Abstract

We demonstrated a switchable reflective lens based on choleteric liquid crystal (CLC) with a plano-convex shape. The plano-convex CLC lens was fabricated by assembling a planar substrate and a concave substrate. The reflective CLC lens exhibits wavelength selectivity and handedness sensitivity like the conventional CLC cell. The plano-convex CLC lens acts as a biconvex lens with the same curvature due to the Bragg reflection of the CLC layer. In addition, the reflective CLC lens was defocused by applying external voltage.

©2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection

Ki-Han Kim, Hye-Jung Jin, Kyoung-Ho Park, Joun-Ho Lee, Jae Chang Kim, and Tae-Hoon Yoon
Opt. Express 18(16) 16745-16750 (2010)

Multi-plane augmented reality display based on cholesteric liquid crystal reflective films

Quanming Chen, Zenghui Peng, Yan Li, Shuxin Liu, Pengcheng Zhou, Jingyuan Gu, Jiangang Lu, Lishuang Yao, Min Wang, and Yikai Su
Opt. Express 27(9) 12039-12047 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  2. Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
    [Crossref]
  3. J.-H. Kim and S. Kumar, “Fabrication of electrically controllable microlens array using liquid crystals,” J. Lightwave Technol. 23(2), 628–632 (2005).
    [Crossref]
  4. M. Ye, Y. Yokoyama, and S. Sato, “Liquid crystal lens prepared utilizing patterned molecular orientations on cell walls,” Appl. Phys. Lett. 89(14), 141112 (2006).
    [Crossref]
  5. Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crysral layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
    [Crossref]
  6. N. A. Riza and M. C. Dejule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19(14), 1013–1015 (1994).
    [Crossref] [PubMed]
  7. A. F. Naumov, G. D. Love, M. Y. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-4-9-344 .
    [Crossref] [PubMed]
  8. H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [Crossref]
  9. D. Miyazaki, J. Tanida, and Y. Ichioka, “Reflective block optics for packaging of optical computing systems,” Opt. Lett. 19(17), 1281–1283 (1994).
    [Crossref] [PubMed]
  10. X. Wang, H. Dai, and K. Xu, “Tunable reflective lens array based on liquid crystal on silicon,” Opt. Express 13(2), 352–357 (2005), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-13-2-352 .
    [Crossref] [PubMed]
  11. P. G. de Gennes and J. Prost, The Principle of Liquid Crystals (Oxford University Press, 1993).

2007 (1)

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crysral layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

2006 (1)

M. Ye, Y. Yokoyama, and S. Sato, “Liquid crystal lens prepared utilizing patterned molecular orientations on cell walls,” Appl. Phys. Lett. 89(14), 141112 (2006).
[Crossref]

2005 (2)

2004 (1)

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

2003 (1)

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

1999 (1)

1994 (2)

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Choi, Y.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crysral layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

Dai, H.

Dejule, M. C.

Fan, Y.-H.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Gauza, S.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Ichioka, Y.

Kim, H.-R.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crysral layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

Kim, J.-H.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crysral layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

J.-H. Kim and S. Kumar, “Fabrication of electrically controllable microlens array using liquid crystals,” J. Lightwave Technol. 23(2), 628–632 (2005).
[Crossref]

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

Kumar, S.

Lee, K.-H.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crysral layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

Lee, S.-D.

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

Lee, Y.-M.

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crysral layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

Loktev, M. Y.

Love, G. D.

Miyazaki, D.

Naumov, A. F.

Park, J.-H.

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

Ren, H.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Riza, N. A.

Sato, S.

M. Ye, Y. Yokoyama, and S. Sato, “Liquid crystal lens prepared utilizing patterned molecular orientations on cell walls,” Appl. Phys. Lett. 89(14), 141112 (2006).
[Crossref]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Tanida, J.

Vladimirov, F. L.

Wang, X.

Wu, S.-T.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

Xu, K.

Ye, M.

M. Ye, Y. Yokoyama, and S. Sato, “Liquid crystal lens prepared utilizing patterned molecular orientations on cell walls,” Appl. Phys. Lett. 89(14), 141112 (2006).
[Crossref]

Yokoyama, Y.

M. Ye, Y. Yokoyama, and S. Sato, “Liquid crystal lens prepared utilizing patterned molecular orientations on cell walls,” Appl. Phys. Lett. 89(14), 141112 (2006).
[Crossref]

Appl. Phys. Lett. (3)

M. Ye, Y. Yokoyama, and S. Sato, “Liquid crystal lens prepared utilizing patterned molecular orientations on cell walls,” Appl. Phys. Lett. 89(14), 141112 (2006).
[Crossref]

Y. Choi, H.-R. Kim, K.-H. Lee, Y.-M. Lee, and J.-H. Kim, “A liquid crystalline polymer microlens array with tunable focal intensity by the polarization control of a liquid crysral layer,” Appl. Phys. Lett. 91(22), 221113 (2007).
[Crossref]

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[Crossref]

Other (1)

P. G. de Gennes and J. Prost, The Principle of Liquid Crystals (Oxford University Press, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Operating principle of the switchable reflective lens of the CLC. (a) reflected beam with circular polarization coinciding with the helix of the CLC is focused in the planar alignment of the CLC. (b) No reflection occurs at the homeotropic alignment under an applied voltage.
Fig. 2
Fig. 2 Schematic diagram of the fabrication process of the reflective CLC lens.
Fig. 3
Fig. 3 (a) FESEM image of the replicated polymer substrate with the shape of a concave lens, (b) POM image of the reflective CLC lens, and (c) the reflective spectra of the CLC lens (red squares) and the conventional CLC cell (black circles).
Fig. 4
Fig. 4 The microscopic reflection images of the reflective CLC lens array at a focal plane under (a) no applied voltage (planar alignment) and (b) applied voltage (homeotropic alignment). The inset presents an intensity profile and a Gaussian curve fit corresponding to the white line in Fig. 4(a). In the planar alignment (no applied voltage), the microscopic reflection images under (c) the right- and (d) the left-handed circular polarizers.
Fig. 5
Fig. 5 The focusing images of the letters “HY” in the reflective switchable CLC lens under (a) right- and (b) left-handed circular polarizers in the planar alignment (no applied voltage), and (c) the right-handed circular polarizer in a homeotropic alignment.

Metrics