Abstract

Nonlinear absorption – such as green-induced infrared absorption (GRIIRA) – increases the risk of the catastrophic damage during high peak- power wavelength conversion. We propose a novel concept to suppress parasitic green second-harmonic generation (SHG) in optical parametric oscillation (OPO) using specially engineered quasi-phase-matched (QPM) structures. This selective suppression was achieved by relative π-phase shift in only SHG not OPO. Compared with a periodic device, a parasitic-light-suppressed (PLS) QPM device produced smaller normalized conversion efficiency in green and maintained singly resonant OPO performance.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-energy quasi-phase-matched optical parametric oscillation in a 3-mm-thick periodically poled MgO:LiNbO3 device

Hideki Ishizuki, Ichiro Shoji, and Takunori Taira
Opt. Lett. 29(21) 2527-2529 (2004)

Design constraints of optical parametric chirped pulse amplification based on chirped quasi-phase-matching gratings

C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller
Opt. Express 22(8) 9627-9658 (2014)

Optical parametric oscillation in quasi-phase-matched GaAs

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier
Opt. Lett. 29(16) 1912-1914 (2004)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett. 14(24), 973–976 (1965).
    [Crossref]
  2. S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
    [Crossref]
  3. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
    [Crossref]
  4. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
    [Crossref]
  5. S. Stivala, A. C. Busacca, A. Pasquazi, R. L. Oliveri, R. Morandotti, and G. Assanto, “Random quasi-phase-matched second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 35(3), 363–365 (2010).
    [Crossref] [PubMed]
  6. J. S. Pelc, C. R. Phillips, D. Chang, C. Langrock, and M. M. Fejer, “Efficiency pedestal in quasi-phase-matching devices with random duty-cycle errors,” Opt. Lett. 36(6), 864–866 (2011).
    [Crossref] [PubMed]
  7. N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett. 85, 5134–5136 (2004).
    [Crossref]
  8. G. Hansson, H. Karlsson, and F. Laurell, “Unstable resonator optical parametric oscillator based on quasi-phase-matched RbTiOAsO4,” Appl. Opt. 40(30), 5446–5451 (2001).
    [Crossref] [PubMed]
  9. T. Südmeyer, J. Aus Der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
    [Crossref]
  10. J. Hirohashi, T. Tago, O. Nakamura, A. Miyamoto, and Y. Furukawa, “Characterization of GRIIRA properties in LiNbO3 and LiTaO3 with different compositions and doping,” Proc. SPIE 6875, 687516 (2008).
  11. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
    [Crossref]
  12. S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
    [Crossref]
  13. F. R. Wagner, J.-Y. Natoli, M. Commandré, and G. Duchateau, “Potassium titanyl phosphate at its limits: A study on nanosecond laser induced damage,” in Proc. Nonlinear Optics (NLO), Hawaii, United States (2013), NW4A.25.
  14. S. Kurimura and Y. Uesu, “Proposal of a modulator-integrated structure in quasi-phase-matched second harmonic generation,” Jpn. J. Appl. Phys. 33(9B), 5457–5459 (1994).
    [Crossref]
  15. S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically-poled ferroelectric domains in quasi-phase-matched wavelength converters,” J. Appl. Phys. 81(1), 369–375 (1997).
    [Crossref]
  16. Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223(4-6), 417–423 (2003).
    [Crossref]
  17. Y. Oki, H. Onda, T. Okaguchi, K. Ohnishi, and T. Okada, “Development of a quasi-phase-matched, second-harmonic generation periodically poled lithium niobate waveguide with an integrated electro-optical modulator,” Opt. Lett. 31(10), 1492–1494 (2006).
    [Crossref] [PubMed]
  18. J. P. Fève and B. Boulanger, “Suppression of quadratic cascading in four-photon interactions using periodically poled media,” Phys. Rev. A 65(6), 063814 (2002).
    [Crossref]
  19. H. H. Lim, S. Kurimura, T. Katagai, and I. Shoji, “Temperature-dependent Sellmeier equation for refractive index of 1.0 mol% Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 52(3R), 032601 (2013).
    [Crossref]
  20. N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(10A), L1265–L1267 (2004).
    [Crossref]
  21. S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, “QPM wavelength converters based on stoichiometric lithium tantalite,” Proc. Advanced Solid State Photonics (ASSP), Vienna, Austria (2005), TuB18.
  22. K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi-phase-matched devices by far-field diffraction pattern analysis,” Proc. SPIE 7197, 71970R (2009).
  23. K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express 17(20), 17862–17867 (2009).
    [Crossref] [PubMed]

2013 (1)

H. H. Lim, S. Kurimura, T. Katagai, and I. Shoji, “Temperature-dependent Sellmeier equation for refractive index of 1.0 mol% Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 52(3R), 032601 (2013).
[Crossref]

2011 (1)

2010 (1)

2009 (2)

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express 17(20), 17862–17867 (2009).
[Crossref] [PubMed]

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi-phase-matched devices by far-field diffraction pattern analysis,” Proc. SPIE 7197, 71970R (2009).

2008 (1)

J. Hirohashi, T. Tago, O. Nakamura, A. Miyamoto, and Y. Furukawa, “Characterization of GRIIRA properties in LiNbO3 and LiTaO3 with different compositions and doping,” Proc. SPIE 6875, 687516 (2008).

2006 (1)

2004 (3)

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett. 85, 5134–5136 (2004).
[Crossref]

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(10A), L1265–L1267 (2004).
[Crossref]

2003 (1)

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223(4-6), 417–423 (2003).
[Crossref]

2002 (1)

J. P. Fève and B. Boulanger, “Suppression of quadratic cascading in four-photon interactions using periodically poled media,” Phys. Rev. A 65(6), 063814 (2002).
[Crossref]

2001 (3)

G. Hansson, H. Karlsson, and F. Laurell, “Unstable resonator optical parametric oscillator based on quasi-phase-matched RbTiOAsO4,” Appl. Opt. 40(30), 5446–5451 (2001).
[Crossref] [PubMed]

T. Südmeyer, J. Aus Der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

1997 (2)

S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically-poled ferroelectric domains in quasi-phase-matched wavelength converters,” J. Appl. Phys. 81(1), 369–375 (1997).
[Crossref]

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

1995 (1)

1994 (1)

S. Kurimura and Y. Uesu, “Proposal of a modulator-integrated structure in quasi-phase-matched second harmonic generation,” Jpn. J. Appl. Phys. 33(9B), 5457–5459 (1994).
[Crossref]

1979 (1)

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
[Crossref]

1965 (1)

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett. 14(24), 973–976 (1965).
[Crossref]

Alexandrovski, A.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Assanto, G.

Aus Der Au, J.

T. Südmeyer, J. Aus Der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
[Crossref]

Boulanger, B.

J. P. Fève and B. Boulanger, “Suppression of quadratic cascading in four-photon interactions using periodically poled media,” Phys. Rev. A 65(6), 063814 (2002).
[Crossref]

Brosnan, S. J.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
[Crossref]

Busacca, A. C.

Byer, R. L.

Cha, M.

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi-phase-matched devices by far-field diffraction pattern analysis,” Proc. SPIE 7197, 71970R (2009).

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express 17(20), 17862–17867 (2009).
[Crossref] [PubMed]

Chang, D.

Chen, Y. F.

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223(4-6), 417–423 (2003).
[Crossref]

Chen, Y. H.

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223(4-6), 417–423 (2003).
[Crossref]

Eckardt, R. C.

Fan, F. C.

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223(4-6), 417–423 (2003).
[Crossref]

Fejer, M. M.

Fève, J. P.

J. P. Fève and B. Boulanger, “Suppression of quadratic cascading in four-photon interactions using periodically poled media,” Phys. Rev. A 65(6), 063814 (2002).
[Crossref]

Foulon, G.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Furukawa, Y.

J. Hirohashi, T. Tago, O. Nakamura, A. Miyamoto, and Y. Furukawa, “Characterization of GRIIRA properties in LiNbO3 and LiTaO3 with different compositions and doping,” Proc. SPIE 6875, 687516 (2008).

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Giordmaine, J. A.

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett. 14(24), 973–976 (1965).
[Crossref]

Hanna, D. C.

T. Südmeyer, J. Aus Der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

Hansson, G.

Hirohashi, J.

J. Hirohashi, T. Tago, O. Nakamura, A. Miyamoto, and Y. Furukawa, “Characterization of GRIIRA properties in LiNbO3 and LiTaO3 with different compositions and doping,” Proc. SPIE 6875, 687516 (2008).

Huang, Y. C.

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223(4-6), 417–423 (2003).
[Crossref]

Kang, Y. S.

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi-phase-matched devices by far-field diffraction pattern analysis,” Proc. SPIE 7197, 71970R (2009).

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express 17(20), 17862–17867 (2009).
[Crossref] [PubMed]

Karlsson, H.

Katagai, T.

H. H. Lim, S. Kurimura, T. Katagai, and I. Shoji, “Temperature-dependent Sellmeier equation for refractive index of 1.0 mol% Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 52(3R), 032601 (2013).
[Crossref]

Keller, U.

T. Südmeyer, J. Aus Der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

Kim, B. J.

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi-phase-matched devices by far-field diffraction pattern analysis,” Proc. SPIE 7197, 71970R (2009).

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express 17(20), 17862–17867 (2009).
[Crossref] [PubMed]

Kitamura, K.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett. 85, 5134–5136 (2004).
[Crossref]

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(10A), L1265–L1267 (2004).
[Crossref]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Kurimura, S.

H. H. Lim, S. Kurimura, T. Katagai, and I. Shoji, “Temperature-dependent Sellmeier equation for refractive index of 1.0 mol% Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 52(3R), 032601 (2013).
[Crossref]

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(10A), L1265–L1267 (2004).
[Crossref]

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett. 85, 5134–5136 (2004).
[Crossref]

S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically-poled ferroelectric domains in quasi-phase-matched wavelength converters,” J. Appl. Phys. 81(1), 369–375 (1997).
[Crossref]

S. Kurimura and Y. Uesu, “Proposal of a modulator-integrated structure in quasi-phase-matched second harmonic generation,” Jpn. J. Appl. Phys. 33(9B), 5457–5459 (1994).
[Crossref]

Lan, Y. P.

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223(4-6), 417–423 (2003).
[Crossref]

Langrock, C.

Laurell, F.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

G. Hansson, H. Karlsson, and F. Laurell, “Unstable resonator optical parametric oscillator based on quasi-phase-matched RbTiOAsO4,” Appl. Opt. 40(30), 5446–5451 (2001).
[Crossref] [PubMed]

Lim, H. H.

H. H. Lim, S. Kurimura, T. Katagai, and I. Shoji, “Temperature-dependent Sellmeier equation for refractive index of 1.0 mol% Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 52(3R), 032601 (2013).
[Crossref]

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi-phase-matched devices by far-field diffraction pattern analysis,” Proc. SPIE 7197, 71970R (2009).

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express 17(20), 17862–17867 (2009).
[Crossref] [PubMed]

Lin, Y. Y.

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223(4-6), 417–423 (2003).
[Crossref]

Miller, R. C.

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett. 14(24), 973–976 (1965).
[Crossref]

Miyamoto, A.

J. Hirohashi, T. Tago, O. Nakamura, A. Miyamoto, and Y. Furukawa, “Characterization of GRIIRA properties in LiNbO3 and LiTaO3 with different compositions and doping,” Proc. SPIE 6875, 687516 (2008).

Morandotti, R.

Myers, L. E.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12(11), 2102–2116 (1995).
[Crossref]

Nakamura, M.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett. 85, 5134–5136 (2004).
[Crossref]

Nakamura, O.

J. Hirohashi, T. Tago, O. Nakamura, A. Miyamoto, and Y. Furukawa, “Characterization of GRIIRA properties in LiNbO3 and LiTaO3 with different compositions and doping,” Proc. SPIE 6875, 687516 (2008).

Nomura, Y.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett. 85, 5134–5136 (2004).
[Crossref]

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(10A), L1265–L1267 (2004).
[Crossref]

Ohnishi, K.

Okada, T.

Okaguchi, T.

Oki, Y.

Oliveri, R. L.

Onda, H.

Pandiyan, K.

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi-phase-matched devices by far-field diffraction pattern analysis,” Proc. SPIE 7197, 71970R (2009).

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Nondestructive quality evaluation of periodically poled lithium niobate crystals by diffraction,” Opt. Express 17(20), 17862–17867 (2009).
[Crossref] [PubMed]

Paschotta, R.

T. Südmeyer, J. Aus Der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

Pasiskevicius, V.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

Pasquazi, A.

Pelc, J. S.

Phillips, C. R.

Pierce, J. W.

Ross, G. W.

T. Südmeyer, J. Aus Der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

Route, R. K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Sakuma, J.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett. 85, 5134–5136 (2004).
[Crossref]

Shoji, I.

H. H. Lim, S. Kurimura, T. Katagai, and I. Shoji, “Temperature-dependent Sellmeier equation for refractive index of 1.0 mol% Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 52(3R), 032601 (2013).
[Crossref]

Shy, J. T.

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223(4-6), 417–423 (2003).
[Crossref]

Smith, P. G. R.

T. Südmeyer, J. Aus Der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

Stivala, S.

Südmeyer, T.

T. Südmeyer, J. Aus Der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

Sumiyoshi, T.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett. 85, 5134–5136 (2004).
[Crossref]

Tago, T.

J. Hirohashi, T. Tago, O. Nakamura, A. Miyamoto, and Y. Furukawa, “Characterization of GRIIRA properties in LiNbO3 and LiTaO3 with different compositions and doping,” Proc. SPIE 6875, 687516 (2008).

Takada, Y.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett. 85, 5134–5136 (2004).
[Crossref]

Uesu, Y.

S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically-poled ferroelectric domains in quasi-phase-matched wavelength converters,” J. Appl. Phys. 81(1), 369–375 (1997).
[Crossref]

S. Kurimura and Y. Uesu, “Proposal of a modulator-integrated structure in quasi-phase-matched second harmonic generation,” Jpn. J. Appl. Phys. 33(9B), 5457–5459 (1994).
[Crossref]

Wang, S.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

Yu, N. E.

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(10A), L1265–L1267 (2004).
[Crossref]

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett. 85, 5134–5136 (2004).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, Y. Takada, J. Sakuma, and T. Sumiyoshi, “Efficient optical parametric oscillation based on periodically poled 1.0 mol% MgO-doped LiTaO3,” Appl. Phys. Lett. 85, 5134–5136 (2004).
[Crossref]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

IEEE J. Quantum Electron. (2)

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
[Crossref]

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

J. Appl. Phys. (2)

S. Kurimura and Y. Uesu, “Application of the second harmonic generation microscope to nondestructive observation of periodically-poled ferroelectric domains in quasi-phase-matched wavelength converters,” J. Appl. Phys. 81(1), 369–375 (1997).
[Crossref]

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96(4), 2023–2028 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

T. Südmeyer, J. Aus Der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

Jpn. J. Appl. Phys. (3)

H. H. Lim, S. Kurimura, T. Katagai, and I. Shoji, “Temperature-dependent Sellmeier equation for refractive index of 1.0 mol% Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 52(3R), 032601 (2013).
[Crossref]

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(10A), L1265–L1267 (2004).
[Crossref]

S. Kurimura and Y. Uesu, “Proposal of a modulator-integrated structure in quasi-phase-matched second harmonic generation,” Jpn. J. Appl. Phys. 33(9B), 5457–5459 (1994).
[Crossref]

Opt. Commun. (1)

Y. H. Chen, F. C. Fan, Y. Y. Lin, Y. C. Huang, J. T. Shy, Y. P. Lan, and Y. F. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223(4-6), 417–423 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (1)

J. P. Fève and B. Boulanger, “Suppression of quadratic cascading in four-photon interactions using periodically poled media,” Phys. Rev. A 65(6), 063814 (2002).
[Crossref]

Phys. Rev. Lett. (1)

J. A. Giordmaine and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. Lett. 14(24), 973–976 (1965).
[Crossref]

Proc. SPIE (2)

J. Hirohashi, T. Tago, O. Nakamura, A. Miyamoto, and Y. Furukawa, “Characterization of GRIIRA properties in LiNbO3 and LiTaO3 with different compositions and doping,” Proc. SPIE 6875, 687516 (2008).

K. Pandiyan, Y. S. Kang, H. H. Lim, B. J. Kim, and M. Cha, “Quality evaluation of quasi-phase-matched devices by far-field diffraction pattern analysis,” Proc. SPIE 7197, 71970R (2009).

Other (2)

S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, “QPM wavelength converters based on stoichiometric lithium tantalite,” Proc. Advanced Solid State Photonics (ASSP), Vienna, Austria (2005), TuB18.

F. R. Wagner, J.-Y. Natoli, M. Commandré, and G. Duchateau, “Potassium titanyl phosphate at its limits: A study on nanosecond laser induced damage,” in Proc. Nonlinear Optics (NLO), Hawaii, United States (2013), NW4A.25.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the proposed parasitic-light suppressed (PLS) structure.
Fig. 2
Fig. 2 Calculated fourth-order SH intensity (a) and first-order signal intensity in OPG (b) with pump wavelength of 1.064 μm for different number of clusters, S = 1, 2, 5, and 25, in the PLS structure. Parameters: Rp = 0.625, Λ = 32 μm, Δl = 4 μm.
Fig. 3
Fig. 3 Comparison of parasitic green SH powers in two periodic devices and two PLS devices. Solid line: quadratic dependence of SH power.
Fig. 4
Fig. 4 Captured far-field diffraction pattern and intensity profile at a local part of PLS 1. Clean separation of 4th order peak is observed as predicted in Fig. 2(a).
Fig. 5
Fig. 5 Comparison of OPO performance in two periodic devices and two PLS devices. Solid line: linear fitting for slope efficiency.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C ( z ) = k = 1 S j = 1 N Π ( z { ( j 1 ) Λ + R P Λ 2 + ( k 1 ) ( N Λ + Δ l ) } R P Λ ) Π ( z { ( j 1 ) Λ + ( 1 + R P ) Λ 2 + ( k 1 ) ( N Λ + Δ l ) } ( 1 R P ) Λ ) k = 2 S Π ( z { ( k 1 ) N Λ + ( k 2 ) Δ l + Δ l 2 } Δ l ) ,
S H G : P S H o u t η n o r m S H G P F 2 | 1 L 0 L C ( z ) E x p ( i Δ k m z ) d z | 2 ,
Δ k m = k S H 2 k F ,
O P G : P s o u t η n o r m O P G P p P i | 1 L 0 L C ( z ) E x p ( i Δ k n z ) d z | 2 ,
Δ k n = k p k s k i ,

Metrics