Abstract

Laser thermal lithography is a good alternative method for forming small pattern feature size by taking advantage of the structural-change threshold effect of thermal lithography materials. In this work, the heat-diffusion channels of laser thermal lithography are first analyzed, and then we propose to manipulate the heat-diffusion channels by inserting thermal conduction layers in between channels. Heat-flow direction can be changed from the in-plane to the out-of-plane of the thermal lithography layer, which causes the size of the structural-change threshold region to become much smaller than the focused laser spot itself; thus, nanoscale marks can be obtained. Samples designated as “glass substrate/thermal conduction layer/thermal lithography layer (100 nm)/thermal conduction layer” are designed and prepared. Chalcogenide phase-change materials are used as thermal lithography layer, and Si is used as thermal conduction layer to manipulate heat-diffusion channels. Laser thermal lithography experiments are conducted on a home-made high-speed rotation direct laser writing setup with 488 nm laser wavelength and 0.90 numerical aperture of converging lens. The writing marks with 50–60 nm size are successfully obtained. The mark size is only about 1/13 of the focused laser spot, which is far smaller than that of the light diffraction limit spot of the direct laser writing setup. This work is useful for nanoscale fabrication and lithography by exploiting the far-field focusing light system.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Micro/nanolithography of transparent thin films through laser-induced release of phase-transition latent-heat

Tao Wei, Kui Zhang, Jingsong Wei, Yang Wang, and Long Zhang
Opt. Express 25(23) 28146-28156 (2017)

A compact optical pickup head in blue wavelength with high horizontal stability for laser thermal lithography

Yuan-Chin Lee, Shiuh Chao, Chun-Chieh Huang, and Kuen-Chiuan Cheng
Opt. Express 21(20) 23556-23567 (2013)

Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides

Shane M. Eaton, Haibin Zhang, Mi Li Ng, Jianzhao Li, Wei-Jen Chen, Stephen Ho, and Peter R. Herman
Opt. Express 16(13) 9443-9458 (2008)

References

  • View by:
  • |
  • |
  • |

  1. Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat Commun 4, 2061 (2013).
    [Crossref] [PubMed]
  2. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
    [Crossref] [PubMed]
  3. J. W. Perry, “Applied physics. Two beams squeeze feature sizes in optical lithography,” Science 324(5929), 892–893 (2009).
    [Crossref] [PubMed]
  4. T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
    [Crossref] [PubMed]
  5. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
    [Crossref] [PubMed]
  6. M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N.-N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
    [Crossref] [PubMed]
  7. C. M. Chang, C. H. Chu, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films,” Opt. Express 19(10), 9492–9504 (2011).
    [Crossref] [PubMed]
  8. R. Wang, J. Wei, and Y. Fan, “Chalcogenide phase-change thin films used as grayscale photolithography materials,” Opt. Express 22(5), 4973–4984 (2014).
    [Crossref] [PubMed]
  9. M. Kuwahara, J. H. Kim, and J. Tominaga, “A volume change thermal lithography technique,” Microelectron. Eng. 73–74, 69–73 (2004).
    [Crossref]
  10. Super-resolution patterning technique using inorganic material, http://www.ricoh.com/about/company/technology/tech/010_patterning.html .
  11. M. Kuwahara, C. Mihalcea, N. Atoda, J. Tominaga, H. Fuji, and T. Kikukawa, “A thermal lithography technique using a minute heat spot of a laser beam for 100 nm dimension fabrication” in Optical Nanotechnologies (edited by J. Tominaga and D. P. Tsai), Springer, 2003.
  12. H. Chang, H. Lee, C. Lin, and Z. Wen, “Development of blue laser direct-write lithography system,” International J. Eng. Tech. Innovation 2, 63–71 (2012).
  13. P. Wu, C. Sui, and W. Huang, “Theoretical analysis of a quasi-Bessel beam for laser ablation,” Photonics Research 2(3), 82–86 (2014).
    [Crossref]
  14. T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
    [Crossref]
  15. H. Cheng, C. Jong, C. Lee, and T. Chin, “Wet-etching characteristics of Ge2Sb2Te5 thin films for phase-change memory,” IEEE Trans. Magn. 41(2), 1031–1033 (2005).
    [Crossref]
  16. C. Deng, Y. Geng, and Y. Wu, “Selective wet etching of Ge2Sb2Te5 phase-change thin films in thermal lithography with tetramethylammonium,” Appl. Phys., A Mater. Sci. Process. 104(4), 1091–1097 (2011).
    [Crossref]
  17. C. Deng, Y. Geng, Y. Wu, Y. Wang, and J. Wei, “Adhesion effect of interface layers on pattern fabrication with Ge2Sb2Te5 as laser thermal lithography film,” Microelectron. Eng. 103, 7–11 (2013).
    [Crossref]
  18. H. Li, Y. Geng, and Y. Wu, “Selective etching characteristics of the AgInSbTe phase-change film in laser thermal lithography,” Appl. Phys., A Mater. Sci. Process. 107(1), 221–225 (2012).
    [Crossref]
  19. A. Dun, J. Wei, and F. Gan, “Laser direct writing pattern structures on AgInSbTe phase change thin film,” Chin. Opt. Lett. 9(8), 082101 (2011).
    [Crossref]
  20. J. Wei and R. Wang, “Maskless direct laser writing with visible light: breaking through the optical resolving limit with cooperative manipulations of nonlinear reverse saturation absorption and thermal diffusion,” J. Appl. Phys. 115(12), 123102 (2014).
    [Crossref]
  21. J. Wei, J. Liu, and X. Jiao, “Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics,” Appl. Phys. Lett. 95(24), 241105 (2009).
    [Crossref]
  22. W. Wełnic, S. Botti, L. Reining, and M. Wuttig, “Origin of the optical contrast in phase-change materials,” Phys. Rev. Lett. 98(23), 236403 (2007).
    [Crossref] [PubMed]
  23. A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
    [Crossref] [PubMed]
  24. S. Senkader and C. D. Wright, “Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices,” J. Appl. Phys. 95(2), 504–511 (2004).
    [Crossref]
  25. T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
    [Crossref]
  26. X. Cai and J. Wei, “Thermal properties of Te-based phase-change materials,” SPIE 8782, 87820O (2013).
  27. The thermal properties of silicon materials can be found in the floowing link: http://www.virginiasemi.com/pdf/Basic%20Mechanical%20and%20Thermal%20Properties%20of%20Silicon.pdf .
  28. H. Yan and J. Wei, “False nonlinear effect in z-scan measurement based on semiconductor laser devices: theory and experiments,” Photonics Research 2(2), 51–58 (2014).
    [Crossref]
  29. X. Ma and J. Wei, “Nanoscale lithography with visible light: optical nonlinear saturable absorption effect induced nanobump pattern structures,” Nanoscale 3(4), 1489–1492 (2011).
    [Crossref] [PubMed]
  30. S. Liu, J. Wei, and F. Gan, “Optical nonlinear absorption characteristics of crystalline Ge2Sb2Te5 thin films,” J. Appl. Phys. 110(3), 033503 (2011).
    [Crossref]
  31. X. Cai and J. Wei, “Thermal properties of Te-based phase-change materials,” Proc. SPIE 8782, 87820O (2013).
    [Crossref]
  32. X. Jiao, J. Wei, and F. Gan, “Si underlayer induced nano-ablation in AgInSbTe thin films,” Chin. Phys. Lett. 25(1), 209–211 (2008).
    [Crossref]

2014 (4)

P. Wu, C. Sui, and W. Huang, “Theoretical analysis of a quasi-Bessel beam for laser ablation,” Photonics Research 2(3), 82–86 (2014).
[Crossref]

J. Wei and R. Wang, “Maskless direct laser writing with visible light: breaking through the optical resolving limit with cooperative manipulations of nonlinear reverse saturation absorption and thermal diffusion,” J. Appl. Phys. 115(12), 123102 (2014).
[Crossref]

H. Yan and J. Wei, “False nonlinear effect in z-scan measurement based on semiconductor laser devices: theory and experiments,” Photonics Research 2(2), 51–58 (2014).
[Crossref]

R. Wang, J. Wei, and Y. Fan, “Chalcogenide phase-change thin films used as grayscale photolithography materials,” Opt. Express 22(5), 4973–4984 (2014).
[Crossref] [PubMed]

2013 (4)

X. Cai and J. Wei, “Thermal properties of Te-based phase-change materials,” SPIE 8782, 87820O (2013).

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat Commun 4, 2061 (2013).
[Crossref] [PubMed]

X. Cai and J. Wei, “Thermal properties of Te-based phase-change materials,” Proc. SPIE 8782, 87820O (2013).
[Crossref]

C. Deng, Y. Geng, Y. Wu, Y. Wang, and J. Wei, “Adhesion effect of interface layers on pattern fabrication with Ge2Sb2Te5 as laser thermal lithography film,” Microelectron. Eng. 103, 7–11 (2013).
[Crossref]

2012 (2)

H. Li, Y. Geng, and Y. Wu, “Selective etching characteristics of the AgInSbTe phase-change film in laser thermal lithography,” Appl. Phys., A Mater. Sci. Process. 107(1), 221–225 (2012).
[Crossref]

H. Chang, H. Lee, C. Lin, and Z. Wen, “Development of blue laser direct-write lithography system,” International J. Eng. Tech. Innovation 2, 63–71 (2012).

2011 (6)

C. Deng, Y. Geng, and Y. Wu, “Selective wet etching of Ge2Sb2Te5 phase-change thin films in thermal lithography with tetramethylammonium,” Appl. Phys., A Mater. Sci. Process. 104(4), 1091–1097 (2011).
[Crossref]

X. Ma and J. Wei, “Nanoscale lithography with visible light: optical nonlinear saturable absorption effect induced nanobump pattern structures,” Nanoscale 3(4), 1489–1492 (2011).
[Crossref] [PubMed]

S. Liu, J. Wei, and F. Gan, “Optical nonlinear absorption characteristics of crystalline Ge2Sb2Te5 thin films,” J. Appl. Phys. 110(3), 033503 (2011).
[Crossref]

C. M. Chang, C. H. Chu, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films,” Opt. Express 19(10), 9492–9504 (2011).
[Crossref] [PubMed]

A. Dun, J. Wei, and F. Gan, “Laser direct writing pattern structures on AgInSbTe phase change thin film,” Chin. Opt. Lett. 9(8), 082101 (2011).
[Crossref]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N.-N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

2009 (5)

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

J. W. Perry, “Applied physics. Two beams squeeze feature sizes in optical lithography,” Science 324(5929), 892–893 (2009).
[Crossref] [PubMed]

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

J. Wei, J. Liu, and X. Jiao, “Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics,” Appl. Phys. Lett. 95(24), 241105 (2009).
[Crossref]

2008 (1)

X. Jiao, J. Wei, and F. Gan, “Si underlayer induced nano-ablation in AgInSbTe thin films,” Chin. Phys. Lett. 25(1), 209–211 (2008).
[Crossref]

2007 (1)

W. Wełnic, S. Botti, L. Reining, and M. Wuttig, “Origin of the optical contrast in phase-change materials,” Phys. Rev. Lett. 98(23), 236403 (2007).
[Crossref] [PubMed]

2005 (1)

H. Cheng, C. Jong, C. Lee, and T. Chin, “Wet-etching characteristics of Ge2Sb2Te5 thin films for phase-change memory,” IEEE Trans. Magn. 41(2), 1031–1033 (2005).
[Crossref]

2004 (5)

M. Kuwahara, J. H. Kim, and J. Tominaga, “A volume change thermal lithography technique,” Microelectron. Eng. 73–74, 69–73 (2004).
[Crossref]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[Crossref] [PubMed]

S. Senkader and C. D. Wright, “Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices,” J. Appl. Phys. 95(2), 504–511 (2004).
[Crossref]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

Andrew, T. L.

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

Ankudinov, A. L.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[Crossref] [PubMed]

Anzai, Y.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

Botti, S.

W. Wełnic, S. Botti, L. Reining, and M. Wuttig, “Origin of the optical contrast in phase-change materials,” Phys. Rev. Lett. 98(23), 236403 (2007).
[Crossref] [PubMed]

Bowman, C. N.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

Cai, X.

X. Cai and J. Wei, “Thermal properties of Te-based phase-change materials,” SPIE 8782, 87820O (2013).

X. Cai and J. Wei, “Thermal properties of Te-based phase-change materials,” Proc. SPIE 8782, 87820O (2013).
[Crossref]

Cao, Y.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat Commun 4, 2061 (2013).
[Crossref] [PubMed]

Chang, C. M.

Chang, H.

H. Chang, H. Lee, C. Lin, and Z. Wen, “Development of blue laser direct-write lithography system,” International J. Eng. Tech. Innovation 2, 63–71 (2012).

Chen, B. H.

Cheng, H.

H. Cheng, C. Jong, C. Lee, and T. Chin, “Wet-etching characteristics of Ge2Sb2Te5 thin films for phase-change memory,” IEEE Trans. Magn. 41(2), 1031–1033 (2005).
[Crossref]

Chiang, H.-P.

Chin, T.

H. Cheng, C. Jong, C. Lee, and T. Chin, “Wet-etching characteristics of Ge2Sb2Te5 thin films for phase-change memory,” IEEE Trans. Magn. 41(2), 1031–1033 (2005).
[Crossref]

Chu, C. H.

Chu, N.-N.

Deng, C.

C. Deng, Y. Geng, Y. Wu, Y. Wang, and J. Wei, “Adhesion effect of interface layers on pattern fabrication with Ge2Sb2Te5 as laser thermal lithography film,” Microelectron. Eng. 103, 7–11 (2013).
[Crossref]

C. Deng, Y. Geng, and Y. Wu, “Selective wet etching of Ge2Sb2Te5 phase-change thin films in thermal lithography with tetramethylammonium,” Appl. Phys., A Mater. Sci. Process. 104(4), 1091–1097 (2011).
[Crossref]

Dun, A.

Evans, R. A.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat Commun 4, 2061 (2013).
[Crossref] [PubMed]

Fan, Y.

Fons, P.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[Crossref] [PubMed]

Fourkas, J. T.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Frenkel, A. I.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[Crossref] [PubMed]

Gan, F.

S. Liu, J. Wei, and F. Gan, “Optical nonlinear absorption characteristics of crystalline Ge2Sb2Te5 thin films,” J. Appl. Phys. 110(3), 033503 (2011).
[Crossref]

A. Dun, J. Wei, and F. Gan, “Laser direct writing pattern structures on AgInSbTe phase change thin film,” Chin. Opt. Lett. 9(8), 082101 (2011).
[Crossref]

X. Jiao, J. Wei, and F. Gan, “Si underlayer induced nano-ablation in AgInSbTe thin films,” Chin. Phys. Lett. 25(1), 209–211 (2008).
[Crossref]

Gan, Z.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat Commun 4, 2061 (2013).
[Crossref] [PubMed]

Gattass, R. R.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Geng, Y.

C. Deng, Y. Geng, Y. Wu, Y. Wang, and J. Wei, “Adhesion effect of interface layers on pattern fabrication with Ge2Sb2Te5 as laser thermal lithography film,” Microelectron. Eng. 103, 7–11 (2013).
[Crossref]

H. Li, Y. Geng, and Y. Wu, “Selective etching characteristics of the AgInSbTe phase-change film in laser thermal lithography,” Appl. Phys., A Mater. Sci. Process. 107(1), 221–225 (2012).
[Crossref]

C. Deng, Y. Geng, and Y. Wu, “Selective wet etching of Ge2Sb2Te5 phase-change thin films in thermal lithography with tetramethylammonium,” Appl. Phys., A Mater. Sci. Process. 104(4), 1091–1097 (2011).
[Crossref]

Gershgoren, E.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Gu, M.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat Commun 4, 2061 (2013).
[Crossref] [PubMed]

Huang, W.

P. Wu, C. Sui, and W. Huang, “Theoretical analysis of a quasi-Bessel beam for laser ablation,” Photonics Research 2(3), 82–86 (2014).
[Crossref]

Hwang, H.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Jiao, X.

J. Wei, J. Liu, and X. Jiao, “Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics,” Appl. Phys. Lett. 95(24), 241105 (2009).
[Crossref]

X. Jiao, J. Wei, and F. Gan, “Si underlayer induced nano-ablation in AgInSbTe thin films,” Chin. Phys. Lett. 25(1), 209–211 (2008).
[Crossref]

Jong, C.

H. Cheng, C. Jong, C. Lee, and T. Chin, “Wet-etching characteristics of Ge2Sb2Te5 thin films for phase-change memory,” IEEE Trans. Magn. 41(2), 1031–1033 (2005).
[Crossref]

Kim, J. H.

M. Kuwahara, J. H. Kim, and J. Tominaga, “A volume change thermal lithography technique,” Microelectron. Eng. 73–74, 69–73 (2004).
[Crossref]

Kolobov, A. V.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[Crossref] [PubMed]

Kowalski, B. A.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

Kuwahara, M.

M. Kuwahara, J. H. Kim, and J. Tominaga, “A volume change thermal lithography technique,” Microelectron. Eng. 73–74, 69–73 (2004).
[Crossref]

Lee, C.

H. Cheng, C. Jong, C. Lee, and T. Chin, “Wet-etching characteristics of Ge2Sb2Te5 thin films for phase-change memory,” IEEE Trans. Magn. 41(2), 1031–1033 (2005).
[Crossref]

Lee, H.

H. Chang, H. Lee, C. Lin, and Z. Wen, “Development of blue laser direct-write lithography system,” International J. Eng. Tech. Innovation 2, 63–71 (2012).

Li, H.

H. Li, Y. Geng, and Y. Wu, “Selective etching characteristics of the AgInSbTe phase-change film in laser thermal lithography,” Appl. Phys., A Mater. Sci. Process. 107(1), 221–225 (2012).
[Crossref]

Li, L.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

Lin, C.

H. Chang, H. Lee, C. Lin, and Z. Wen, “Development of blue laser direct-write lithography system,” International J. Eng. Tech. Innovation 2, 63–71 (2012).

Lin, W. C.

Liu, A. Q.

Liu, J.

J. Wei, J. Liu, and X. Jiao, “Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics,” Appl. Phys. Lett. 95(24), 241105 (2009).
[Crossref]

Liu, S.

S. Liu, J. Wei, and F. Gan, “Optical nonlinear absorption characteristics of crystalline Ge2Sb2Te5 thin films,” J. Appl. Phys. 110(3), 033503 (2011).
[Crossref]

Ma, X.

X. Ma and J. Wei, “Nanoscale lithography with visible light: optical nonlinear saturable absorption effect induced nanobump pattern structures,” Nanoscale 3(4), 1489–1492 (2011).
[Crossref] [PubMed]

Mansuripur, M.

McLeod, R. R.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

Menon, R.

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

Minemura, H.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

Miyamoto, H.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

Perry, J. W.

J. W. Perry, “Applied physics. Two beams squeeze feature sizes in optical lithography,” Science 324(5929), 892–893 (2009).
[Crossref] [PubMed]

Reining, L.

W. Wełnic, S. Botti, L. Reining, and M. Wuttig, “Origin of the optical contrast in phase-change materials,” Phys. Rev. Lett. 98(23), 236403 (2007).
[Crossref] [PubMed]

Scott, T. F.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

Senkader, S.

S. Senkader and C. D. Wright, “Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices,” J. Appl. Phys. 95(2), 504–511 (2004).
[Crossref]

Shintani, T.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

Sui, C.

P. Wu, C. Sui, and W. Huang, “Theoretical analysis of a quasi-Bessel beam for laser ablation,” Photonics Research 2(3), 82–86 (2014).
[Crossref]

Sullivan, A. C.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

Tominaga, J.

M. Kuwahara, J. H. Kim, and J. Tominaga, “A volume change thermal lithography technique,” Microelectron. Eng. 73–74, 69–73 (2004).
[Crossref]

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[Crossref] [PubMed]

Tsai, D. P.

Tsai, H. Y.

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

Tseng, M. L.

Uruga, T.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[Crossref] [PubMed]

Ushiyama, J.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

Wang, R.

J. Wei and R. Wang, “Maskless direct laser writing with visible light: breaking through the optical resolving limit with cooperative manipulations of nonlinear reverse saturation absorption and thermal diffusion,” J. Appl. Phys. 115(12), 123102 (2014).
[Crossref]

R. Wang, J. Wei, and Y. Fan, “Chalcogenide phase-change thin films used as grayscale photolithography materials,” Opt. Express 22(5), 4973–4984 (2014).
[Crossref] [PubMed]

Wang, Y.

C. Deng, Y. Geng, Y. Wu, Y. Wang, and J. Wei, “Adhesion effect of interface layers on pattern fabrication with Ge2Sb2Te5 as laser thermal lithography film,” Microelectron. Eng. 103, 7–11 (2013).
[Crossref]

Wei, J.

J. Wei and R. Wang, “Maskless direct laser writing with visible light: breaking through the optical resolving limit with cooperative manipulations of nonlinear reverse saturation absorption and thermal diffusion,” J. Appl. Phys. 115(12), 123102 (2014).
[Crossref]

H. Yan and J. Wei, “False nonlinear effect in z-scan measurement based on semiconductor laser devices: theory and experiments,” Photonics Research 2(2), 51–58 (2014).
[Crossref]

R. Wang, J. Wei, and Y. Fan, “Chalcogenide phase-change thin films used as grayscale photolithography materials,” Opt. Express 22(5), 4973–4984 (2014).
[Crossref] [PubMed]

X. Cai and J. Wei, “Thermal properties of Te-based phase-change materials,” Proc. SPIE 8782, 87820O (2013).
[Crossref]

X. Cai and J. Wei, “Thermal properties of Te-based phase-change materials,” SPIE 8782, 87820O (2013).

C. Deng, Y. Geng, Y. Wu, Y. Wang, and J. Wei, “Adhesion effect of interface layers on pattern fabrication with Ge2Sb2Te5 as laser thermal lithography film,” Microelectron. Eng. 103, 7–11 (2013).
[Crossref]

S. Liu, J. Wei, and F. Gan, “Optical nonlinear absorption characteristics of crystalline Ge2Sb2Te5 thin films,” J. Appl. Phys. 110(3), 033503 (2011).
[Crossref]

X. Ma and J. Wei, “Nanoscale lithography with visible light: optical nonlinear saturable absorption effect induced nanobump pattern structures,” Nanoscale 3(4), 1489–1492 (2011).
[Crossref] [PubMed]

A. Dun, J. Wei, and F. Gan, “Laser direct writing pattern structures on AgInSbTe phase change thin film,” Chin. Opt. Lett. 9(8), 082101 (2011).
[Crossref]

J. Wei, J. Liu, and X. Jiao, “Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics,” Appl. Phys. Lett. 95(24), 241105 (2009).
[Crossref]

X. Jiao, J. Wei, and F. Gan, “Si underlayer induced nano-ablation in AgInSbTe thin films,” Chin. Phys. Lett. 25(1), 209–211 (2008).
[Crossref]

Welnic, W.

W. Wełnic, S. Botti, L. Reining, and M. Wuttig, “Origin of the optical contrast in phase-change materials,” Phys. Rev. Lett. 98(23), 236403 (2007).
[Crossref] [PubMed]

Wen, Z.

H. Chang, H. Lee, C. Lin, and Z. Wen, “Development of blue laser direct-write lithography system,” International J. Eng. Tech. Innovation 2, 63–71 (2012).

Wright, C. D.

S. Senkader and C. D. Wright, “Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices,” J. Appl. Phys. 95(2), 504–511 (2004).
[Crossref]

Wu, P.

P. Wu, C. Sui, and W. Huang, “Theoretical analysis of a quasi-Bessel beam for laser ablation,” Photonics Research 2(3), 82–86 (2014).
[Crossref]

Wu, Y.

C. Deng, Y. Geng, Y. Wu, Y. Wang, and J. Wei, “Adhesion effect of interface layers on pattern fabrication with Ge2Sb2Te5 as laser thermal lithography film,” Microelectron. Eng. 103, 7–11 (2013).
[Crossref]

H. Li, Y. Geng, and Y. Wu, “Selective etching characteristics of the AgInSbTe phase-change film in laser thermal lithography,” Appl. Phys., A Mater. Sci. Process. 107(1), 221–225 (2012).
[Crossref]

C. Deng, Y. Geng, and Y. Wu, “Selective wet etching of Ge2Sb2Te5 phase-change thin films in thermal lithography with tetramethylammonium,” Appl. Phys., A Mater. Sci. Process. 104(4), 1091–1097 (2011).
[Crossref]

Wuttig, M.

W. Wełnic, S. Botti, L. Reining, and M. Wuttig, “Origin of the optical contrast in phase-change materials,” Phys. Rev. Lett. 98(23), 236403 (2007).
[Crossref] [PubMed]

Yan, H.

H. Yan and J. Wei, “False nonlinear effect in z-scan measurement based on semiconductor laser devices: theory and experiments,” Photonics Research 2(2), 51–58 (2014).
[Crossref]

Appl. Phys. Lett. (3)

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

J. Wei, J. Liu, and X. Jiao, “Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics,” Appl. Phys. Lett. 95(24), 241105 (2009).
[Crossref]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

C. Deng, Y. Geng, and Y. Wu, “Selective wet etching of Ge2Sb2Te5 phase-change thin films in thermal lithography with tetramethylammonium,” Appl. Phys., A Mater. Sci. Process. 104(4), 1091–1097 (2011).
[Crossref]

H. Li, Y. Geng, and Y. Wu, “Selective etching characteristics of the AgInSbTe phase-change film in laser thermal lithography,” Appl. Phys., A Mater. Sci. Process. 107(1), 221–225 (2012).
[Crossref]

Chin. Opt. Lett. (1)

Chin. Phys. Lett. (1)

X. Jiao, J. Wei, and F. Gan, “Si underlayer induced nano-ablation in AgInSbTe thin films,” Chin. Phys. Lett. 25(1), 209–211 (2008).
[Crossref]

IEEE Trans. Magn. (1)

H. Cheng, C. Jong, C. Lee, and T. Chin, “Wet-etching characteristics of Ge2Sb2Te5 thin films for phase-change memory,” IEEE Trans. Magn. 41(2), 1031–1033 (2005).
[Crossref]

International J. Eng. Tech. Innovation (1)

H. Chang, H. Lee, C. Lin, and Z. Wen, “Development of blue laser direct-write lithography system,” International J. Eng. Tech. Innovation 2, 63–71 (2012).

J. Appl. Phys. (3)

J. Wei and R. Wang, “Maskless direct laser writing with visible light: breaking through the optical resolving limit with cooperative manipulations of nonlinear reverse saturation absorption and thermal diffusion,” J. Appl. Phys. 115(12), 123102 (2014).
[Crossref]

S. Liu, J. Wei, and F. Gan, “Optical nonlinear absorption characteristics of crystalline Ge2Sb2Te5 thin films,” J. Appl. Phys. 110(3), 033503 (2011).
[Crossref]

S. Senkader and C. D. Wright, “Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices,” J. Appl. Phys. 95(2), 504–511 (2004).
[Crossref]

Microelectron. Eng. (2)

C. Deng, Y. Geng, Y. Wu, Y. Wang, and J. Wei, “Adhesion effect of interface layers on pattern fabrication with Ge2Sb2Te5 as laser thermal lithography film,” Microelectron. Eng. 103, 7–11 (2013).
[Crossref]

M. Kuwahara, J. H. Kim, and J. Tominaga, “A volume change thermal lithography technique,” Microelectron. Eng. 73–74, 69–73 (2004).
[Crossref]

Nanoscale (1)

X. Ma and J. Wei, “Nanoscale lithography with visible light: optical nonlinear saturable absorption effect induced nanobump pattern structures,” Nanoscale 3(4), 1489–1492 (2011).
[Crossref] [PubMed]

Nat Commun (1)

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat Commun 4, 2061 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004).
[Crossref] [PubMed]

Opt. Express (3)

Photonics Research (2)

P. Wu, C. Sui, and W. Huang, “Theoretical analysis of a quasi-Bessel beam for laser ablation,” Photonics Research 2(3), 82–86 (2014).
[Crossref]

H. Yan and J. Wei, “False nonlinear effect in z-scan measurement based on semiconductor laser devices: theory and experiments,” Photonics Research 2(2), 51–58 (2014).
[Crossref]

Phys. Rev. Lett. (1)

W. Wełnic, S. Botti, L. Reining, and M. Wuttig, “Origin of the optical contrast in phase-change materials,” Phys. Rev. Lett. 98(23), 236403 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

X. Cai and J. Wei, “Thermal properties of Te-based phase-change materials,” Proc. SPIE 8782, 87820O (2013).
[Crossref]

Science (4)

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[Crossref] [PubMed]

J. W. Perry, “Applied physics. Two beams squeeze feature sizes in optical lithography,” Science 324(5929), 892–893 (2009).
[Crossref] [PubMed]

T. L. Andrew, H. Y. Tsai, and R. Menon, “Confining light to deep subwavelength dimensions to enable optical nanopatterning,” Science 324(5929), 917–921 (2009).
[Crossref] [PubMed]

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324(5929), 913–917 (2009).
[Crossref] [PubMed]

SPIE (1)

X. Cai and J. Wei, “Thermal properties of Te-based phase-change materials,” SPIE 8782, 87820O (2013).

Other (3)

The thermal properties of silicon materials can be found in the floowing link: http://www.virginiasemi.com/pdf/Basic%20Mechanical%20and%20Thermal%20Properties%20of%20Silicon.pdf .

Super-resolution patterning technique using inorganic material, http://www.ricoh.com/about/company/technology/tech/010_patterning.html .

M. Kuwahara, C. Mihalcea, N. Atoda, J. Tominaga, H. Fuji, and T. Kikukawa, “A thermal lithography technique using a minute heat spot of a laser beam for 100 nm dimension fabrication” in Optical Nanotechnologies (edited by J. Tominaga and D. P. Tsai), Springer, 2003.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the basic principle of laser thermal lithography.
Fig. 2
Fig. 2 Schematic of the heat diffusion channels for the heated volume.
Fig. 3
Fig. 3 A sample structure with thermal conduction layers manipulating the heat-diffusion channels.
Fig. 4
Fig. 4 Home-made setup for laser thermal lithography.
Fig. 5
Fig. 5 AFM observation of thermal lithography marks obtained on “glass/thermal lithography layer (100 nm)” sample: (a) large area marks, and (b) magnified marks of (a).
Fig. 6
Fig. 6 shows the AFM observation of the thermal lithography marks obtained on “glass/thermal lithography layer (100 nm)/Si (20 nm)” sample structure: (a) lithography marks, (b) magnified marks, and (c) cross-section profile marked with grey line in (b).
Fig. 7
Fig. 7 The comparision of super-resolved spot and incident spot.
Fig. 8
Fig. 8 AFM observation of nanoscale thermal lithography marks obtained on “glass/Si (100 nm)/thermal lithography layer (100 nm)/Si (20 nm)” sample structure: (a) lithography marks, (b) magnified marks, and (c) cross-section profile marked with green line in (b).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S side =πdh
S perpendicular = π d 2 4
Q Dside σ litho S side
Q Ddown σ sub S perpendicular
Q Dup σ sub S perpendicular
η Dside/Ddown = Q Dside Q Ddown = 4h σ litho d σ sub
η Dside/Dup = Q Dside Q Dup = 4h σ litho d σ air
Q Ddown = Q Dup σ air S perpendicular
η Dside/Ddown = η Dside/Dup = Q Dside Q Ddown = Q Dside Q Dup = 4h σ litho d σ Si ~0.008
I t =I(r)exp[α(r)h] with α(r)= α 0 +βI(r), I(r)= I 0 exp( 2 r 2 w 0 2 )
ΔT= α 0 t w I 0 2ρC = D 2κ α 0 t w I 0 , with D 2κ = 1 2ρC
γ ratio = Δ T Si = D Si 2 κ Si α Si t w I 0 Δ T PC = D PC 2 κ PC α PC t w ( I 0 × T t ) = D Si κ Si α Si D PC κ PC α PC ×90% ~3.0%

Metrics