Composition dependence of photoluminescence of GaAs1−xBix alloys,” Appl. Phys. Lett. 95(4), 041903 (2009).
[Crossref]

X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and M. B. Whitwick, “Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1−xBix,” Appl. Phys. Lett. 92(19), 192110 (2008).
[Crossref]

Benamara, M.

P. C. Grant, D. Fan, A. Mosleh, S.-Q. Yu, V. G. Dorogan, M. E. Hawkridge, Y. I. Mazur, M. Benamara, G. J. Salamo, and S. R. Johnson, “Rapid thermal annealing effect on GaAsBi/GaAs single quantum wells grown by molecular beam epitaxy,” J. Vac. Sci. Technol. B 32(2), 02C119 (2014).
[Crossref]

Bertulis, K.

K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaAs1−xBix,” Appl. Phys. Lett. 91(5), 051909 (2007).
[Crossref]

Boonpeng, P.

S. Mazzucato, P. Boonpeng, H. Carrère, D. Lagarde, A. Arnoult, G. Lacoste, T. Zhang, A. Balocchi, T. Amand, X. Marie, and C. Fontaine, “Reduction of defect density by rapid thermal annealing in GaAsBi studied by time-resolved photoluminescence,” Semicond. Sci. Technol. 28(2), 022001 (2013).
[Crossref]

Boussaha, R.

H. Fitouri, R. Boussaha, A. Rabey, and B. El Jani, “Oxidation of bismuth nanodroplets deposit on GaAs substrate,” Appl. Phys. A 112(3), 701–710 (2013).
[Crossref]

Bouzid, H.

O. M. Lemine, A. Alkaoud, H. V. A. Galeti, V. O. Gordo, Y. G. Gobato, H. Bouzid, A. Hajry, and M. Henini, “Thermal annealing effects on the optical and structural properties of (100) GaAs1−xBix layers grown by Molecular Beam Epitaxy,” Superlattice. Microst. 65, 48–55 (2014).
[Crossref]

Bucksbaum, P. H.

M. F. DeCamp, D. A. Reis, P. H. Bucksbaum, and R. Merlin, “Dynamics and coherent control of high-amplitude optical phonons in bismuth,” Phys. Rev. B 64(9), 092301 (2001).
[Crossref]

Calleja, J. M.

J. S. Lannin, J. M. Calleja, and M. Cardona, “Second-order Raman scattering in the group-Vb semimetals: Bi, Sb, and As,” Phys. Rev. B 12(2), 585–593 (1975).
[Crossref]

Camacho-López, M. A.

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
[Crossref]

Caraman, M.

L. Leontie, M. Caraman, M. Alexe, and C. Harnagea, “Structural and optical characteristics of bismuth oxide thin films,” Surf. Sci. 507–510, 480–485 (2002).
[Crossref]

Cardona, M.

J. S. Lannin, J. M. Calleja, and M. Cardona, “Second-order Raman scattering in the group-Vb semimetals: Bi, Sb, and As,” Phys. Rev. B 12(2), 585–593 (1975).
[Crossref]

J. B. Renucci, W Richter, M. Cardona, and E. Schönheer, “Resonance Raman Scattering in Group Vb semimetals: As, Sb, and Bi,” Phys. Stat. Sol. (b) 60(1), 299–308 (1973).
[Crossref]

Carrère, H.

S. Mazzucato, P. Boonpeng, H. Carrère, D. Lagarde, A. Arnoult, G. Lacoste, T. Zhang, A. Balocchi, T. Amand, X. Marie, and C. Fontaine, “Reduction of defect density by rapid thermal annealing in GaAsBi studied by time-resolved photoluminescence,” Semicond. Sci. Technol. 28(2), 022001 (2013).
[Crossref]

Chase, S. J.

M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, and J. S. Lannin, “Phase transition in ultrathin Bi films,” Phys. Rev. Lett. 67(7), 875–878 (1991).
[Crossref] [PubMed]

Chen, J.

D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
[Crossref]

Childs, B. G.

B. G. Childs, “The thermal expansion of anisotropic metals,” Rev. Mod. Phys. 25(3), 665–670 (1953).
[Crossref]

Chine, Z.

Z. Chine, H. Fitouri, I. Zaied, A. Rebey, and B. El Jani, “Photoreflectance and photoluminescence study of annealing effects on GaAsBi layers grown by metalorganic vapor phase epitaxy,” Semicond. Sci. Technol. 25(6), 065009 (2010).
[Crossref]

I. Moussa, H. Fitouri, Z. Chine, A. Rebey, and B. El Jani, “Effect of thermal annealing on structural and optical properties of the GaAs0.963Bi0.037 alloy,” Semicond. Sci. Technol. 23(12), 125034 (2008).
[Crossref]

Ciatto, G.

G. Ciatto, M. Thomasset, F. Glas, X. Lu, and T. Tiedje, “Formation and vanishing of short range ordering in GaAs1−xBix thin films,” Phys. Rev. B 82(20), 201304 (2010).
[Crossref]

Córdoba, G.

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
[Crossref]

DeCamp, M. F.

M. F. DeCamp, D. A. Reis, P. H. Bucksbaum, and R. Merlin, “Dynamics and coherent control of high-amplitude optical phonons in bismuth,” Phys. Rev. B 64(9), 092301 (2001).
[Crossref]

Deng, S. Z.

D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
[Crossref]

Diaz-Guerra, C.

M. Vila, C. Diaz-Guerra, and J. Piqueras, “Laser irradiation-induced α to δ phase transformation in Bi2O3 ceramics and nanowires,” Appl. Phys. Lett. 101(7), 071905 (2012).
[Crossref]

Dorogan, V. G.

P. C. Grant, D. Fan, A. Mosleh, S.-Q. Yu, V. G. Dorogan, M. E. Hawkridge, Y. I. Mazur, M. Benamara, G. J. Salamo, and S. R. Johnson, “Rapid thermal annealing effect on GaAsBi/GaAs single quantum wells grown by molecular beam epitaxy,” J. Vac. Sci. Technol. B 32(2), 02C119 (2014).
[Crossref]

J. A. Steele, R. A. Lewis, M. Henini, O. M. Lemine, D. Fan, Y. I. Mazur, V. G. Dorogan, P. C. Grant, S.-Q. Yu, and G. J. Salamo, “Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration,” Opt. Express 22(10), 11680–11689 (2014).
[Crossref] [PubMed]

Dubon, O. D.

K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaAs1−xBix,” Appl. Phys. Lett. 91(5), 051909 (2007).
[Crossref]

El Jani, B.

H. Fitouri, R. Boussaha, A. Rabey, and B. El Jani, “Oxidation of bismuth nanodroplets deposit on GaAs substrate,” Appl. Phys. A 112(3), 701–710 (2013).
[Crossref]

Z. Chine, H. Fitouri, I. Zaied, A. Rebey, and B. El Jani, “Photoreflectance and photoluminescence study of annealing effects on GaAsBi layers grown by metalorganic vapor phase epitaxy,” Semicond. Sci. Technol. 25(6), 065009 (2010).
[Crossref]

I. Moussa, H. Fitouri, Z. Chine, A. Rebey, and B. El Jani, “Effect of thermal annealing on structural and optical properties of the GaAs0.963Bi0.037 alloy,” Semicond. Sci. Technol. 23(12), 125034 (2008).
[Crossref]

Elsayed-Ali, H. E.

M. K. Zayed and H. E. Elsayed-Ali, “Condensation on (002) graphite of liquid bismuth far below its bulk melting point,” Phys. Rev. B. 72(20), 205426 (2005).
[Crossref]

Escobar-Alarcón, L.

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
[Crossref]

Evan, D.

J. C. Yang, D. Evan, and L. Tropia, “From nucleation to coalescence of Cu2O islands during in situ oxidation of Cu(001),” Appl. Phys. Lett. 81(2), 241–243 (2002).
[Crossref]

Fan, D.

J. A. Steele, R. A. Lewis, M. Henini, O. M. Lemine, D. Fan, Y. I. Mazur, V. G. Dorogan, P. C. Grant, S.-Q. Yu, and G. J. Salamo, “Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration,” Opt. Express 22(10), 11680–11689 (2014).
[Crossref] [PubMed]

P. C. Grant, D. Fan, A. Mosleh, S.-Q. Yu, V. G. Dorogan, M. E. Hawkridge, Y. I. Mazur, M. Benamara, G. J. Salamo, and S. R. Johnson, “Rapid thermal annealing effect on GaAsBi/GaAs single quantum wells grown by molecular beam epitaxy,” J. Vac. Sci. Technol. B 32(2), 02C119 (2014).
[Crossref]

Fan, D. S.

C. Li, Z. Q. Zeng, D. S. Fan, Y. Hirono, J. Wu, T. A. Morgan, X. Hu, S. Q. Yu, Zh. M. Wang, and G. J. Salamo, “Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy,” Appl. Phys. Lett. 99(24), 243113 (2011).
[Crossref]

Fan, H. J.

H. J. Fan, P. Werner, and M. Zacharias, “Semiconductor nanowires: from self-organization to patterned growth,” Small 2(6), 700–717 (2006).
[Crossref] [PubMed]

Fergus, J. W.

J. W. Fergus, “Electrolytes for solid oxide fuel cells,” J. Power Sources 162(1), 30–40 (2006).
[Crossref]

Ferhat, M.

M. Ferhat and A. Zaoui, “Structural and electronic properties of III–V bismuth compounds,” Phys. Rev. B 73(11), 115107 (2006).
[Crossref]

Fitouri, H.

H. Fitouri, R. Boussaha, A. Rabey, and B. El Jani, “Oxidation of bismuth nanodroplets deposit on GaAs substrate,” Appl. Phys. A 112(3), 701–710 (2013).
[Crossref]

Z. Chine, H. Fitouri, I. Zaied, A. Rebey, and B. El Jani, “Photoreflectance and photoluminescence study of annealing effects on GaAsBi layers grown by metalorganic vapor phase epitaxy,” Semicond. Sci. Technol. 25(6), 065009 (2010).
[Crossref]

I. Moussa, H. Fitouri, Z. Chine, A. Rebey, and B. El Jani, “Effect of thermal annealing on structural and optical properties of the GaAs0.963Bi0.037 alloy,” Semicond. Sci. Technol. 23(12), 125034 (2008).
[Crossref]

Fluegel, B.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1−xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
[Crossref] [PubMed]

Fontaine, C.

S. Mazzucato, P. Boonpeng, H. Carrère, D. Lagarde, A. Arnoult, G. Lacoste, T. Zhang, A. Balocchi, T. Amand, X. Marie, and C. Fontaine, “Reduction of defect density by rapid thermal annealing in GaAsBi studied by time-resolved photoluminescence,” Semicond. Sci. Technol. 28(2), 022001 (2013).
[Crossref]

Fortner, J.

M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, and J. S. Lannin, “Phase transition in ultrathin Bi films,” Phys. Rev. Lett. 67(7), 875–878 (1991).
[Crossref] [PubMed]

France, R.

A. J. Ptak, R. France, D. A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C.-S. Jiang, “Kinetically limited growth of GaAsBi by molecular-beam epitaxy,” J. Cryst. Growth 338(1), 107–110 (2012).
[Crossref]

Francoeur, S.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1−xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
[Crossref] [PubMed]

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x <3.6%,” Appl. Phys. Lett. 82(22), 3874 (2003).
[Crossref]

Galeti, H. V. A.

O. M. Lemine, A. Alkaoud, H. V. A. Galeti, V. O. Gordo, Y. G. Gobato, H. Bouzid, A. Hajry, and M. Henini, “Thermal annealing effects on the optical and structural properties of (100) GaAs1−xBix layers grown by Molecular Beam Epitaxy,” Superlattice. Microst. 65, 48–55 (2014).
[Crossref]

George, T. F.

L. Nánai, R. Vajtai, and T. F. George, “Laser-induced oxidation of metals: state of the art,” Thin Solid Films 298, 160–164 (1997).
[Crossref]

Gerards, A. G.

H. A. Harwig and A. G. Gerards, “Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide,” J. Solid State Chem. 26(3), 265–274 (1978).
[Crossref]

Glas, F.

G. Ciatto, M. Thomasset, F. Glas, X. Lu, and T. Tiedje, “Formation and vanishing of short range ordering in GaAs1−xBix thin films,” Phys. Rev. B 82(20), 201304 (2010).
[Crossref]

Gobato, Y. G.

O. M. Lemine, A. Alkaoud, H. V. A. Galeti, V. O. Gordo, Y. G. Gobato, H. Bouzid, A. Hajry, and M. Henini, “Thermal annealing effects on the optical and structural properties of (100) GaAs1−xBix layers grown by Molecular Beam Epitaxy,” Superlattice. Microst. 65, 48–55 (2014).
[Crossref]

Goldman, R. S.

G. Vardar, S. W. Paleg, M. V. Warren, M. Kang, S. Jeon, and R. S. Goldman, “Mechanisms of droplet formation and Bi incorporation during molecular beam epitaxy of GaAsBi,” Appl. Phys. Lett. 102(4), 042106 (2013).
[Crossref]

Gong, J.

W. Wang, M. Liu, Z. Yang, W. Mai, and J. Gong, “Synthesis and Raman optical properties of single-crystalline Bi nanowires,” Physica E 44(7–8), 1142–1145 (2012).
[Crossref]

Gordo, V. O.

O. M. Lemine, A. Alkaoud, H. V. A. Galeti, V. O. Gordo, Y. G. Gobato, H. Bouzid, A. Hajry, and M. Henini, “Thermal annealing effects on the optical and structural properties of (100) GaAs1−xBix layers grown by Molecular Beam Epitaxy,” Superlattice. Microst. 65, 48–55 (2014).
[Crossref]

Grant, P. C.

P. C. Grant, D. Fan, A. Mosleh, S.-Q. Yu, V. G. Dorogan, M. E. Hawkridge, Y. I. Mazur, M. Benamara, G. J. Salamo, and S. R. Johnson, “Rapid thermal annealing effect on GaAsBi/GaAs single quantum wells grown by molecular beam epitaxy,” J. Vac. Sci. Technol. B 32(2), 02C119 (2014).
[Crossref]

J. A. Steele, R. A. Lewis, M. Henini, O. M. Lemine, D. Fan, Y. I. Mazur, V. G. Dorogan, P. C. Grant, S.-Q. Yu, and G. J. Salamo, “Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration,” Opt. Express 22(10), 11680–11689 (2014).
[Crossref] [PubMed]

Hajry, A.

O. M. Lemine, A. Alkaoud, H. V. A. Galeti, V. O. Gordo, Y. G. Gobato, H. Bouzid, A. Hajry, and M. Henini, “Thermal annealing effects on the optical and structural properties of (100) GaAs1−xBix layers grown by Molecular Beam Epitaxy,” Superlattice. Microst. 65, 48–55 (2014).
[Crossref]

Hardcastle, F. D.

F. D. Hardcastle and I. E. Wachs, “The molecular structure of bismuth oxide by Raman spectroscopy,” J. Solid State Chem. 97(2), 319–331 (1992).
[Crossref]

Harnagea, C.

L. Leontie, M. Caraman, M. Alexe, and C. Harnagea, “Structural and optical characteristics of bismuth oxide thin films,” Surf. Sci. 507–510, 480–485 (2002).
[Crossref]

Haro-Poniatowski, E.

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
[Crossref]

M. A. Zepeda, M. Picquart, and E. Haro-Poniatowski, “Laser induced oxidation effects in bismuth thin films,” MRS Proceedings1477, (2012).

Harwig, H. A.

H. A. Harwig and A. G. Gerards, “Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide,” J. Solid State Chem. 26(3), 265–274 (1978).
[Crossref]

H. A. Harwig, “On the structure of bismuthsesquioxide: the α, β, γ, and δ-phase,” Z. Anorg. Allg. Chem. 444(1), 151–166 (1978).
[Crossref]

Hawkridge, M. E.

P. C. Grant, D. Fan, A. Mosleh, S.-Q. Yu, V. G. Dorogan, M. E. Hawkridge, Y. I. Mazur, M. Benamara, G. J. Salamo, and S. R. Johnson, “Rapid thermal annealing effect on GaAsBi/GaAs single quantum wells grown by molecular beam epitaxy,” J. Vac. Sci. Technol. B 32(2), 02C119 (2014).
[Crossref]

Henini, M.

O. M. Lemine, A. Alkaoud, H. V. A. Galeti, V. O. Gordo, Y. G. Gobato, H. Bouzid, A. Hajry, and M. Henini, “Thermal annealing effects on the optical and structural properties of (100) GaAs1−xBix layers grown by Molecular Beam Epitaxy,” Superlattice. Microst. 65, 48–55 (2014).
[Crossref]

J. A. Steele, R. A. Lewis, M. Henini, O. M. Lemine, D. Fan, Y. I. Mazur, V. G. Dorogan, P. C. Grant, S.-Q. Yu, and G. J. Salamo, “Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration,” Opt. Express 22(10), 11680–11689 (2014).
[Crossref] [PubMed]

J. A. Steele, R. A. Lewis, M. Henini, O. M. Lemine, and A. Alkaoud, “Raman scattering studies of strain effects in (100) and (311)B GaAs1−xBix epitaxial layers,” J. Appl. Phys. 114(19), 193516 (2013).
[Crossref]

Herman, I. O.

I. O. Herman, “Peak temperatures from Raman Stokes/anti-Stokes ratios during laser heating by a Gaussian beam,” J. App. Phys. 109(1), 016103 (2011).
[Crossref]

Hirono, Y.

C. Li, Z. Q. Zeng, D. S. Fan, Y. Hirono, J. Wu, T. A. Morgan, X. Hu, S. Q. Yu, Zh. M. Wang, and G. J. Salamo, “Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy,” Appl. Phys. Lett. 99(24), 243113 (2011).
[Crossref]

Höhne, J.

J. Höhne, U. Wenning, H. Shulz, and S. Hüfner, “Temperature dependence of the k=0 optical phonons of Bi and Sb,” Z. Phys. B 27(4), 297–302 (1977).
[Crossref]

Hu, Q.

Hu, X.

C. Li, Z. Q. Zeng, D. S. Fan, Y. Hirono, J. Wu, T. A. Morgan, X. Hu, S. Q. Yu, Zh. M. Wang, and G. J. Salamo, “Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy,” Appl. Phys. Lett. 99(24), 243113 (2011).
[Crossref]

Huang, F.

X. Lin, F. Huang, W. Wang, and J. Shi, “Photocatalytic activity of Bi24Ga2O39 for degrading methylene blue,” Scr. Mater. 56(3), 189–192 (2007).
[Crossref]

Hüfner, S.

J. Höhne, U. Wenning, H. Shulz, and S. Hüfner, “Temperature dependence of the k=0 optical phonons of Bi and Sb,” Z. Phys. B 27(4), 297–302 (1977).
[Crossref]

Ismail, R. A.

R. A. Ismail, “Characteristics of bismuth trioxide film prepared by rapid thermal oxidation,” Surf. Sci. Nanotech. 4, 563–565 (2006).
[Crossref]

Jeon, S.

G. Vardar, S. W. Paleg, M. V. Warren, M. Kang, S. Jeon, and R. S. Goldman, “Mechanisms of droplet formation and Bi incorporation during molecular beam epitaxy of GaAsBi,” Appl. Phys. Lett. 102(4), 042106 (2013).
[Crossref]

Jiang, C.-S.

A. J. Ptak, R. France, D. A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C.-S. Jiang, “Kinetically limited growth of GaAsBi by molecular-beam epitaxy,” J. Cryst. Growth 338(1), 107–110 (2012).
[Crossref]

Johnson, S. R.

P. C. Grant, D. Fan, A. Mosleh, S.-Q. Yu, V. G. Dorogan, M. E. Hawkridge, Y. I. Mazur, M. Benamara, G. J. Salamo, and S. R. Johnson, “Rapid thermal annealing effect on GaAsBi/GaAs single quantum wells grown by molecular beam epitaxy,” J. Vac. Sci. Technol. B 32(2), 02C119 (2014).
[Crossref]

Johnson, W. A.

W. A. Johnson and R. F. Mehl, “Reaction kinetics in processes of nucleation and growth,” Trans. Soc. Min. Eng. AIME 135, 416–442 (1939).

Kang, M.

G. Vardar, S. W. Paleg, M. V. Warren, M. Kang, S. Jeon, and R. S. Goldman, “Mechanisms of droplet formation and Bi incorporation during molecular beam epitaxy of GaAsBi,” Appl. Phys. Lett. 102(4), 042106 (2013).
[Crossref]

Katsuta, S.

M. Miyayama, S. Katsuta, Y. Suenaga, and H. Yanagida, “Electrical conduction in β-Bi2O3 doped with Sb2O3,” J. Am. Ceram. Soc. 66(6), 585–588 (1983).
[Crossref]

Kita, T.

J. Yoshida, T. Kita, O. Wada, and K. Oe, “Temperature dependence of GaAs1−xBix band gap studied by photoreflectance spectroscopy,” Jpn. J. Appl. Phys. 42, 371–374 (2003).
[Crossref]

Koenig, S. H.

J. L. Yarnell, J. L. Warren, R. G. Wenzel, and S. H. Koenig, “Phonon dispersion curves in bismuth,” IBM J. Res. Dev. 8(3), 234 (1964).
[Crossref]

Kofstad, P.

P. Kofstad, High Temperature Oxidation of Metals (Wiley, 1966).

Kolmogorov, A. N.

A. N. Kolmogorov, “On the statistical theory of crystallization of metals,” Izv. Akad. Nauk. SSSR Ser. Mat. 1, 355–359 (1937).

Krotkus, A.

K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaAs1−xBix,” Appl. Phys. Lett. 91(5), 051909 (2007).
[Crossref]

Kumari, L.

L. Kumari, J.-H. Lin, and Y.-R. Ma, “Laser oxidation and wide-band photoluminescence of thermal evaporated bismuth thin films,” J. Phys. D 41(2), 025405 (2008).
[Crossref]

Lacoste, G.

S. Mazzucato, P. Boonpeng, H. Carrère, D. Lagarde, A. Arnoult, G. Lacoste, T. Zhang, A. Balocchi, T. Amand, X. Marie, and C. Fontaine, “Reduction of defect density by rapid thermal annealing in GaAsBi studied by time-resolved photoluminescence,” Semicond. Sci. Technol. 28(2), 022001 (2013).
[Crossref]

Lagarde, D.

S. Mazzucato, P. Boonpeng, H. Carrère, D. Lagarde, A. Arnoult, G. Lacoste, T. Zhang, A. Balocchi, T. Amand, X. Marie, and C. Fontaine, “Reduction of defect density by rapid thermal annealing in GaAsBi studied by time-resolved photoluminescence,” Semicond. Sci. Technol. 28(2), 022001 (2013).
[Crossref]

Lannin, J. S.

M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, and J. S. Lannin, “Phase transition in ultrathin Bi films,” Phys. Rev. Lett. 67(7), 875–878 (1991).
[Crossref] [PubMed]

J. S. Lannin, J. M. Calleja, and M. Cardona, “Second-order Raman scattering in the group-Vb semimetals: Bi, Sb, and As,” Phys. Rev. B 12(2), 585–593 (1975).
[Crossref]

Lazor, P.

O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation,” J. Raman Spectrosc. 34(11), 845–852 (2003).
[Crossref]

Lemine, O. M.

O. M. Lemine, A. Alkaoud, H. V. A. Galeti, V. O. Gordo, Y. G. Gobato, H. Bouzid, A. Hajry, and M. Henini, “Thermal annealing effects on the optical and structural properties of (100) GaAs1−xBix layers grown by Molecular Beam Epitaxy,” Superlattice. Microst. 65, 48–55 (2014).
[Crossref]

J. A. Steele, R. A. Lewis, M. Henini, O. M. Lemine, D. Fan, Y. I. Mazur, V. G. Dorogan, P. C. Grant, S.-Q. Yu, and G. J. Salamo, “Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration,” Opt. Express 22(10), 11680–11689 (2014).
[Crossref] [PubMed]

J. A. Steele, R. A. Lewis, M. Henini, O. M. Lemine, and A. Alkaoud, “Raman scattering studies of strain effects in (100) and (311)B GaAs1−xBix epitaxial layers,” J. Appl. Phys. 114(19), 193516 (2013).
[Crossref]

Leontie, L.

L. Leontie, M. Caraman, M. Alexe, and C. Harnagea, “Structural and optical characteristics of bismuth oxide thin films,” Surf. Sci. 507–510, 480–485 (2002).
[Crossref]

Lewis, R. A.

Lewis, R. B.

X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Yong Zhang, “Composition dependence of photoluminescence of GaAs1−xBix alloys,” Appl. Phys. Lett. 95(4), 041903 (2009).
[Crossref]

X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and M. B. Whitwick, “Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1−xBix,” Appl. Phys. Lett. 92(19), 192110 (2008).
[Crossref]

Li, C.

C. Li, Z. Q. Zeng, D. S. Fan, Y. Hirono, J. Wu, T. A. Morgan, X. Hu, S. Q. Yu, Zh. M. Wang, and G. J. Salamo, “Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy,” Appl. Phys. Lett. 99(24), 243113 (2011).
[Crossref]

Li, D.

Lin, J.-H.

L. Kumari, J.-H. Lin, and Y.-R. Ma, “Laser oxidation and wide-band photoluminescence of thermal evaporated bismuth thin films,” J. Phys. D 41(2), 025405 (2008).
[Crossref]

Lin, X.

X. Lin, F. Huang, W. Wang, and J. Shi, “Photocatalytic activity of Bi24Ga2O39 for degrading methylene blue,” Scr. Mater. 56(3), 189–192 (2007).
[Crossref]

Liu, M.

W. Wang, M. Liu, Z. Yang, W. Mai, and J. Gong, “Synthesis and Raman optical properties of single-crystalline Bi nanowires,” Physica E 44(7–8), 1142–1145 (2012).
[Crossref]

Lu, D. Y.

D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
[Crossref]

Lu, X.

G. Ciatto, M. Thomasset, F. Glas, X. Lu, and T. Tiedje, “Formation and vanishing of short range ordering in GaAs1−xBix thin films,” Phys. Rev. B 82(20), 201304 (2010).
[Crossref]

X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Yong Zhang, “Composition dependence of photoluminescence of GaAs1−xBix alloys,” Appl. Phys. Lett. 95(4), 041903 (2009).
[Crossref]

X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and M. B. Whitwick, “Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1−xBix,” Appl. Phys. Lett. 92(19), 192110 (2008).
[Crossref]

Ma, Y.-R.

L. Kumari, J.-H. Lin, and Y.-R. Ma, “Laser oxidation and wide-band photoluminescence of thermal evaporated bismuth thin films,” J. Phys. D 41(2), 025405 (2008).
[Crossref]

Mai, W.

W. Wang, M. Liu, Z. Yang, W. Mai, and J. Gong, “Synthesis and Raman optical properties of single-crystalline Bi nanowires,” Physica E 44(7–8), 1142–1145 (2012).
[Crossref]

Marie, X.

S. Mazzucato, P. Boonpeng, H. Carrère, D. Lagarde, A. Arnoult, G. Lacoste, T. Zhang, A. Balocchi, T. Amand, X. Marie, and C. Fontaine, “Reduction of defect density by rapid thermal annealing in GaAsBi studied by time-resolved photoluminescence,” Semicond. Sci. Technol. 28(2), 022001 (2013).
[Crossref]

Mascarenhas, A.

A. J. Ptak, R. France, D. A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C.-S. Jiang, “Kinetically limited growth of GaAsBi by molecular-beam epitaxy,” J. Cryst. Growth 338(1), 107–110 (2012).
[Crossref]

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1−xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
[Crossref] [PubMed]

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x <3.6%,” Appl. Phys. Lett. 82(22), 3874 (2003).
[Crossref]

Mazur, Y. I.

P. C. Grant, D. Fan, A. Mosleh, S.-Q. Yu, V. G. Dorogan, M. E. Hawkridge, Y. I. Mazur, M. Benamara, G. J. Salamo, and S. R. Johnson, “Rapid thermal annealing effect on GaAsBi/GaAs single quantum wells grown by molecular beam epitaxy,” J. Vac. Sci. Technol. B 32(2), 02C119 (2014).
[Crossref]

J. A. Steele, R. A. Lewis, M. Henini, O. M. Lemine, D. Fan, Y. I. Mazur, V. G. Dorogan, P. C. Grant, S.-Q. Yu, and G. J. Salamo, “Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration,” Opt. Express 22(10), 11680–11689 (2014).
[Crossref] [PubMed]

Mazzucato, S.

S. Mazzucato, P. Boonpeng, H. Carrère, D. Lagarde, A. Arnoult, G. Lacoste, T. Zhang, A. Balocchi, T. Amand, X. Marie, and C. Fontaine, “Reduction of defect density by rapid thermal annealing in GaAsBi studied by time-resolved photoluminescence,” Semicond. Sci. Technol. 28(2), 022001 (2013).
[Crossref]

Medermach, J. W.

J. W. Medermach and R. L. Snyder, “Powder diffraction patterns and structures of the bismuth oxides,” J. Am. Ceram. Soc. 61(11–12), 494–497 (1978).
[Crossref]

Mehl, R. F.

W. A. Johnson and R. F. Mehl, “Reaction kinetics in processes of nucleation and growth,” Trans. Soc. Min. Eng. AIME 135, 416–442 (1939).

Merlin, R.

M. F. DeCamp, D. A. Reis, P. H. Bucksbaum, and R. Merlin, “Dynamics and coherent control of high-amplitude optical phonons in bismuth,” Phys. Rev. B 64(9), 092301 (2001).
[Crossref]

Mitch, M. G.

M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, and J. S. Lannin, “Phase transition in ultrathin Bi films,” Phys. Rev. Lett. 67(7), 875–878 (1991).
[Crossref] [PubMed]

Miyayama, M.

M. Miyayama, S. Katsuta, Y. Suenaga, and H. Yanagida, “Electrical conduction in β-Bi2O3 doped with Sb2O3,” J. Am. Ceram. Soc. 66(6), 585–588 (1983).
[Crossref]

Morgan, T. A.

C. Li, Z. Q. Zeng, D. S. Fan, Y. Hirono, J. Wu, T. A. Morgan, X. Hu, S. Q. Yu, Zh. M. Wang, and G. J. Salamo, “Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy,” Appl. Phys. Lett. 99(24), 243113 (2011).
[Crossref]

Mosleh, A.

P. C. Grant, D. Fan, A. Mosleh, S.-Q. Yu, V. G. Dorogan, M. E. Hawkridge, Y. I. Mazur, M. Benamara, G. J. Salamo, and S. R. Johnson, “Rapid thermal annealing effect on GaAsBi/GaAs single quantum wells grown by molecular beam epitaxy,” J. Vac. Sci. Technol. B 32(2), 02C119 (2014).
[Crossref]

Moussa, I.

I. Moussa, H. Fitouri, Z. Chine, A. Rebey, and B. El Jani, “Effect of thermal annealing on structural and optical properties of the GaAs0.963Bi0.037 alloy,” Semicond. Sci. Technol. 23(12), 125034 (2008).
[Crossref]

Näfea, H.

N. M. Sammes, G. A. Tompsett, H. Näfea, and F. Aldingera, “Bismuth based oxide electrolytes – structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

Nakayama, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

Nánai, L.

L. Nánai, R. Vajtai, and T. F. George, “Laser-induced oxidation of metals: state of the art,” Thin Solid Films 298, 160–164 (1997).
[Crossref]

Oe, K.

J. Yoshida, T. Kita, O. Wada, and K. Oe, “Temperature dependence of GaAs1−xBix band gap studied by photoreflectance spectroscopy,” Jpn. J. Appl. Phys. 42, 371–374 (2003).
[Crossref]

K. Oe, “Characteristics of semiconductor alloy GaAs1−xBix,” Jpn. J. Appl. Phys. 41, 2801–2806 (2002).
[Crossref]

Paleg, S. W.

G. Vardar, S. W. Paleg, M. V. Warren, M. Kang, S. Jeon, and R. S. Goldman, “Mechanisms of droplet formation and Bi incorporation during molecular beam epitaxy of GaAsBi,” Appl. Phys. Lett. 102(4), 042106 (2013).
[Crossref]

Picquart, M.

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
[Crossref]

M. A. Zepeda, M. Picquart, and E. Haro-Poniatowski, “Laser induced oxidation effects in bismuth thin films,” MRS Proceedings1477, (2012).

Piqueras, J.

M. Vila, C. Diaz-Guerra, and J. Piqueras, “Laser irradiation-induced α to δ phase transformation in Bi2O3 ceramics and nanowires,” Appl. Phys. Lett. 101(7), 071905 (2012).
[Crossref]

Ptak, A. J.

A. J. Ptak, R. France, D. A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C.-S. Jiang, “Kinetically limited growth of GaAsBi by molecular-beam epitaxy,” J. Cryst. Growth 338(1), 107–110 (2012).
[Crossref]

Rabey, A.

H. Fitouri, R. Boussaha, A. Rabey, and B. El Jani, “Oxidation of bismuth nanodroplets deposit on GaAs substrate,” Appl. Phys. A 112(3), 701–710 (2013).
[Crossref]

Rebey, A.

Z. Chine, H. Fitouri, I. Zaied, A. Rebey, and B. El Jani, “Photoreflectance and photoluminescence study of annealing effects on GaAsBi layers grown by metalorganic vapor phase epitaxy,” Semicond. Sci. Technol. 25(6), 065009 (2010).
[Crossref]

I. Moussa, H. Fitouri, Z. Chine, A. Rebey, and B. El Jani, “Effect of thermal annealing on structural and optical properties of the GaAs0.963Bi0.037 alloy,” Semicond. Sci. Technol. 23(12), 125034 (2008).
[Crossref]

Reis, D. A.

M. F. DeCamp, D. A. Reis, P. H. Bucksbaum, and R. Merlin, “Dynamics and coherent control of high-amplitude optical phonons in bismuth,” Phys. Rev. B 64(9), 092301 (2001).
[Crossref]

Renucci, J. B.

J. B. Renucci, W Richter, M. Cardona, and E. Schönheer, “Resonance Raman Scattering in Group Vb semimetals: As, Sb, and Bi,” Phys. Stat. Sol. (b) 60(1), 299–308 (1973).
[Crossref]

Richter, W

J. B. Renucci, W Richter, M. Cardona, and E. Schönheer, “Resonance Raman Scattering in Group Vb semimetals: As, Sb, and Bi,” Phys. Stat. Sol. (b) 60(1), 299–308 (1973).
[Crossref]

Salamo, G. J.

J. A. Steele, R. A. Lewis, M. Henini, O. M. Lemine, D. Fan, Y. I. Mazur, V. G. Dorogan, P. C. Grant, S.-Q. Yu, and G. J. Salamo, “Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration,” Opt. Express 22(10), 11680–11689 (2014).
[Crossref] [PubMed]

P. C. Grant, D. Fan, A. Mosleh, S.-Q. Yu, V. G. Dorogan, M. E. Hawkridge, Y. I. Mazur, M. Benamara, G. J. Salamo, and S. R. Johnson, “Rapid thermal annealing effect on GaAsBi/GaAs single quantum wells grown by molecular beam epitaxy,” J. Vac. Sci. Technol. B 32(2), 02C119 (2014).
[Crossref]

C. Li, Z. Q. Zeng, D. S. Fan, Y. Hirono, J. Wu, T. A. Morgan, X. Hu, S. Q. Yu, Zh. M. Wang, and G. J. Salamo, “Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy,” Appl. Phys. Lett. 99(24), 243113 (2011).
[Crossref]

Sammes, N. M.

N. M. Sammes, G. A. Tompsett, H. Näfea, and F. Aldingera, “Bismuth based oxide electrolytes – structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

Schönheer, E.

J. B. Renucci, W Richter, M. Cardona, and E. Schönheer, “Resonance Raman Scattering in Group Vb semimetals: As, Sb, and Bi,” Phys. Stat. Sol. (b) 60(1), 299–308 (1973).
[Crossref]

Seong, M. J.

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x <3.6%,” Appl. Phys. Lett. 82(22), 3874 (2003).
[Crossref]

Shebanova, O. N.

O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation,” J. Raman Spectrosc. 34(11), 845–852 (2003).
[Crossref]

Shi, J.

X. Lin, F. Huang, W. Wang, and J. Shi, “Photocatalytic activity of Bi24Ga2O39 for degrading methylene blue,” Scr. Mater. 56(3), 189–192 (2007).
[Crossref]

Shulz, H.

J. Höhne, U. Wenning, H. Shulz, and S. Hüfner, “Temperature dependence of the k=0 optical phonons of Bi and Sb,” Z. Phys. B 27(4), 297–302 (1977).
[Crossref]

Simon, J.

A. J. Ptak, R. France, D. A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C.-S. Jiang, “Kinetically limited growth of GaAsBi by molecular-beam epitaxy,” J. Cryst. Growth 338(1), 107–110 (2012).
[Crossref]

Snyder, R. L.

J. W. Medermach and R. L. Snyder, “Powder diffraction patterns and structures of the bismuth oxides,” J. Am. Ceram. Soc. 61(11–12), 494–497 (1978).
[Crossref]

Steele, J. A.

Suenaga, Y.

M. Miyayama, S. Katsuta, Y. Suenaga, and H. Yanagida, “Electrical conduction in β-Bi2O3 doped with Sb2O3,” J. Am. Ceram. Soc. 66(6), 585–588 (1983).
[Crossref]

Tanabe, K.

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

Thomasset, M.

G. Ciatto, M. Thomasset, F. Glas, X. Lu, and T. Tiedje, “Formation and vanishing of short range ordering in GaAs1−xBix thin films,” Phys. Rev. B 82(20), 201304 (2010).
[Crossref]

Tiedje, T.

G. Ciatto, M. Thomasset, F. Glas, X. Lu, and T. Tiedje, “Formation and vanishing of short range ordering in GaAs1−xBix thin films,” Phys. Rev. B 82(20), 201304 (2010).
[Crossref]

X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Yong Zhang, “Composition dependence of photoluminescence of GaAs1−xBix alloys,” Appl. Phys. Lett. 95(4), 041903 (2009).
[Crossref]

X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and M. B. Whitwick, “Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1−xBix,” Appl. Phys. Lett. 92(19), 192110 (2008).
[Crossref]

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1−xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
[Crossref] [PubMed]

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x <3.6%,” Appl. Phys. Lett. 82(22), 3874 (2003).
[Crossref]

Tixier, S.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1−xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
[Crossref] [PubMed]

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x <3.6%,” Appl. Phys. Lett. 82(22), 3874 (2003).
[Crossref]

Tompsett, G. A.

N. M. Sammes, G. A. Tompsett, H. Näfea, and F. Aldingera, “Bismuth based oxide electrolytes – structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

Trentelman, K.

K. Trentelman, “A note on the characterization of bismuth black by Raman microspectroscopy,” J. Raman Spectrosc. 40(5), 585–589 (2009).
[Crossref]

Tropia, L.

J. C. Yang, D. Evan, and L. Tropia, “From nucleation to coalescence of Cu2O islands during in situ oxidation of Cu(001),” Appl. Phys. Lett. 81(2), 241–243 (2002).
[Crossref]

Vajtai, R.

L. Nánai, R. Vajtai, and T. F. George, “Laser-induced oxidation of metals: state of the art,” Thin Solid Films 298, 160–164 (1997).
[Crossref]

Vardar, G.

G. Vardar, S. W. Paleg, M. V. Warren, M. Kang, S. Jeon, and R. S. Goldman, “Mechanisms of droplet formation and Bi incorporation during molecular beam epitaxy of GaAsBi,” Appl. Phys. Lett. 102(4), 042106 (2013).
[Crossref]

Vila, M.

M. Vila, C. Diaz-Guerra, and J. Piqueras, “Laser irradiation-induced α to δ phase transformation in Bi2O3 ceramics and nanowires,” Appl. Phys. Lett. 101(7), 071905 (2012).
[Crossref]

Wachs, I. E.

F. D. Hardcastle and I. E. Wachs, “The molecular structure of bismuth oxide by Raman spectroscopy,” J. Solid State Chem. 97(2), 319–331 (1992).
[Crossref]

Wada, O.

J. Yoshida, T. Kita, O. Wada, and K. Oe, “Temperature dependence of GaAs1−xBix band gap studied by photoreflectance spectroscopy,” Jpn. J. Appl. Phys. 42, 371–374 (2003).
[Crossref]

Walukiewicz, W.

K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaAs1−xBix,” Appl. Phys. Lett. 91(5), 051909 (2007).
[Crossref]

Wang, J.

Wang, W.

W. Wang, M. Liu, Z. Yang, W. Mai, and J. Gong, “Synthesis and Raman optical properties of single-crystalline Bi nanowires,” Physica E 44(7–8), 1142–1145 (2012).
[Crossref]

X. Lin, F. Huang, W. Wang, and J. Shi, “Photocatalytic activity of Bi24Ga2O39 for degrading methylene blue,” Scr. Mater. 56(3), 189–192 (2007).
[Crossref]

Wang, Zh. M.

C. Li, Z. Q. Zeng, D. S. Fan, Y. Hirono, J. Wu, T. A. Morgan, X. Hu, S. Q. Yu, Zh. M. Wang, and G. J. Salamo, “Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy,” Appl. Phys. Lett. 99(24), 243113 (2011).
[Crossref]

Warren, J. L.

J. L. Yarnell, J. L. Warren, R. G. Wenzel, and S. H. Koenig, “Phonon dispersion curves in bismuth,” IBM J. Res. Dev. 8(3), 234 (1964).
[Crossref]

Warren, M. V.

G. Vardar, S. W. Paleg, M. V. Warren, M. Kang, S. Jeon, and R. S. Goldman, “Mechanisms of droplet formation and Bi incorporation during molecular beam epitaxy of GaAsBi,” Appl. Phys. Lett. 102(4), 042106 (2013).
[Crossref]

Wenning, U.

J. Höhne, U. Wenning, H. Shulz, and S. Hüfner, “Temperature dependence of the k=0 optical phonons of Bi and Sb,” Z. Phys. B 27(4), 297–302 (1977).
[Crossref]

Wenzel, R. G.

J. L. Yarnell, J. L. Warren, R. G. Wenzel, and S. H. Koenig, “Phonon dispersion curves in bismuth,” IBM J. Res. Dev. 8(3), 234 (1964).
[Crossref]

Werner, P.

H. J. Fan, P. Werner, and M. Zacharias, “Semiconductor nanowires: from self-organization to patterned growth,” Small 2(6), 700–717 (2006).
[Crossref] [PubMed]

White, G. K.

G. K. White, “Thermal expansion of trigonal elements at low temperatures: As, Sb and Bi,” J. Phys. C 5(19), 2731–2745 (1972).
[Crossref]

G. K. White, “Thermal expansion of bismuth at low temperatures,” J. Phys. C 2(3), 575–576 (1969).
[Crossref]

Whitwick, M. B.

X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and M. B. Whitwick, “Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1−xBix,” Appl. Phys. Lett. 92(19), 192110 (2008).
[Crossref]

Wu, J.

C. Li, Z. Q. Zeng, D. S. Fan, Y. Hirono, J. Wu, T. A. Morgan, X. Hu, S. Q. Yu, Zh. M. Wang, and G. J. Salamo, “Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy,” Appl. Phys. Lett. 99(24), 243113 (2011).
[Crossref]

Xu, J. B.

D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
[Crossref]

Xu, N. S.

D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
[Crossref]

Yanagida, H.

M. Miyayama, S. Katsuta, Y. Suenaga, and H. Yanagida, “Electrical conduction in β-Bi2O3 doped with Sb2O3,” J. Am. Ceram. Soc. 66(6), 585–588 (1983).
[Crossref]

Yang, J. C.

J. C. Yang, D. Evan, and L. Tropia, “From nucleation to coalescence of Cu2O islands during in situ oxidation of Cu(001),” Appl. Phys. Lett. 81(2), 241–243 (2002).
[Crossref]

Yang, Z.

W. Wang, M. Liu, Z. Yang, W. Mai, and J. Gong, “Synthesis and Raman optical properties of single-crystalline Bi nanowires,” Physica E 44(7–8), 1142–1145 (2012).
[Crossref]

Yarnell, J. L.

J. L. Yarnell, J. L. Warren, R. G. Wenzel, and S. H. Koenig, “Phonon dispersion curves in bismuth,” IBM J. Res. Dev. 8(3), 234 (1964).
[Crossref]

Yoshida, J.

J. Yoshida, T. Kita, O. Wada, and K. Oe, “Temperature dependence of GaAs1−xBix band gap studied by photoreflectance spectroscopy,” Jpn. J. Appl. Phys. 42, 371–374 (2003).
[Crossref]

Young, E. C.

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1−xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
[Crossref] [PubMed]

Yu, K. M.

K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaAs1−xBix,” Appl. Phys. Lett. 91(5), 051909 (2007).
[Crossref]

Yu, R. Q.

M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, and J. S. Lannin, “Phase transition in ultrathin Bi films,” Phys. Rev. Lett. 67(7), 875–878 (1991).
[Crossref] [PubMed]

Yu, S. Q.

C. Li, Z. Q. Zeng, D. S. Fan, Y. Hirono, J. Wu, T. A. Morgan, X. Hu, S. Q. Yu, Zh. M. Wang, and G. J. Salamo, “Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy,” Appl. Phys. Lett. 99(24), 243113 (2011).
[Crossref]

Yu, S.-Q.

P. C. Grant, D. Fan, A. Mosleh, S.-Q. Yu, V. G. Dorogan, M. E. Hawkridge, Y. I. Mazur, M. Benamara, G. J. Salamo, and S. R. Johnson, “Rapid thermal annealing effect on GaAsBi/GaAs single quantum wells grown by molecular beam epitaxy,” J. Vac. Sci. Technol. B 32(2), 02C119 (2014).
[Crossref]

J. A. Steele, R. A. Lewis, M. Henini, O. M. Lemine, D. Fan, Y. I. Mazur, V. G. Dorogan, P. C. Grant, S.-Q. Yu, and G. J. Salamo, “Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration,” Opt. Express 22(10), 11680–11689 (2014).
[Crossref] [PubMed]

Zacharias, M.

H. J. Fan, P. Werner, and M. Zacharias, “Semiconductor nanowires: from self-organization to patterned growth,” Small 2(6), 700–717 (2006).
[Crossref] [PubMed]

Zaied, I.

Z. Chine, H. Fitouri, I. Zaied, A. Rebey, and B. El Jani, “Photoreflectance and photoluminescence study of annealing effects on GaAsBi layers grown by metalorganic vapor phase epitaxy,” Semicond. Sci. Technol. 25(6), 065009 (2010).
[Crossref]

Zaoui, A.

M. Ferhat and A. Zaoui, “Structural and electronic properties of III–V bismuth compounds,” Phys. Rev. B 73(11), 115107 (2006).
[Crossref]

Zayed, M. K.

M. K. Zayed and H. E. Elsayed-Ali, “Condensation on (002) graphite of liquid bismuth far below its bulk melting point,” Phys. Rev. B. 72(20), 205426 (2005).
[Crossref]

Zeng, Z. Q.

C. Li, Z. Q. Zeng, D. S. Fan, Y. Hirono, J. Wu, T. A. Morgan, X. Hu, S. Q. Yu, Zh. M. Wang, and G. J. Salamo, “Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy,” Appl. Phys. Lett. 99(24), 243113 (2011).
[Crossref]

Zepeda, M. A.

M. A. Zepeda, M. Picquart, and E. Haro-Poniatowski, “Laser induced oxidation effects in bismuth thin films,” MRS Proceedings1477, (2012).

Zhang, T.

S. Mazzucato, P. Boonpeng, H. Carrère, D. Lagarde, A. Arnoult, G. Lacoste, T. Zhang, A. Balocchi, T. Amand, X. Marie, and C. Fontaine, “Reduction of defect density by rapid thermal annealing in GaAsBi studied by time-resolved photoluminescence,” Semicond. Sci. Technol. 28(2), 022001 (2013).
[Crossref]

Zhang, Yong

X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Yong Zhang, “Composition dependence of photoluminescence of GaAs1−xBix alloys,” Appl. Phys. Lett. 95(4), 041903 (2009).
[Crossref]

Zhao, Y.

Zhou, J.

D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
[Crossref]

Appl. Phys. A (1)

H. Fitouri, R. Boussaha, A. Rabey, and B. El Jani, “Oxidation of bismuth nanodroplets deposit on GaAs substrate,” Appl. Phys. A 112(3), 701–710 (2013).
[Crossref]

Appl. Phys. Lett. (9)

K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93(12), 121904 (2008).
[Crossref]

C. Li, Z. Q. Zeng, D. S. Fan, Y. Hirono, J. Wu, T. A. Morgan, X. Hu, S. Q. Yu, Zh. M. Wang, and G. J. Salamo, “Bismuth nano-droplets for group-V based molecular-beam droplet epitaxy,” Appl. Phys. Lett. 99(24), 243113 (2011).
[Crossref]

X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and M. B. Whitwick, “Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1−xBix,” Appl. Phys. Lett. 92(19), 192110 (2008).
[Crossref]

G. Vardar, S. W. Paleg, M. V. Warren, M. Kang, S. Jeon, and R. S. Goldman, “Mechanisms of droplet formation and Bi incorporation during molecular beam epitaxy of GaAsBi,” Appl. Phys. Lett. 102(4), 042106 (2013).
[Crossref]

K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, “Valence band anticrossing in GaAs1−xBix,” Appl. Phys. Lett. 91(5), 051909 (2007).
[Crossref]

S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, 0<x <3.6%,” Appl. Phys. Lett. 82(22), 3874 (2003).
[Crossref]

M. Vila, C. Diaz-Guerra, and J. Piqueras, “Laser irradiation-induced α to δ phase transformation in Bi2O3 ceramics and nanowires,” Appl. Phys. Lett. 101(7), 071905 (2012).
[Crossref]

X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Yong Zhang, “Composition dependence of photoluminescence of GaAs1−xBix alloys,” Appl. Phys. Lett. 95(4), 041903 (2009).
[Crossref]

J. C. Yang, D. Evan, and L. Tropia, “From nucleation to coalescence of Cu2O islands during in situ oxidation of Cu(001),” Appl. Phys. Lett. 81(2), 241–243 (2002).
[Crossref]

IBM J. Res. Dev. (1)

J. L. Yarnell, J. L. Warren, R. G. Wenzel, and S. H. Koenig, “Phonon dispersion curves in bismuth,” IBM J. Res. Dev. 8(3), 234 (1964).
[Crossref]

Izv. Akad. Nauk. SSSR Ser. Mat. (1)

A. N. Kolmogorov, “On the statistical theory of crystallization of metals,” Izv. Akad. Nauk. SSSR Ser. Mat. 1, 355–359 (1937).

J. Am. Ceram. Soc. (2)

M. Miyayama, S. Katsuta, Y. Suenaga, and H. Yanagida, “Electrical conduction in β-Bi2O3 doped with Sb2O3,” J. Am. Ceram. Soc. 66(6), 585–588 (1983).
[Crossref]

J. W. Medermach and R. L. Snyder, “Powder diffraction patterns and structures of the bismuth oxides,” J. Am. Ceram. Soc. 61(11–12), 494–497 (1978).
[Crossref]

J. App. Phys. (1)

I. O. Herman, “Peak temperatures from Raman Stokes/anti-Stokes ratios during laser heating by a Gaussian beam,” J. App. Phys. 109(1), 016103 (2011).
[Crossref]

J. Appl. Phys. (1)

J. A. Steele, R. A. Lewis, M. Henini, O. M. Lemine, and A. Alkaoud, “Raman scattering studies of strain effects in (100) and (311)B GaAs1−xBix epitaxial layers,” J. Appl. Phys. 114(19), 193516 (2013).
[Crossref]

J. Chem. Phys. (1)

M. Avrami, “Kinetics of phase change. I General theory,” J. Chem. Phys. 7(12), 1103–1112 (1939).
[Crossref]

J. Cryst. Growth (1)

A. J. Ptak, R. France, D. A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, and C.-S. Jiang, “Kinetically limited growth of GaAsBi by molecular-beam epitaxy,” J. Cryst. Growth 338(1), 107–110 (2012).
[Crossref]

J. Eur. Ceram. Soc. (1)

N. M. Sammes, G. A. Tompsett, H. Näfea, and F. Aldingera, “Bismuth based oxide electrolytes – structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

J. Phys. C (2)

G. K. White, “Thermal expansion of bismuth at low temperatures,” J. Phys. C 2(3), 575–576 (1969).
[Crossref]

G. K. White, “Thermal expansion of trigonal elements at low temperatures: As, Sb and Bi,” J. Phys. C 5(19), 2731–2745 (1972).
[Crossref]

J. Phys. D (1)

L. Kumari, J.-H. Lin, and Y.-R. Ma, “Laser oxidation and wide-band photoluminescence of thermal evaporated bismuth thin films,” J. Phys. D 41(2), 025405 (2008).
[Crossref]

J. Power Sources (1)

J. W. Fergus, “Electrolytes for solid oxide fuel cells,” J. Power Sources 162(1), 30–40 (2006).
[Crossref]

J. Raman Spectrosc. (3)

D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
[Crossref]

K. Trentelman, “A note on the characterization of bismuth black by Raman microspectroscopy,” J. Raman Spectrosc. 40(5), 585–589 (2009).
[Crossref]

O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation,” J. Raman Spectrosc. 34(11), 845–852 (2003).
[Crossref]

J. Solid State Chem. (2)

F. D. Hardcastle and I. E. Wachs, “The molecular structure of bismuth oxide by Raman spectroscopy,” J. Solid State Chem. 97(2), 319–331 (1992).
[Crossref]

H. A. Harwig and A. G. Gerards, “Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide,” J. Solid State Chem. 26(3), 265–274 (1978).
[Crossref]

J. Vac. Sci. Technol. B (1)

P. C. Grant, D. Fan, A. Mosleh, S.-Q. Yu, V. G. Dorogan, M. E. Hawkridge, Y. I. Mazur, M. Benamara, G. J. Salamo, and S. R. Johnson, “Rapid thermal annealing effect on GaAsBi/GaAs single quantum wells grown by molecular beam epitaxy,” J. Vac. Sci. Technol. B 32(2), 02C119 (2014).
[Crossref]

Jpn. J. Appl. Phys. (2)

J. Yoshida, T. Kita, O. Wada, and K. Oe, “Temperature dependence of GaAs1−xBix band gap studied by photoreflectance spectroscopy,” Jpn. J. Appl. Phys. 42, 371–374 (2003).
[Crossref]

K. Oe, “Characteristics of semiconductor alloy GaAs1−xBix,” Jpn. J. Appl. Phys. 41, 2801–2806 (2002).
[Crossref]

Opt. Express (2)

Opt. Mater. (1)

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (4)

M. Ferhat and A. Zaoui, “Structural and electronic properties of III–V bismuth compounds,” Phys. Rev. B 73(11), 115107 (2006).
[Crossref]

J. S. Lannin, J. M. Calleja, and M. Cardona, “Second-order Raman scattering in the group-Vb semimetals: Bi, Sb, and As,” Phys. Rev. B 12(2), 585–593 (1975).
[Crossref]

G. Ciatto, M. Thomasset, F. Glas, X. Lu, and T. Tiedje, “Formation and vanishing of short range ordering in GaAs1−xBix thin films,” Phys. Rev. B 82(20), 201304 (2010).
[Crossref]

M. F. DeCamp, D. A. Reis, P. H. Bucksbaum, and R. Merlin, “Dynamics and coherent control of high-amplitude optical phonons in bismuth,” Phys. Rev. B 64(9), 092301 (2001).
[Crossref]

Phys. Rev. B. (1)

M. K. Zayed and H. E. Elsayed-Ali, “Condensation on (002) graphite of liquid bismuth far below its bulk melting point,” Phys. Rev. B. 72(20), 205426 (2005).
[Crossref]

Phys. Rev. Lett. (2)

M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, and J. S. Lannin, “Phase transition in ultrathin Bi films,” Phys. Rev. Lett. 67(7), 875–878 (1991).
[Crossref] [PubMed]

B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant spin-orbit bowing in GaAs1−xBix,” Phys. Rev. Lett. 97(6), 067205 (2006).
[Crossref] [PubMed]

Phys. Stat. Sol. (b) (1)

J. B. Renucci, W Richter, M. Cardona, and E. Schönheer, “Resonance Raman Scattering in Group Vb semimetals: As, Sb, and Bi,” Phys. Stat. Sol. (b) 60(1), 299–308 (1973).
[Crossref]

Physica E (1)

W. Wang, M. Liu, Z. Yang, W. Mai, and J. Gong, “Synthesis and Raman optical properties of single-crystalline Bi nanowires,” Physica E 44(7–8), 1142–1145 (2012).
[Crossref]

Rev. Mod. Phys. (1)

B. G. Childs, “The thermal expansion of anisotropic metals,” Rev. Mod. Phys. 25(3), 665–670 (1953).
[Crossref]

Scr. Mater. (1)

X. Lin, F. Huang, W. Wang, and J. Shi, “Photocatalytic activity of Bi24Ga2O39 for degrading methylene blue,” Scr. Mater. 56(3), 189–192 (2007).
[Crossref]

Semicond. Sci. Technol. (3)

I. Moussa, H. Fitouri, Z. Chine, A. Rebey, and B. El Jani, “Effect of thermal annealing on structural and optical properties of the GaAs0.963Bi0.037 alloy,” Semicond. Sci. Technol. 23(12), 125034 (2008).
[Crossref]

Z. Chine, H. Fitouri, I. Zaied, A. Rebey, and B. El Jani, “Photoreflectance and photoluminescence study of annealing effects on GaAsBi layers grown by metalorganic vapor phase epitaxy,” Semicond. Sci. Technol. 25(6), 065009 (2010).
[Crossref]

S. Mazzucato, P. Boonpeng, H. Carrère, D. Lagarde, A. Arnoult, G. Lacoste, T. Zhang, A. Balocchi, T. Amand, X. Marie, and C. Fontaine, “Reduction of defect density by rapid thermal annealing in GaAsBi studied by time-resolved photoluminescence,” Semicond. Sci. Technol. 28(2), 022001 (2013).
[Crossref]

Small (1)

H. J. Fan, P. Werner, and M. Zacharias, “Semiconductor nanowires: from self-organization to patterned growth,” Small 2(6), 700–717 (2006).
[Crossref] [PubMed]

Superlattice. Microst. (1)

O. M. Lemine, A. Alkaoud, H. V. A. Galeti, V. O. Gordo, Y. G. Gobato, H. Bouzid, A. Hajry, and M. Henini, “Thermal annealing effects on the optical and structural properties of (100) GaAs1−xBix layers grown by Molecular Beam Epitaxy,” Superlattice. Microst. 65, 48–55 (2014).
[Crossref]

Surf. Sci. (1)

L. Leontie, M. Caraman, M. Alexe, and C. Harnagea, “Structural and optical characteristics of bismuth oxide thin films,” Surf. Sci. 507–510, 480–485 (2002).
[Crossref]

Surf. Sci. Nanotech. (1)

R. A. Ismail, “Characteristics of bismuth trioxide film prepared by rapid thermal oxidation,” Surf. Sci. Nanotech. 4, 563–565 (2006).
[Crossref]

Thin Solid Films (1)

L. Nánai, R. Vajtai, and T. F. George, “Laser-induced oxidation of metals: state of the art,” Thin Solid Films 298, 160–164 (1997).
[Crossref]

Trans. Soc. Min. Eng. AIME (1)

W. A. Johnson and R. F. Mehl, “Reaction kinetics in processes of nucleation and growth,” Trans. Soc. Min. Eng. AIME 135, 416–442 (1939).

Z. Anorg. Allg. Chem. (1)

H. A. Harwig, “On the structure of bismuthsesquioxide: the α, β, γ, and δ-phase,” Z. Anorg. Allg. Chem. 444(1), 151–166 (1978).
[Crossref]

Z. Phys. B (1)

J. Höhne, U. Wenning, H. Shulz, and S. Hüfner, “Temperature dependence of the k=0 optical phonons of Bi and Sb,” Z. Phys. B 27(4), 297–302 (1977).
[Crossref]

Other (2)

M. A. Zepeda, M. Picquart, and E. Haro-Poniatowski, “Laser induced oxidation effects in bismuth thin films,” MRS Proceedings1477, (2012).

P. Kofstad, High Temperature Oxidation of Metals (Wiley, 1966).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) SEM image of GaAsBi sample surface showing droplet formation, with (b) the corresponding EDS image. The insets show an enlargement of a typical surface droplet. The EDS data of the droplet reveals a pure bimsuth structure which is free from any dual (Ga/Bi) metallic segregation [2].
Fig. 2
Fig. 2 (a) Optical micrograph of GaAs0.952Bi0.048 sample surface and relative laser spot size. Micro-Raman spectra obtained using a relatively low [22] laser power density (IR < 5×102 W/cm2) from (b) a droplet-free GaAsBi surface exhibiting characteristic two-mode and free-carrier (hole) plasmon behavior and (c) the Bi droplet indicated in the optical image above. Here * denotes substrate features emerging from scattered probe light. Left inset: spectra expanded and resolved over the second-order bismuth harmonics. Right inset: trigonal two-atom unit cell of bismuth with arrows showing the direction of atomic displacement for non-degenerate A1g and doubly degenerate Eg phonon modes.
Fig. 3
Fig. 3 Raman spectra of droplet studied in Fig. 2(c) for (a) increasing laser power, and (b) decreasing laser power. Here * denotes GaAsBi substrate features due to scattered probe light and the insets expand these data over the first-order bismuth optical phonon range. For decreasing power, time was spent between measurements to allow for cooling. The three solid vertical lines at 125, 315, and 460 cm−1 represent the three β-Bi2O3 vibrational signatures. Spectra have been scaled and shifted vertically for clarity.
Fig. 4
Fig. 4 Mirco-Raman spectra of an isolated ∼ 1.5 μm bismuth surface droplet acquired in situ at different times of an oxidation reaction using a laser power density of 5.73×104 W/cm2. The spectra have been offset and the lower frequency portion rescaled for clarity. Here * denotes GaAsBi substrate features due to scattered probe light. The vertical lines act as an aid for the eye in identifying the three Raman modes of β-Bi2O3 labeled Aβ, Bβ, and Cβ, which are assigned to 125, 315, and 460 cm−1 vibrations, respectively.
Fig. 5
Fig. 5 Temporal results from fitting all spectra measured during the laser-induced oxidation reaction shown in Fig. 4. Values of Raman peak frequency shifts are shown for (a) bismuth modes, and (b) β-Bi2O3 modes. Measured Raman peak intensities are shown for (c) bismuth modes, and (d) β-Bi2O3 modes. Data is broken into three time intervals which are indicated across the top time axis. The broken vertical line at ∼200 s separates time intervals t1 and t2 and indicates observation of β-Bi2O3 Raman modes, toxi.
Fig. 6
Fig. 6 (a) Local bismuth temperature determined using Eq. (6) for both Eg and A1g wavenumber shifts. The broken vertical line represents time of bismuth oxidation, toxi, while the dashed horizontal line indicates the bismuth melting temperature. Inset presents A1g peak intensity as a function of temperature with a linear fit made to data acquired prior to thermal runaway. (b) Ratio I A ( 2 ) / I A ( 1 ) of second- to first-order scattering intensities. Inset shows I A ( 2 ) / I A ( 1 ) as a function of temperature for t <toxi with a linear fit acting as an aid for the eye. The temperature basis used in both insets was calculated using Eq. (6) and A1g phonon shifts.
Fig. 7
Fig. 7 Degree of Bi droplet oxidation obtained from normalized Bβ Raman intensity vs time t. The inset shows the Avrami plot ln[−ln(1−X(t))] vs ln(t) of the data plotted with corresponding Avrami exponent as derived from the gradient value. Two separate regimes of the Avrami plot are fitted using n1=4 and n2=1 (dashed horizontal lines).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

3 2 O 2 ( g ) + 2 Bi ( l ) β Bi 2 O 3 ( s ) α Bi 2 O 3 ( s ) .
ω 2 = ε b / ( M Bi d 2 ) ω = ω ( T 0 ) + Δ ω ( Δ d , Δ ε b ) ,
V m ( T ) V m 0 × exp ( 3 T 0 T α ( T ) T ) ,
γ therm E , A = [ ln ω E , A ] [ ln V m ] .
ω E , A ( T ) = ω E , A ( T 0 ) × exp ( 3 γ therm E , A T 0 T α ( T ) T ) .
ω E , A ( T ) ω E , A ( T 0 ) + Δ ω E , A × Δ T .
R S = A S 1 e ω / k B T ,
ω Bi O = L × exp ( N d ) ,
X ( t ) = 1 exp [ k ( t t oxi ) n ] .

Metrics