Abstract

The transfer function for optical wavefront aberrations in single-mode fiber based optical coherence tomography is determined. The loss in measured OCT signal due to optical wavefront aberrations is quantified using Fresnel propagation and the calculation of overlap integrals. A distinction is made between a model for a mirror and a scattering medium model. The model predictions are validated with measurements on a mirror and a scattering medium obtained with an adaptive optics optical coherence tomography setup. Furthermore, a one-step defocus correction, based on a single A-scan measurement, is derived from the model and verified. Finally, the pseudo-convex structure of the optical coherence tomography transfer function is validated with the convergence of a hill climbing algorithm. The implications of this model for wavefront sensorless aberration correction are discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography

Kevin S. K. Wong, Yifan Jian, Michelle Cua, Stefano Bonora, Robert J. Zawadzki, and Marinko V. Sarunic
Biomed. Opt. Express 6(2) 580-590 (2015)

Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice

Yifan Jian, Jing Xu, Martin A. Gradowski, Stefano Bonora, Robert J. Zawadzki, and Marinko V. Sarunic
Biomed. Opt. Express 5(2) 547-559 (2014)

Adaptive-optics ultrahigh-resolution optical coherence tomography

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal
Opt. Lett. 29(18) 2142-2144 (2004)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref] [PubMed]
  2. A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43– 48 (1995).
    [Crossref]
  3. B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004).
    [Crossref] [PubMed]
  4. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
    [Crossref] [PubMed]
  5. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [Crossref] [PubMed]
  6. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
    [Crossref]
  7. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005).
    [Crossref] [PubMed]
  8. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. express 13(21), 8532–8546 (2005).
    [Crossref] [PubMed]
  9. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14, 4380–4394 (2006).
    [Crossref] [PubMed]
  10. E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision research 45, 3432–3444 (2005).
    [Crossref] [PubMed]
  11. M. Pircher, R. Zawadzki, J. Evans, J. Werner, and C. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett. 33, 22–24 (2008).
    [Crossref]
  12. S. Bonora and R. J. Zawadzki, “Wavefront sensorless modal deformable mirror correction in adaptive optics: optical coherence tomography,” Opt. Lett. 38, 4801–4804 (2013).
    [Crossref] [PubMed]
  13. Y. Jian, J. Xu, M. A. Gradowski, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice,” Biomed. Opt. Express 5, 547–559 (2014).
    [Crossref] [PubMed]
  14. M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” in Proceedings of Mathematical Methods and Applied Computing, (WSEAS, 2009), pp. 669–674.
  15. J. Antonello, M. Verhaegen, R. Fraanje, T. van Werkhoven, H. C. Gerritsen, and C. U. Keller, “Semidefinite programming for model-based sensorless adaptive optics,” J. Opt. Soc. Am. A 29, 2428–2438 (2012).
    [Crossref]
  16. M. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express 14, 1339–1352 (2006).
    [Crossref] [PubMed]
  17. S. G. Adie, B. W. Graf, A. Ahmad, P. S Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” PNAS 109(19), 7175–7180 (2012).
    [Crossref] [PubMed]
  18. J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Topics Quantum Electron. 2, 1017–1028 (1996).
    [Crossref]
  19. J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705 (1994).
    [Crossref] [PubMed]
  20. J. A. Izatt, E. A. Swanson, J. G. Fujimoto, M. R. Hee, and G. M. Owen, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
    [Crossref] [PubMed]
  21. T. G. Van Leeuwen, D. Faber, and M. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Topics Quantum Electron. 9, 227–233 (2003).
    [Crossref]
  22. G. Hausler and M. W. Lindner, ““Coherence radar” and “spectral radar” new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
    [Crossref]
  23. J. Y. Wang and D. E. Silva, “Wave-front interpretation with Zernike polynomials,” Appl. Opt. 19, 1510–1518 (1980).
    [Crossref] [PubMed]
  24. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2008).
  25. M. Gu, C. Sheppard, and X. Gan, “Image formation in a fiber-optical confocal scanning microscope,” J. Opt. Soc. Am. A 8, 1755–1761 (1991).
    [Crossref]
  26. D. G. Voelz, Computational Fourier Optics: a MATLAB Tutorial (SPIE, 2011).
  27. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. (18)5, S652–S660 (2002).
  28. G.-M. Dai, “Modified Hartmann–Shack wavefront sensing and iterative wavefront reconstruction,” Proc. SPIE 2201, 562–573 (1994).
    [Crossref]
  29. H. Verstraete, M. Verhaegen, and J. Kalkman, “Modeling the effect of wave-front aberrations in fiber-based scanning optical microscopy,” in Imaging and Applied Optics, (Optical Society of America, 2013), paper JTu4A.13.
    [Crossref]
  30. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20, 609–620 (2003).
    [Crossref]
  31. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34, 2495–2497 (2009).
    [Crossref] [PubMed]
  32. S. A. Rahman and M. J. Booth, “Adaptive optics for high-resolution microscopy: wave front sensing using back scattered light,” in “SPIE MOEMS-MEMS,” (International Society for Optics and Photonics, 2012), 82530I.
  33. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
    [Crossref]

2014 (1)

2013 (1)

2012 (2)

J. Antonello, M. Verhaegen, R. Fraanje, T. van Werkhoven, H. C. Gerritsen, and C. U. Keller, “Semidefinite programming for model-based sensorless adaptive optics,” J. Opt. Soc. Am. A 29, 2428–2438 (2012).
[Crossref]

S. G. Adie, B. W. Graf, A. Ahmad, P. S Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” PNAS 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2006 (2)

2005 (3)

2004 (2)

2003 (3)

J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20, 609–620 (2003).
[Crossref]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref] [PubMed]

T. G. Van Leeuwen, D. Faber, and M. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Topics Quantum Electron. 9, 227–233 (2003).
[Crossref]

2002 (2)

1998 (1)

G. Hausler and M. W. Lindner, ““Coherence radar” and “spectral radar” new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[Crossref]

1996 (1)

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Topics Quantum Electron. 2, 1017–1028 (1996).
[Crossref]

1995 (1)

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43– 48 (1995).
[Crossref]

1994 (3)

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705 (1994).
[Crossref] [PubMed]

G.-M. Dai, “Modified Hartmann–Shack wavefront sensing and iterative wavefront reconstruction,” Proc. SPIE 2201, 562–573 (1994).
[Crossref]

J. A. Izatt, E. A. Swanson, J. G. Fujimoto, M. R. Hee, and G. M. Owen, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[Crossref] [PubMed]

1991 (2)

M. Gu, C. Sheppard, and X. Gan, “Image formation in a fiber-optical confocal scanning microscope,” J. Opt. Soc. Am. A 8, 1755–1761 (1991).
[Crossref]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

1980 (1)

Aalders, M.

T. G. Van Leeuwen, D. Faber, and M. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Topics Quantum Electron. 9, 227–233 (2003).
[Crossref]

Adie, S. G.

S. G. Adie, B. W. Graf, A. Ahmad, P. S Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” PNAS 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

Ahmad, A.

S. G. Adie, B. W. Graf, A. Ahmad, P. S Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” PNAS 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

Ahnelt, P.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision research 45, 3432–3444 (2005).
[Crossref] [PubMed]

Antonello, J.

Apolonski, A.

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. (18)5, S652–S660 (2002).

Artal, P.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision research 45, 3432–3444 (2005).
[Crossref] [PubMed]

Bizheva, K.

Bonora, S.

Booth, M.

Booth, M. J.

D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34, 2495–2497 (2009).
[Crossref] [PubMed]

S. A. Rahman and M. J. Booth, “Adaptive optics for high-resolution microscopy: wave front sensing using back scattered light,” in “SPIE MOEMS-MEMS,” (International Society for Optics and Photonics, 2012), 82530I.

Boppart, S. A.

S. G. Adie, B. W. Graf, A. Ahmad, P. S Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” PNAS 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

Botcherby, E. J.

Bouma, B.

Bower, B.

Bradley, A.

Carney, P. S

S. G. Adie, B. W. Graf, A. Ahmad, P. S Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” PNAS 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

Cense, B.

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Chen, T.

Cheng, X.

Choi, S.

Dai, G.-M.

G.-M. Dai, “Modified Hartmann–Shack wavefront sensing and iterative wavefront reconstruction,” Proc. SPIE 2201, 562–573 (1994).
[Crossref]

de Boer, J.

Débarre, D.

Dobre, G.

M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” in Proceedings of Mathematical Methods and Applied Computing, (WSEAS, 2009), pp. 669–674.

Drexler, W.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision research 45, 3432–3444 (2005).
[Crossref] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]

Duker, J.

Eckhaus, M.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705 (1994).
[Crossref] [PubMed]

El-Zaiat, S.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43– 48 (1995).
[Crossref]

Evans, J.

Faber, D.

T. G. Van Leeuwen, D. Faber, and M. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Topics Quantum Electron. 9, 227–233 (2003).
[Crossref]

Fercher, A.

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref] [PubMed]

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43– 48 (1995).
[Crossref]

Fercher, A. F.

Fernández, E. J.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision research 45, 3432–3444 (2005).
[Crossref] [PubMed]

Fienup, J. R.

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Fraanje, R.

Fujimoto, J.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[Crossref] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

Gan, X.

Gao, W.

Gerritsen, H. C.

Goodman, J.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2008).

Gradowski, M. A.

Graf, B. W.

S. G. Adie, B. W. Graf, A. Ahmad, P. S Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” PNAS 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Gu, M.

Hausler, G.

G. Hausler and M. W. Lindner, ““Coherence radar” and “spectral radar” new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[Crossref]

Hee, M.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hee, M. R.

Hermann, B.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision research 45, 3432–3444 (2005).
[Crossref] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]

Hitzenberger, C.

Hojjatoleslami, S.

M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” in Proceedings of Mathematical Methods and Applied Computing, (WSEAS, 2009), pp. 669–674.

Hong, X.

Huang, D.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Izatt, J.

Izatt, J. A.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Topics Quantum Electron. 2, 1017–1028 (1996).
[Crossref]

J. A. Izatt, E. A. Swanson, J. G. Fujimoto, M. R. Hee, and G. M. Owen, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[Crossref] [PubMed]

Jian, Y.

Jones, S.

Jonnal, R.

Jonnal, R. S.

Kalkman, J.

H. Verstraete, M. Verhaegen, and J. Kalkman, “Modeling the effect of wave-front aberrations in fiber-based scanning optical microscopy,” in Imaging and Applied Optics, (Optical Society of America, 2013), paper JTu4A.13.
[Crossref]

Kamp, G.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43– 48 (1995).
[Crossref]

Keller, C. U.

Knight, J. C.

Knuttel, A.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705 (1994).
[Crossref] [PubMed]

Ko, T.

Kobayashi, K.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Topics Quantum Electron. 2, 1017–1028 (1996).
[Crossref]

Kowalczyk, A.

Kulkarni, M. D.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Topics Quantum Electron. 2, 1017–1028 (1996).
[Crossref]

Laut, S.

Leitgeb, R.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision research 45, 3432–3444 (2005).
[Crossref] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref] [PubMed]

Lin, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Lindner, M. W.

G. Hausler and M. W. Lindner, ““Coherence radar” and “spectral radar” new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[Crossref]

Meadway, A.

M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” in Proceedings of Mathematical Methods and Applied Computing, (WSEAS, 2009), pp. 669–674.

Miller, D.

Miller, D. T.

Miller, J. J.

Nasiri-Avanaki, M.-R.

M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” in Proceedings of Mathematical Methods and Applied Computing, (WSEAS, 2009), pp. 669–674.

Nassif, N.

Olivier, S.

Owen, G. M.

Park, B.

Paun, H.

M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” in Proceedings of Mathematical Methods and Applied Computing, (WSEAS, 2009), pp. 669–674.

Pierce, M.

Pircher, M.

Podoleanu, A.

M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” in Proceedings of Mathematical Methods and Applied Computing, (WSEAS, 2009), pp. 669–674.

Povazay, B.

Považay, B.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision research 45, 3432–3444 (2005).
[Crossref] [PubMed]

Prieto, P. M.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision research 45, 3432–3444 (2005).
[Crossref] [PubMed]

Puliafito, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Rahman, S. A.

S. A. Rahman and M. J. Booth, “Adaptive optics for high-resolution microscopy: wave front sensing using back scattered light,” in “SPIE MOEMS-MEMS,” (International Society for Optics and Photonics, 2012), 82530I.

Rha, J.

Russell, P. S. J.

Sarunic, M. V.

Sattmann, H.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision research 45, 3432–3444 (2005).
[Crossref] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]

Scherzer, E.

Schmitt, J. M.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705 (1994).
[Crossref] [PubMed]

Schuman, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. (18)5, S652–S660 (2002).

Sheppard, C.

Silva, D. E.

Sivak, M. V.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Topics Quantum Electron. 2, 1017–1028 (1996).
[Crossref]

Srinivas, S.

Srinivasan, V.

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

Tearney, G.

Thibos, L. N.

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[Crossref]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. (18)5, S652–S660 (2002).

Tuohy, S.

M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” in Proceedings of Mathematical Methods and Applied Computing, (WSEAS, 2009), pp. 669–674.

Unterhuber, A.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision research 45, 3432–3444 (2005).
[Crossref] [PubMed]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[Crossref]

Van Leeuwen, T. G.

T. G. Van Leeuwen, D. Faber, and M. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Topics Quantum Electron. 9, 227–233 (2003).
[Crossref]

van Werkhoven, T.

Verhaegen, M.

J. Antonello, M. Verhaegen, R. Fraanje, T. van Werkhoven, H. C. Gerritsen, and C. U. Keller, “Semidefinite programming for model-based sensorless adaptive optics,” J. Opt. Soc. Am. A 29, 2428–2438 (2012).
[Crossref]

H. Verstraete, M. Verhaegen, and J. Kalkman, “Modeling the effect of wave-front aberrations in fiber-based scanning optical microscopy,” in Imaging and Applied Optics, (Optical Society of America, 2013), paper JTu4A.13.
[Crossref]

Verstraete, H.

H. Verstraete, M. Verhaegen, and J. Kalkman, “Modeling the effect of wave-front aberrations in fiber-based scanning optical microscopy,” in Imaging and Applied Optics, (Optical Society of America, 2013), paper JTu4A.13.
[Crossref]

Vetterlein, M.

Voelz, D. G.

D. G. Voelz, Computational Fourier Optics: a MATLAB Tutorial (SPIE, 2011).

Wadsworth, W. J.

Wang, H.-W.

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Topics Quantum Electron. 2, 1017–1028 (1996).
[Crossref]

Wang, J. Y.

Watanabe, T.

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. (18)5, S652–S660 (2002).

Werner, J.

Werner, J. S.

Wilson, T.

Wojtkowski, M.

Xu, J.

Yadlowsky, M.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705 (1994).
[Crossref] [PubMed]

Yun, S.-H.

Zawadzki, R.

Zawadzki, R. J.

Zhang, Y.

Zhao, M.

Appl. Opt. (1)

Biomed. Opt. Express (1)

IEEE J. Sel. Topics Quantum Electron. (2)

J. A. Izatt, M. D. Kulkarni, H.-W. Wang, K. Kobayashi, and M. V. Sivak, “Optical coherence tomography and microscopy in gastrointestinal tissues,” IEEE J. Sel. Topics Quantum Electron. 2, 1017–1028 (1996).
[Crossref]

T. G. Van Leeuwen, D. Faber, and M. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Topics Quantum Electron. 9, 227–233 (2003).
[Crossref]

J. Biomed. Opt. (1)

G. Hausler and M. W. Lindner, ““Coherence radar” and “spectral radar” new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[Crossref]

J. Opt. Soc. Am. A (4)

Opt. Commun. (1)

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43– 48 (1995).
[Crossref]

Opt. Express (6)

B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004).
[Crossref] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004).
[Crossref] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref] [PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005).
[Crossref] [PubMed]

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. express 13(21), 8532–8546 (2005).
[Crossref] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14, 4380–4394 (2006).
[Crossref] [PubMed]

M. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express 14, 1339–1352 (2006).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Med. Biol. (1)

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705 (1994).
[Crossref] [PubMed]

PNAS (1)

S. G. Adie, B. W. Graf, A. Ahmad, P. S Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” PNAS 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

G.-M. Dai, “Modified Hartmann–Shack wavefront sensing and iterative wavefront reconstruction,” Proc. SPIE 2201, 562–573 (1994).
[Crossref]

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Vision research (1)

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision research 45, 3432–3444 (2005).
[Crossref] [PubMed]

Other (6)

M.-R. Nasiri-Avanaki, S. Hojjatoleslami, H. Paun, S. Tuohy, A. Meadway, G. Dobre, and A. Podoleanu, “Optical coherence tomography system optimization using simulated annealing algorithm,” in Proceedings of Mathematical Methods and Applied Computing, (WSEAS, 2009), pp. 669–674.

D. G. Voelz, Computational Fourier Optics: a MATLAB Tutorial (SPIE, 2011).

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. (18)5, S652–S660 (2002).

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2008).

H. Verstraete, M. Verhaegen, and J. Kalkman, “Modeling the effect of wave-front aberrations in fiber-based scanning optical microscopy,” in Imaging and Applied Optics, (Optical Society of America, 2013), paper JTu4A.13.
[Crossref]

S. A. Rahman and M. J. Booth, “Adaptive optics for high-resolution microscopy: wave front sensing using back scattered light,” in “SPIE MOEMS-MEMS,” (International Society for Optics and Photonics, 2012), 82530I.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Geometry model for SMF-OCT. A collimator lens (CL) collimates the beam to a planar wavefront with Gaussian distribution (G). The sample lens (L) with aberrations (A) focuses the light on the sample at distance f + d. Light is reflected/scattered by the sample, shown here in transmission. The overlap integral (O) with the Gaussian mode is calculated to quantify the coupling efficiency into the SMF.
Fig. 2
Fig. 2 Schematic overview of the AO-OCT Setup. SMF fibers are indicated by a single line. The free space light is indicated by three lines. SLD = super luminescent diode. SM = spectrometer. PC = polarization controllers. CL = fiber collimator lens. L&M are the lens and mirror for the reference arm. SH = Shack-Hartmann wavefront sensor. BS = beam-splitter. PM1 and PM2 are parabolic mirrors. DM = deformable mirror.
Fig. 3
Fig. 3 OCT signal measurements on a mirror versus applied aberration for index 1–9. Measurements (red markers) and numerical results (dashed black line) of the transfer function h 1 ( 0 , α ) for the OCT signal are shown. The standard deviation of the measurements is smaller than the marker size.
Fig. 4
Fig. 4 Shack-Hartmann wavefront measurements on a mirror versus applied wavefront aberration, for index 1–9. Measured wavefront aberrations are index 1–20. The measured aberration that is identical to the applied aberration is in red, all other aberrations are indicated in black.
Fig. 5
Fig. 5 OCT signal measurements on a scattering medium versus applied aberration for index 3–9. Measurements (red markers) and numerical results (dashed black line) of the transfer function h 2 ( 0 , α ) for the OCT signal are shown.
Fig. 6
Fig. 6 Shack-Hartmann wavefront measurements on a scattering medium versus applied wavefront aberration, for index 3–9. Measured wavefront aberrations are index 1–20. The measured aberration that is identical to the applied aberration is in red, all other aberrations are indicated in black.
Fig. 7
Fig. 7 OCT B-scans of the tissue phantom. (a) Out of focus. (b) After single shot focus correction. Blue lines indicate the location of the focal plane. (c) Results of the one shot defocus correction. Zernike coefficients are determined from Eq. (7) (solid black line) and from measurements (red circles).
Fig. 8
Fig. 8 (a) Merit function (value of OCT signal) during a single step in the sequential optimization process. Only the first search iteration of every Zernike mode is shown for index 3–9. Further iterations resulted in an increased value of the merit function. (b) Optimized merit function after complete optimization process for 100 random aberrations with RMS wavefront error <0.4 μm. For all 100 aberrations the maximum OCT signal is found.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

G ( x , y ) = C exp ( 1 w 2 ( x 2 + y 2 ) ) .
A ( x , y , α ) = exp ( i k W ( x , y ) ) .
L ( x , y ) = exp ( i k f ) exp ( i k 2 f ( x 2 + y 2 ) ) circ ( x 2 + y 2 r pupil ) .
U z ( x 2 , y 2 ) = F ( U ( x 1 , y 1 ) , z ) = exp ( i k z ) i λ z U ( x 1 , y 1 ) exp ( i k 2 z [ ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 ] ) d x 1 d y 1 .
U 1 ( x 3 , y 3 , d , α ) = F [ G ( x 1 , y 1 ) L ( x 1 , y 1 ) A ( x 1 , y 1 , α ) , 2 ( f + d ) ] .
O ( U ( x , y ) ) = U ( x , y ) G * ( x , y ) d x d y | G ( x , y ) | 2 d x d y .
h 1 ( d , α ) = | O [ U 1 ( x 3 , y 3 , d , α ) L ( x 3 , y 3 ) A ( x 3 , y 3 , α ) ] | 2 .
U 2 ( x 2 , y 2 , d , α ) = | F [ G ( x 1 , y 1 ) L ( x 1 , y 1 ) A ( x 1 , y 1 , α ) , f + d ] |
U 3 ( x 3 , y 3 , d , α ) = F [ U 2 ( x 2 , y 2 , d , α ) , f + d ] .
h 2 ( d , α ) = | O [ U 3 ( x 3 , y 3 , d , α ) L ( x , y ) A ( x , y , α ) ] | 2 .
1 2 ( f + d ) ( x 2 + y 2 ) = 1 2 f ( x 2 + y 2 ) + 2 3 α 4 ( x 2 + y 2 ) r pupil 2 .
α 4 = r pupil 2 4 3 ( 1 f 1 f + d ) .

Metrics