Abstract

Optical detection of structures with dimensions smaller than an optical wavelength requires devices that work on scales beyond the diffraction limit. Here we present the possibility of using a tapered optical nanofiber as a detector to resolve individual atoms trapped in an optical lattice in the Mott insulator phase. We show that the small size of the fiber combined with an enhanced photon collection rate can allow for the attainment of large and reliable measurement signals.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence

K. P. Nayak, P. N. Melentiev, M. Morinaga, Fam Le Kien, V. I. Balykin, and K. Hakuta
Opt. Express 15(9) 5431-5438 (2007)

Adiabatically induced coherent Josephson oscillations of ultracold atoms in an asymmetric two-dimensional magnetic lattice

A. Abdelrahman, P. Hannaford, and K. Alameh
Opt. Express 17(26) 24358-24370 (2009)

Selective particle trapping and optical binding in the evanescent field of an optical nanofiber

M. C. Frawley, I. Gusachenko, V. G. Truong, M. Sergides, and S. Nic Chormaic
Opt. Express 22(13) 16322-16334 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Karski, L. Förster, J. M. Choi, W. Alt, A. Widera, and D. Meschede, “Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging,” Phys. Rev. Lett. 102, 053001 (2009).
    [Crossref] [PubMed]
  2. W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
    [Crossref] [PubMed]
  3. J.M. Ward, V. H. Le, A. Maimaiti, and S. Nic. Chormaic, “Optical micro- and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
    [Crossref]
  4. F. Le Kien, S. Dutta-Gupta, K. P. Nayak, and K. Hakuta, “Nanofiber-mediated radiative transfer between two distant atoms,” Phys. Rev. A 72, 063815 (2005).
    [Crossref]
  5. K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofiber,” New Journal of Physics 10, 053003 (2008).
    [Crossref]
  6. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15 (9), 5431–5438 (2007).
    [Crossref] [PubMed]
  7. R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluoresence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
    [Crossref]
  8. M. Fujiwara, K. Toubaru, T. Noda, H-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
    [Crossref] [PubMed]
  9. F. Le Kien and K. Hakuta, “Cooperative enhancement of channeling of emission from atoms into a nanofiber,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 3, 035001 (2012).
  10. T. Søndergaard and B. Tromborg, “General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier,” Phys. Rev. A 64, 033812 (2001).
    [Crossref]
  11. F. Le Kien, S. Dutta-Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
    [Crossref]
  12. A.V. Masalov and V.G. Minogin, “Pumping of higher-modes of an optical nanofiber by laser excited atoms,” Laser Phys. Lett. 10, 075203 (2013).
    [Crossref]
  13. R. Kumar, V. Gokhroo, A. Maimaiti, K. Deasy, M. C. Frawley, and S. Nic Chormaic, “Interaction of laser-cooled 87Rb atoms with higher order modes of an optical nanofiber,” arXiv:1311.6860.
  14. M.Z. Hasan and C.L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).
    [Crossref]
  15. M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems (Oxford University, 2012).
    [Crossref]
  16. See, for example, J.D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1998).
  17. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002).
    [Crossref] [PubMed]
  18. C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K. Bongs, and K. Sengstock, “Ultracold quantum gases in triangular optical lattices,” New J. Phys. 12, 065025 (2010).
    [Crossref]
  19. L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
    [Crossref] [PubMed]
  20. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S.T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010)
    [Crossref] [PubMed]
  21. M.J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical trap characteristics,” Rev. Sci. Instrum. 80, 053102 (2009).
    [Crossref] [PubMed]
  22. The refractive index n1 of fused silica (SiO2) can be calculated using a Sellmeier-type dispersion formula, taking the refractive index of the vacuum n2 = 1n1−1=0.696166λ2λ2−(0.068404)2+0.407942λ2λ2−(0.116241)2+0.897479λ2λ2−(9.896161)2where λ is in units of μ m.
  23. See, for example; D. Marcuse, Light Transmission Optics (Krieger, 1989);A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  24. A. Steffen, A. Alberti, W. Alt, N. Belmechri, S. Hild, M. Karski, A. Widera, and D. Meschede, “Digital atom interferometer with single particle control on a discretized space-time geometry,” Proc. Natl. Acad. Sci. U. S. A. 109, 9770—9774 (2012).
    [Crossref]
  25. M. Boustimi, J. Baudon, P. Candori, and J. Robert, “van der Waals interaction between an atom and a metallic nanowire,” Phys. Rev. B 65, 155402 (2002).
    [Crossref]
  26. F. Le Kien, V.I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
    [Crossref]
  27. D. Jaksch, H.J. Briegel, J.I. Cirac, C.W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
    [Crossref]
  28. T. Hennessy and Th. Busch, “Creating atom-number states around tapered optical fibers by loading from an optical lattice,” Phys. Rev. A 85, 053418 (2012).
    [Crossref]
  29. Síle Nic Chormaic, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan, (personal communication, 2014).

2014 (1)

J.M. Ward, V. H. Le, A. Maimaiti, and S. Nic. Chormaic, “Optical micro- and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

2013 (1)

A.V. Masalov and V.G. Minogin, “Pumping of higher-modes of an optical nanofiber by laser excited atoms,” Laser Phys. Lett. 10, 075203 (2013).
[Crossref]

2012 (4)

F. Le Kien and K. Hakuta, “Cooperative enhancement of channeling of emission from atoms into a nanofiber,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 3, 035001 (2012).

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluoresence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

A. Steffen, A. Alberti, W. Alt, N. Belmechri, S. Hild, M. Karski, A. Widera, and D. Meschede, “Digital atom interferometer with single particle control on a discretized space-time geometry,” Proc. Natl. Acad. Sci. U. S. A. 109, 9770—9774 (2012).
[Crossref]

T. Hennessy and Th. Busch, “Creating atom-number states around tapered optical fibers by loading from an optical lattice,” Phys. Rev. A 85, 053418 (2012).
[Crossref]

2011 (1)

M. Fujiwara, K. Toubaru, T. Noda, H-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref] [PubMed]

2010 (3)

M.Z. Hasan and C.L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).
[Crossref]

C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K. Bongs, and K. Sengstock, “Ultracold quantum gases in triangular optical lattices,” New J. Phys. 12, 065025 (2010).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S.T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010)
[Crossref] [PubMed]

2009 (3)

M.J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical trap characteristics,” Rev. Sci. Instrum. 80, 053102 (2009).
[Crossref] [PubMed]

M. Karski, L. Förster, J. M. Choi, W. Alt, A. Widera, and D. Meschede, “Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging,” Phys. Rev. Lett. 102, 053001 (2009).
[Crossref] [PubMed]

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[Crossref] [PubMed]

2008 (1)

K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofiber,” New Journal of Physics 10, 053003 (2008).
[Crossref]

2007 (1)

2005 (2)

F. Le Kien, S. Dutta-Gupta, K. P. Nayak, and K. Hakuta, “Nanofiber-mediated radiative transfer between two distant atoms,” Phys. Rev. A 72, 063815 (2005).
[Crossref]

F. Le Kien, S. Dutta-Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

2004 (1)

F. Le Kien, V.I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[Crossref]

2003 (1)

L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

2002 (2)

M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002).
[Crossref] [PubMed]

M. Boustimi, J. Baudon, P. Candori, and J. Robert, “van der Waals interaction between an atom and a metallic nanowire,” Phys. Rev. B 65, 155402 (2002).
[Crossref]

2001 (1)

T. Søndergaard and B. Tromborg, “General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier,” Phys. Rev. A 64, 033812 (2001).
[Crossref]

1999 (1)

D. Jaksch, H.J. Briegel, J.I. Cirac, C.W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[Crossref]

Ahufinger, V.

M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems (Oxford University, 2012).
[Crossref]

Alberti, A.

A. Steffen, A. Alberti, W. Alt, N. Belmechri, S. Hild, M. Karski, A. Widera, and D. Meschede, “Digital atom interferometer with single particle control on a discretized space-time geometry,” Proc. Natl. Acad. Sci. U. S. A. 109, 9770—9774 (2012).
[Crossref]

Alt, W.

A. Steffen, A. Alberti, W. Alt, N. Belmechri, S. Hild, M. Karski, A. Widera, and D. Meschede, “Digital atom interferometer with single particle control on a discretized space-time geometry,” Proc. Natl. Acad. Sci. U. S. A. 109, 9770—9774 (2012).
[Crossref]

M. Karski, L. Förster, J. M. Choi, W. Alt, A. Widera, and D. Meschede, “Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging,” Phys. Rev. Lett. 102, 053001 (2009).
[Crossref] [PubMed]

Ashcom, J.B.

L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Bakr, W. S.

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[Crossref] [PubMed]

Balykin, V. I.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15 (9), 5431–5438 (2007).
[Crossref] [PubMed]

F. Le Kien, S. Dutta-Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Balykin, V.I.

F. Le Kien, V.I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[Crossref]

Baudon, J.

M. Boustimi, J. Baudon, P. Candori, and J. Robert, “van der Waals interaction between an atom and a metallic nanowire,” Phys. Rev. B 65, 155402 (2002).
[Crossref]

Becker, C.

C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K. Bongs, and K. Sengstock, “Ultracold quantum gases in triangular optical lattices,” New J. Phys. 12, 065025 (2010).
[Crossref]

Belmechri, N.

A. Steffen, A. Alberti, W. Alt, N. Belmechri, S. Hild, M. Karski, A. Widera, and D. Meschede, “Digital atom interferometer with single particle control on a discretized space-time geometry,” Proc. Natl. Acad. Sci. U. S. A. 109, 9770—9774 (2012).
[Crossref]

Bloch, I.

M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002).
[Crossref] [PubMed]

Bongs, K.

C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K. Bongs, and K. Sengstock, “Ultracold quantum gases in triangular optical lattices,” New J. Phys. 12, 065025 (2010).
[Crossref]

Boustimi, M.

M. Boustimi, J. Baudon, P. Candori, and J. Robert, “van der Waals interaction between an atom and a metallic nanowire,” Phys. Rev. B 65, 155402 (2002).
[Crossref]

Briegel, H.J.

D. Jaksch, H.J. Briegel, J.I. Cirac, C.W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[Crossref]

Busch, Th.

T. Hennessy and Th. Busch, “Creating atom-number states around tapered optical fibers by loading from an optical lattice,” Phys. Rev. A 85, 053418 (2012).
[Crossref]

Candori, P.

M. Boustimi, J. Baudon, P. Candori, and J. Robert, “van der Waals interaction between an atom and a metallic nanowire,” Phys. Rev. B 65, 155402 (2002).
[Crossref]

Chakrabarti, S.

M.J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical trap characteristics,” Rev. Sci. Instrum. 80, 053102 (2009).
[Crossref] [PubMed]

Choi, J. M.

M. Karski, L. Förster, J. M. Choi, W. Alt, A. Widera, and D. Meschede, “Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging,” Phys. Rev. Lett. 102, 053001 (2009).
[Crossref] [PubMed]

Cirac, J.I.

D. Jaksch, H.J. Briegel, J.I. Cirac, C.W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[Crossref]

Dawkins, S.T.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S.T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010)
[Crossref] [PubMed]

Deasy, K.

M.J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical trap characteristics,” Rev. Sci. Instrum. 80, 053102 (2009).
[Crossref] [PubMed]

R. Kumar, V. Gokhroo, A. Maimaiti, K. Deasy, M. C. Frawley, and S. Nic Chormaic, “Interaction of laser-cooled 87Rb atoms with higher order modes of an optical nanofiber,” arXiv:1311.6860.

Dörscher, S.

C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K. Bongs, and K. Sengstock, “Ultracold quantum gases in triangular optical lattices,” New J. Phys. 12, 065025 (2010).
[Crossref]

Dutta-Gupta, S.

F. Le Kien, S. Dutta-Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

F. Le Kien, S. Dutta-Gupta, K. P. Nayak, and K. Hakuta, “Nanofiber-mediated radiative transfer between two distant atoms,” Phys. Rev. A 72, 063815 (2005).
[Crossref]

Esslinger, T.

M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002).
[Crossref] [PubMed]

Fölling, S.

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[Crossref] [PubMed]

Förster, L.

M. Karski, L. Förster, J. M. Choi, W. Alt, A. Widera, and D. Meschede, “Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging,” Phys. Rev. Lett. 102, 053001 (2009).
[Crossref] [PubMed]

Frawley, M. C.

R. Kumar, V. Gokhroo, A. Maimaiti, K. Deasy, M. C. Frawley, and S. Nic Chormaic, “Interaction of laser-cooled 87Rb atoms with higher order modes of an optical nanofiber,” arXiv:1311.6860.

Fujiwara, M.

M. Fujiwara, K. Toubaru, T. Noda, H-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref] [PubMed]

Gardiner, C.W.

D. Jaksch, H.J. Briegel, J.I. Cirac, C.W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[Crossref]

Gattass, R.R.

L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Gillen, J. I.

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[Crossref] [PubMed]

Gokhroo, V.

R. Kumar, V. Gokhroo, A. Maimaiti, K. Deasy, M. C. Frawley, and S. Nic Chormaic, “Interaction of laser-cooled 87Rb atoms with higher order modes of an optical nanofiber,” arXiv:1311.6860.

Greiner, M.

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[Crossref] [PubMed]

M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002).
[Crossref] [PubMed]

Hakuta, K.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluoresence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

F. Le Kien and K. Hakuta, “Cooperative enhancement of channeling of emission from atoms into a nanofiber,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 3, 035001 (2012).

K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofiber,” New Journal of Physics 10, 053003 (2008).
[Crossref]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15 (9), 5431–5438 (2007).
[Crossref] [PubMed]

F. Le Kien, S. Dutta-Gupta, K. P. Nayak, and K. Hakuta, “Nanofiber-mediated radiative transfer between two distant atoms,” Phys. Rev. A 72, 063815 (2005).
[Crossref]

F. Le Kien, S. Dutta-Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

F. Le Kien, V.I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[Crossref]

Hänsch, T.W.

M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002).
[Crossref] [PubMed]

Hasan, M.Z.

M.Z. Hasan and C.L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).
[Crossref]

He, S.

L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Hennessy, T.

T. Hennessy and Th. Busch, “Creating atom-number states around tapered optical fibers by loading from an optical lattice,” Phys. Rev. A 85, 053418 (2012).
[Crossref]

Hild, S.

A. Steffen, A. Alberti, W. Alt, N. Belmechri, S. Hild, M. Karski, A. Widera, and D. Meschede, “Digital atom interferometer with single particle control on a discretized space-time geometry,” Proc. Natl. Acad. Sci. U. S. A. 109, 9770—9774 (2012).
[Crossref]

Jackson, J.D.

See, for example, J.D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1998).

Jaksch, D.

D. Jaksch, H.J. Briegel, J.I. Cirac, C.W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[Crossref]

Kane, C.L.

M.Z. Hasan and C.L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).
[Crossref]

Karski, M.

A. Steffen, A. Alberti, W. Alt, N. Belmechri, S. Hild, M. Karski, A. Widera, and D. Meschede, “Digital atom interferometer with single particle control on a discretized space-time geometry,” Proc. Natl. Acad. Sci. U. S. A. 109, 9770—9774 (2012).
[Crossref]

M. Karski, L. Förster, J. M. Choi, W. Alt, A. Widera, and D. Meschede, “Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging,” Phys. Rev. Lett. 102, 053001 (2009).
[Crossref] [PubMed]

Kronjäger, J.

C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K. Bongs, and K. Sengstock, “Ultracold quantum gases in triangular optical lattices,” New J. Phys. 12, 065025 (2010).
[Crossref]

Kumar, R.

R. Kumar, V. Gokhroo, A. Maimaiti, K. Deasy, M. C. Frawley, and S. Nic Chormaic, “Interaction of laser-cooled 87Rb atoms with higher order modes of an optical nanofiber,” arXiv:1311.6860.

Le, V. H.

J.M. Ward, V. H. Le, A. Maimaiti, and S. Nic. Chormaic, “Optical micro- and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

Le Kien, F.

F. Le Kien and K. Hakuta, “Cooperative enhancement of channeling of emission from atoms into a nanofiber,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 3, 035001 (2012).

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluoresence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15 (9), 5431–5438 (2007).
[Crossref] [PubMed]

F. Le Kien, S. Dutta-Gupta, K. P. Nayak, and K. Hakuta, “Nanofiber-mediated radiative transfer between two distant atoms,” Phys. Rev. A 72, 063815 (2005).
[Crossref]

F. Le Kien, S. Dutta-Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

F. Le Kien, V.I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[Crossref]

Lewenstein, M.

M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems (Oxford University, 2012).
[Crossref]

Lou, J.

L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Maimaiti, A.

J.M. Ward, V. H. Le, A. Maimaiti, and S. Nic. Chormaic, “Optical micro- and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

R. Kumar, V. Gokhroo, A. Maimaiti, K. Deasy, M. C. Frawley, and S. Nic Chormaic, “Interaction of laser-cooled 87Rb atoms with higher order modes of an optical nanofiber,” arXiv:1311.6860.

Mandel, O.

M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002).
[Crossref] [PubMed]

Marcuse, D.

See, for example; D. Marcuse, Light Transmission Optics (Krieger, 1989);A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Masalov, A.V.

A.V. Masalov and V.G. Minogin, “Pumping of higher-modes of an optical nanofiber by laser excited atoms,” Laser Phys. Lett. 10, 075203 (2013).
[Crossref]

Maxwell, I.

L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Mazur, E.

L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Melentiev, P. N.

Meschede, D.

A. Steffen, A. Alberti, W. Alt, N. Belmechri, S. Hild, M. Karski, A. Widera, and D. Meschede, “Digital atom interferometer with single particle control on a discretized space-time geometry,” Proc. Natl. Acad. Sci. U. S. A. 109, 9770—9774 (2012).
[Crossref]

M. Karski, L. Förster, J. M. Choi, W. Alt, A. Widera, and D. Meschede, “Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging,” Phys. Rev. Lett. 102, 053001 (2009).
[Crossref] [PubMed]

Minogin, V.G.

A.V. Masalov and V.G. Minogin, “Pumping of higher-modes of an optical nanofiber by laser excited atoms,” Laser Phys. Lett. 10, 075203 (2013).
[Crossref]

Morinaga, M.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluoresence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15 (9), 5431–5438 (2007).
[Crossref] [PubMed]

Morrissey, M.J.

M.J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical trap characteristics,” Rev. Sci. Instrum. 80, 053102 (2009).
[Crossref] [PubMed]

Nayak, K. P.

K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofiber,” New Journal of Physics 10, 053003 (2008).
[Crossref]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15 (9), 5431–5438 (2007).
[Crossref] [PubMed]

F. Le Kien, S. Dutta-Gupta, K. P. Nayak, and K. Hakuta, “Nanofiber-mediated radiative transfer between two distant atoms,” Phys. Rev. A 72, 063815 (2005).
[Crossref]

Nic Chormaic, S.

M.J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical trap characteristics,” Rev. Sci. Instrum. 80, 053102 (2009).
[Crossref] [PubMed]

R. Kumar, V. Gokhroo, A. Maimaiti, K. Deasy, M. C. Frawley, and S. Nic Chormaic, “Interaction of laser-cooled 87Rb atoms with higher order modes of an optical nanofiber,” arXiv:1311.6860.

Nic Chormaic, Síle

Síle Nic Chormaic, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan, (personal communication, 2014).

Nic. Chormaic, S.

J.M. Ward, V. H. Le, A. Maimaiti, and S. Nic. Chormaic, “Optical micro- and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

Noda, T.

M. Fujiwara, K. Toubaru, T. Noda, H-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref] [PubMed]

Peng, A.

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[Crossref] [PubMed]

Rauschenbeutel, A.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S.T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010)
[Crossref] [PubMed]

Reitz, D.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S.T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010)
[Crossref] [PubMed]

Robert, J.

M. Boustimi, J. Baudon, P. Candori, and J. Robert, “van der Waals interaction between an atom and a metallic nanowire,” Phys. Rev. B 65, 155402 (2002).
[Crossref]

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S.T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010)
[Crossref] [PubMed]

Sanpera, A.

M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems (Oxford University, 2012).
[Crossref]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S.T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010)
[Crossref] [PubMed]

Sengstock, K.

C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K. Bongs, and K. Sengstock, “Ultracold quantum gases in triangular optical lattices,” New J. Phys. 12, 065025 (2010).
[Crossref]

Shen, M.

L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Soltan-Panahi, P.

C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K. Bongs, and K. Sengstock, “Ultracold quantum gases in triangular optical lattices,” New J. Phys. 12, 065025 (2010).
[Crossref]

Søndergaard, T.

T. Søndergaard and B. Tromborg, “General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier,” Phys. Rev. A 64, 033812 (2001).
[Crossref]

Steffen, A.

A. Steffen, A. Alberti, W. Alt, N. Belmechri, S. Hild, M. Karski, A. Widera, and D. Meschede, “Digital atom interferometer with single particle control on a discretized space-time geometry,” Proc. Natl. Acad. Sci. U. S. A. 109, 9770—9774 (2012).
[Crossref]

Takeuchi, S.

M. Fujiwara, K. Toubaru, T. Noda, H-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref] [PubMed]

Tong, L.

L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Toubaru, K.

M. Fujiwara, K. Toubaru, T. Noda, H-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref] [PubMed]

Tromborg, B.

T. Søndergaard and B. Tromborg, “General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier,” Phys. Rev. A 64, 033812 (2001).
[Crossref]

Vetsch, E.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S.T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010)
[Crossref] [PubMed]

Ward, J.M.

J.M. Ward, V. H. Le, A. Maimaiti, and S. Nic. Chormaic, “Optical micro- and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

Widera, A.

A. Steffen, A. Alberti, W. Alt, N. Belmechri, S. Hild, M. Karski, A. Widera, and D. Meschede, “Digital atom interferometer with single particle control on a discretized space-time geometry,” Proc. Natl. Acad. Sci. U. S. A. 109, 9770—9774 (2012).
[Crossref]

M. Karski, L. Förster, J. M. Choi, W. Alt, A. Widera, and D. Meschede, “Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging,” Phys. Rev. Lett. 102, 053001 (2009).
[Crossref] [PubMed]

Wu, Y.

M.J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical trap characteristics,” Rev. Sci. Instrum. 80, 053102 (2009).
[Crossref] [PubMed]

Yalla, R.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluoresence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

Zhao, H-Q.

M. Fujiwara, K. Toubaru, T. Noda, H-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref] [PubMed]

Zoller, P.

D. Jaksch, H.J. Briegel, J.I. Cirac, C.W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[Crossref]

Adv. Nat. Sci.: Nanosci. Nanotechnol. (1)

F. Le Kien and K. Hakuta, “Cooperative enhancement of channeling of emission from atoms into a nanofiber,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 3, 035001 (2012).

Laser Phys. Lett. (1)

A.V. Masalov and V.G. Minogin, “Pumping of higher-modes of an optical nanofiber by laser excited atoms,” Laser Phys. Lett. 10, 075203 (2013).
[Crossref]

Nano Lett. (1)

M. Fujiwara, K. Toubaru, T. Noda, H-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref] [PubMed]

Nature (3)

M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002).
[Crossref] [PubMed]

L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice,” Nature 462, 74–77 (2009).
[Crossref] [PubMed]

New J. Phys. (1)

C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K. Bongs, and K. Sengstock, “Ultracold quantum gases in triangular optical lattices,” New J. Phys. 12, 065025 (2010).
[Crossref]

New Journal of Physics (1)

K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofiber,” New Journal of Physics 10, 053003 (2008).
[Crossref]

Opt. Express (1)

Phys. Rev. A (5)

T. Søndergaard and B. Tromborg, “General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier,” Phys. Rev. A 64, 033812 (2001).
[Crossref]

F. Le Kien, S. Dutta-Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

F. Le Kien, S. Dutta-Gupta, K. P. Nayak, and K. Hakuta, “Nanofiber-mediated radiative transfer between two distant atoms,” Phys. Rev. A 72, 063815 (2005).
[Crossref]

F. Le Kien, V.I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[Crossref]

T. Hennessy and Th. Busch, “Creating atom-number states around tapered optical fibers by loading from an optical lattice,” Phys. Rev. A 85, 053418 (2012).
[Crossref]

Phys. Rev. B (1)

M. Boustimi, J. Baudon, P. Candori, and J. Robert, “van der Waals interaction between an atom and a metallic nanowire,” Phys. Rev. B 65, 155402 (2002).
[Crossref]

Phys. Rev. Lett. (4)

D. Jaksch, H.J. Briegel, J.I. Cirac, C.W. Gardiner, and P. Zoller, “Entanglement of atoms via cold controlled collisions,” Phys. Rev. Lett. 82, 1975–1978 (1999).
[Crossref]

M. Karski, L. Förster, J. M. Choi, W. Alt, A. Widera, and D. Meschede, “Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging,” Phys. Rev. Lett. 102, 053001 (2009).
[Crossref] [PubMed]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluoresence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S.T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010)
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U. S. A. (1)

A. Steffen, A. Alberti, W. Alt, N. Belmechri, S. Hild, M. Karski, A. Widera, and D. Meschede, “Digital atom interferometer with single particle control on a discretized space-time geometry,” Proc. Natl. Acad. Sci. U. S. A. 109, 9770—9774 (2012).
[Crossref]

Rev. Mod. Phys. (1)

M.Z. Hasan and C.L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).
[Crossref]

Rev. Sci. Instrum. (2)

M.J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, and S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical trap characteristics,” Rev. Sci. Instrum. 80, 053102 (2009).
[Crossref] [PubMed]

J.M. Ward, V. H. Le, A. Maimaiti, and S. Nic. Chormaic, “Optical micro- and nanofiber pulling rig,” Rev. Sci. Instrum. 85, 111501 (2014).
[Crossref]

Other (6)

The refractive index n1 of fused silica (SiO2) can be calculated using a Sellmeier-type dispersion formula, taking the refractive index of the vacuum n2 = 1n1−1=0.696166λ2λ2−(0.068404)2+0.407942λ2λ2−(0.116241)2+0.897479λ2λ2−(9.896161)2where λ is in units of μ m.

See, for example; D. Marcuse, Light Transmission Optics (Krieger, 1989);A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems (Oxford University, 2012).
[Crossref]

See, for example, J.D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1998).

R. Kumar, V. Gokhroo, A. Maimaiti, K. Deasy, M. C. Frawley, and S. Nic Chormaic, “Interaction of laser-cooled 87Rb atoms with higher order modes of an optical nanofiber,” arXiv:1311.6860.

Síle Nic Chormaic, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan, (personal communication, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1:
Fig. 1: (a) Schematic of a tapered optical nanofiber aligned perpendiculary to a periodic array of trapped atoms. In reality the untapered ends have a radius on the order of 125 μm and the nanofiber waist is on the order of hundreds of nanometers. The typical length of the tapered region is between 3 and 10 mm, depending on the tapering technique employed [3]. (b) Top-view of the fiber and atom configuration. The dipoles are arranged in a line (so that they lie end to end) and perpendicular to the fiber. Not drawn to scale.
Fig. 2:
Fig. 2: (a) Emission rate into the HE11 mode of a fiber with fixed fiber radius a = 150 nm at a distance, l, of 200 nm (solid line), 250 nm (dashed line) and 300 nm (starred line) from the row of atoms. (b) Emission rate into the same mode, but for fibers with different radii at fixed atom-fiber distance l = 200 nm. The fiber radius is 150 nm (solid line), 200 nm (dashed line), 250 nm (starred line) and 300 nm (circled line).
Fig. 3:
Fig. 3: Combined emission rates into the four available modes in a fiber of radius 400 nm at a distance of 200 nm (solid), 250 nm (dashed) and 300 nm (starred). The overall rates of emission are higher than for a single-mode fiber, however, the visibility decreases faster with increasing distance between the atoms and the fiber.
Fig. 4:
Fig. 4: Potentials along the shortest distance between the fiber surface and the atom. The solid line represents the undisturbed harmonic oscillator potential assumed to have a frequency of ω=500 kHz and the starred line is the van der Waals potential give in Eq. (9). The dashed line is the combined potential of all individual ones. (a) and (b) show that for l ≥ 250 nm the trapping site is stable, whereas it can be seen in (c) that for l = 200 nm the minimum of the joint potential is lost. In (d) a blue-detuned field has been added to the fiber to compensate the attractive van der Waals force. The circled line shows the combined van der Waals and blue-detuned potential, as given in Eq. (11). One can see that this allows for the restoration of the trapping site.
Fig. 5:
Fig. 5: (a) At the bottom of this figure, 10 atoms are arranged in a row, equidistant from one another with a spacing of λ/2 = 640 nm. Moving towards the top, every other atom shifts closer to its neighbor on the right. The emission from two different atoms can be distinguished until their separation is closer than approximately 500 nm. (b) Here we show three slices from Fig. 5(a) when the pair separation is equal to 640 nm (starred line), 480 nm (solid line) and 320 nm (dashed line). We also indicate the colorbar axis in Fig. 5(a), which ranges from dark blue when low to bright red when high.

Tables (2)

Tables Icon

Table 1: Numerical values of β and β′ for the fundamental HE11 mode for the λ0 = 852 nm transition in 133Cs for a fused silica fiber with n1 = 1.4525.

Tables Icon

Table 2: Numerical values of β and β′ for a fiber of radius a = 400 nm fiber for the first four guided modes, again at the λ0 = 852 nm transition in 133Cs.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

U dip = 1 2 d E = 1 2 ε 0 c Re ( α ) I .
W 0 = 1 4 π ε 0 4 d 2 ω 0 3 3 c 3 ,
W guid = W 0 3 λ 0 2 β 8 π | E | 2 ,
W HE 11 ( r ) = W 0 3 λ 2 β 8 π 2 a 2 ( 1 n 1 2 N 1 + n 2 2 N 2 ) J 1 2 ( h a ) K 1 2 ( q a ) × [ K 1 2 ( q r ) + β 2 2 q 2 [ ( 1 s ) 2 K 0 2 ( q r ) + ( 1 + s ) 2 K 2 2 ( q r ) ] ] ,
W TE 01 ( r ) = W 0 3 λ 2 β 8 π 2 q 2 a 4 ( 1 n 1 2 P 1 + n 2 2 P 2 ) K 1 2 ( q r ) ,
W TM 01 ( r ) = W 0 3 λ 2 β 8 π 2 a 2 ( 1 n 1 2 Q 1 + n 2 2 Q 2 ) β 2 q 2 K 0 2 ( q r ) K 1 2 ( q r ) ,
W HE 21 ( r ) = W 0 3 λ 2 β 8 π 2 a 2 ( 1 n 1 2 R 1 + n 2 2 R 2 ) J 2 2 ( h a ) K 2 2 ( q a ) × [ K 2 2 ( q r ) + β 2 2 q 2 [ ( 1 u ) 2 K 1 2 ( q r ) + ( 1 + u ) 2 K 3 2 ( q r ) ] ] .
q = β 2 n 2 2 k 2 and h = n 1 2 k 2 β 2 .
V flat = 1 ( r a ) 3 16 π 2 ε 0 0 d ξ α ( i ξ ) = C 3 ( r a ) 3 .
| E | 2 = 2 A 2 [ ( 1 s ) 2 K 0 2 ( q r ) + ( 1 + s ) 2 K 2 2 ( q r ) + 2 q 2 β 2 K 1 2 ( q r ) ] .
U = 1 4 α | E | 2 C 3 ( r a ) 3 .
N 1 = J 1 2 ( h a ) J 0 ( h a ) J 2 ( h a ) + β 2 2 h 2 [ ( 1 s ) 2 ( J 0 2 ( h a ) + J 1 2 ( h a ) ) + ( 1 + s ) 2 ( J 2 2 ( h a ) + J 1 ( h a ) J 3 ( h a ) ) ]
N 2 = J 1 2 ( h a ) K 1 2 ( q ) [ K 0 ( q a ) K 2 ( q a ) K 1 2 ( q a ) + β 2 2 q 2 [ ( 1 s ) 2 ( K 1 2 ( q a ) + K 0 2 ( q a ) ) + ( 1 + s ) 2 ( K 1 ( q a ) K 3 ( q a ) K 2 2 ( q a ) ) ] ]
s = 1 / h 2 a 2 + 1 / q 2 a 2 J 1 ( h a ) / h a J 1 ( h a ) + K 1 ( q a ) / q a K 1 ( q a )
P 1 = 1 a 2 h 2 K 0 2 ( q a ) J 0 2 ( h a ) ( J 1 2 ( h a ) J 0 ( h a ) J 2 ( h a ) )
P 2 = 1 a 2 q 2 ( K 0 ( q a ) K 2 ( q a ) K 1 2 ( q a ) )
Q 1 = K 0 2 ( q a ) J 0 2 ( h a ) [ J 0 2 ( h a ) + n 1 2 k 2 h 2 J 1 2 ( h a ) β 2 h 2 J 0 ( h a ) J 2 ( h a ) ]
Q 2 = β 2 q 2 K 0 ( q a ) K 2 ( q a ) K 0 2 ( q a ) n 2 2 k 2 q 2 K 1 2 ( q a )
R 1 = J 2 2 ( h a ) J 1 ( h a ) J 3 ( h a ) + β 2 2 h 2 [ ( 1 u ) 2 ( J 1 2 ( h a ) J 0 ( h a ) J 2 ( h a ) ) + ( 1 + u ) 2 ( J 3 2 ( h a ) J 2 ( h a ) J 4 ( h a ) ) ]
R 2 = J 2 2 ( h a ) K 2 2 ( q a ) [ K 1 ( q a ) K 3 ( q a ) K 2 2 ( q a ) + β 2 2 q 2 [ ( 1 u ) 2 ( K 0 ( q a ) K 2 ( q a ) K 1 2 ( q a ) ) + ( 1 + u ) 2 ( K 2 ( q a ) K 4 ( q a ) K 3 2 ( q a ) ) ] ]
u = 2 ( 1 / h 2 a 2 + 1 / q 2 a 2 ) J 2 ( h a ) / h a J 2 ( h a ) + K 2 ( q a ) / q a K 2 ( q a )
A = β 2 q J 1 ( h a ) / K 1 ( q a ) π a 2 ( n 1 2 N 1 + n 2 2 N 2 )

Metrics