Abstract

Coppery heat sink with micro pores and Sub-millimeter channel has been fabricated by direct laser sintering on the back of the silicon mirror. To verify the heat dissipation capability of the fabricated heat sink, a Twyman-Green interferometer was employed to measure the thermal deformation of the silicon mirror radiated by a high power laser. It is shown that the thermal deformation of the mirror increases with the irradiating time and laser intensity. The heat balance can be achieved after several seconds of laser irradiation even when the net absorbed laser power density is up to 5.3 × 105 W/m2. The time for reaching the heat balance also increases with the laser intensity. The maximum thermal deformation of the mirror is 0.65µm if the net absorbed laser power density is 5.3 × 105 W/m2.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Development of a unimorph deformable mirror with water cooling

Zhengxiong Zhu, Yan Li, Junjie Chen, Jianqiang Ma, and Jiaru Chu
Opt. Express 25(24) 29916-29926 (2017)

Temperature distributions and thermal deformations of mirror substrates in laser resonators

Yufeng Peng, Zuhai Cheng, Yaoning Zhang, and Junli Qiu
Appl. Opt. 40(27) 4824-4830 (2001)

Rare-earth-doped silica microchip laser fabricated by sintering nanoporous glass

Jinan Xia, Danping Chen, Jianrong Qiu, and Congshan Zhu
Opt. Lett. 30(1) 47-49 (2005)

References

  • View by:
  • |
  • |
  • |

  1. Y. F. Peng, Z. X. Sheng, H. Zhang, and X. W. Fan, “Influence of thermal deformations of the output windows of high-power laser systems on beam characteristics,” Appl. Opt. 43(35), 6465–6472 (2004).
    [Crossref] [PubMed]
  2. J. Bluege and L. Park, US Patent No. 5076348 (1991).
  3. J. H. Rosenfeld and M. T. North, “Porous media heat exchangers for cooling of high- power optical components,” Opt. Eng. 34(2), 335–341 (1995).
    [Crossref]
  4. K. H. Lee and O. J. Kim, “Analysis on the cooling performance of the thermoelectric micro-cooler,” Int. J. Heat Mass Tran. 50(9-10), 1982–1992 (2007).
    [Crossref]
  5. F. M. Anthony, “High heat load optics: an historical overview,” Opt. Eng. 34(2), 313–320 (1995).
    [Crossref]
  6. L. Kuhler, US Patent No. 6792016 (2002).
  7. D. B. Tuckerman and R. F. W. Pease, “High-Performance Heat Sinking for VLSI,” IEEE Electron Device Lett. 2(5), 126–129 (1981).
    [Crossref]
  8. L. Boteler, N. Jankowski, P. McCluskey, and B. Morgan, “Numerical investigation and sensitivity analysis of manifold micro-channel coolers,” Int. J. Heat Mass Tran. 55(25-26), 7698–7708 (2012).
    [Crossref]
  9. S. Ashman and S. Kandlikar, “A review of manufacturing processes for microchannel heat exchanger fabrication,” Fourth International Conference on Nanochannels, Microchannels and Minichannels, (Limerick, Ireland, 2006), ICNMM96121.
    [Crossref]
  10. H. H. Zhu, L. Lu, and J. Y. H. Fuh, “Development and characterisation of direct laser sintering Cu-based metal powder,” J. Mater. Process. Technol. 140(1-3), 314–317 (2003).
    [Crossref]
  11. F. Wang, J. Mei, and X. H. Wu, “Direct laser fabrication of Ti6Al4V/TiB,” J. Mater. Process. Technol. 195(1-3), 321–326 (2008).
    [Crossref]
  12. A. Simchi and H. Pohl, “Direct laser sintering of iron-graphite powder mixture,” Mater. Sci. Eng. A 383(2), 191–200 (2004).
    [Crossref]
  13. J. W. Xie, P. Fox, W. O’Neill, and C. J. Sutcliffe, “Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels,” J. Mater. Process. Technol. 170(3), 516–523 (2005).
    [Crossref]
  14. M. Erdal, S. Dag, Y. Jande, and C. M. Tekin, “Manufacturing of functionally graded porous products by selective laser sintering,” Mater. Sci. Forum 631, 253–258 (2010).
  15. V. V. Apollonov, A. I. Barchukov, V. I. Borodin, P. I. Bystrov, V. F. Goncharov, L. M. Ostrovskaya, A. M. Prokhorov, V. N. Rodin, E. V. Trushin, V. Y. Khomich, M. I. Tsypin, Y. F. Shevakin, and Y. S. Shur, “Possibility of using structures with open pores in construction of cooled laser mirrors,” Sov. J. Quantum Electron. 8(5), 672–673 (1978).
    [Crossref]
  16. V. V. Apollonov, S. Derzhavin, V. Kuzminov, D. Mashkovskiy, V. Timoshkin, and V. Philonenko, “Intensification of heat transfer in high-power laser diode bars by means of porous metal heat-sink,” Opt. Express 4(1), 27–32 (1999).
    [Crossref] [PubMed]
  17. V. V. Apollonov, P. I. Bystrov, Yu. A. Broval’skii, V. F. Goncharov, and A. M. Prokhorov, “On possible use of liquid-metal heat-transfer agents for cooling power-optics elements utilizing porous structures,” Kvantovaya Electron. 8, 1328–1331 (1981).
  18. V. V. Apollonov, P. I. Bystrov, V. F. Goncharov, A. M. Prokhorov, and V. Yu. Khomich, “Prospects for use of porous structures for cooling power optics components,” Kvantovaya Electron. 6, 2533–2545 (1979).
  19. A. A. Istratov and E. R. Weber, “Physics of Copper in Silicon,” J. Electrochem. Soc. 149(1), G21–G30 (2002).
    [Crossref]
  20. R. R. Chromik, W. K. Neils, and E. J. Cotts, “Thermodynamic and kinetic study of solid state reactions in the Cu–Si system,” J. Appl. Phys. 86(8), 4273–4281 (1999).
    [Crossref]
  21. J. G. M. Becht, F. J. J. van Loo, and R. Metselaar, “The influence of phosphorus on the solid state reaction between copper and silicon,” React. Solid 6(1), 45–59 (1988).
    [Crossref]
  22. V. V. Apollonov, “High-power optics and its new manifestations,” Laser Phys. 23(6), 063001 (2013).
    [Crossref]
  23. V. V. Apollonov, A. M. Prokhorov, and A. H. Guenther, “Power optics, problems, developments, and opportunities,” Laser Phys. 11, 930–933 (2001).
  24. V. V. Apollonov, “Power optics,” Quantum Electron. 44(2), 102–121 (2014).
    [Crossref]

2014 (1)

V. V. Apollonov, “Power optics,” Quantum Electron. 44(2), 102–121 (2014).
[Crossref]

2013 (1)

V. V. Apollonov, “High-power optics and its new manifestations,” Laser Phys. 23(6), 063001 (2013).
[Crossref]

2012 (1)

L. Boteler, N. Jankowski, P. McCluskey, and B. Morgan, “Numerical investigation and sensitivity analysis of manifold micro-channel coolers,” Int. J. Heat Mass Tran. 55(25-26), 7698–7708 (2012).
[Crossref]

2010 (1)

M. Erdal, S. Dag, Y. Jande, and C. M. Tekin, “Manufacturing of functionally graded porous products by selective laser sintering,” Mater. Sci. Forum 631, 253–258 (2010).

2008 (1)

F. Wang, J. Mei, and X. H. Wu, “Direct laser fabrication of Ti6Al4V/TiB,” J. Mater. Process. Technol. 195(1-3), 321–326 (2008).
[Crossref]

2007 (1)

K. H. Lee and O. J. Kim, “Analysis on the cooling performance of the thermoelectric micro-cooler,” Int. J. Heat Mass Tran. 50(9-10), 1982–1992 (2007).
[Crossref]

2005 (1)

J. W. Xie, P. Fox, W. O’Neill, and C. J. Sutcliffe, “Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels,” J. Mater. Process. Technol. 170(3), 516–523 (2005).
[Crossref]

2004 (2)

2003 (1)

H. H. Zhu, L. Lu, and J. Y. H. Fuh, “Development and characterisation of direct laser sintering Cu-based metal powder,” J. Mater. Process. Technol. 140(1-3), 314–317 (2003).
[Crossref]

2002 (1)

A. A. Istratov and E. R. Weber, “Physics of Copper in Silicon,” J. Electrochem. Soc. 149(1), G21–G30 (2002).
[Crossref]

2001 (1)

V. V. Apollonov, A. M. Prokhorov, and A. H. Guenther, “Power optics, problems, developments, and opportunities,” Laser Phys. 11, 930–933 (2001).

1999 (2)

1995 (2)

F. M. Anthony, “High heat load optics: an historical overview,” Opt. Eng. 34(2), 313–320 (1995).
[Crossref]

J. H. Rosenfeld and M. T. North, “Porous media heat exchangers for cooling of high- power optical components,” Opt. Eng. 34(2), 335–341 (1995).
[Crossref]

1988 (1)

J. G. M. Becht, F. J. J. van Loo, and R. Metselaar, “The influence of phosphorus on the solid state reaction between copper and silicon,” React. Solid 6(1), 45–59 (1988).
[Crossref]

1981 (2)

V. V. Apollonov, P. I. Bystrov, Yu. A. Broval’skii, V. F. Goncharov, and A. M. Prokhorov, “On possible use of liquid-metal heat-transfer agents for cooling power-optics elements utilizing porous structures,” Kvantovaya Electron. 8, 1328–1331 (1981).

D. B. Tuckerman and R. F. W. Pease, “High-Performance Heat Sinking for VLSI,” IEEE Electron Device Lett. 2(5), 126–129 (1981).
[Crossref]

1979 (1)

V. V. Apollonov, P. I. Bystrov, V. F. Goncharov, A. M. Prokhorov, and V. Yu. Khomich, “Prospects for use of porous structures for cooling power optics components,” Kvantovaya Electron. 6, 2533–2545 (1979).

1978 (1)

V. V. Apollonov, A. I. Barchukov, V. I. Borodin, P. I. Bystrov, V. F. Goncharov, L. M. Ostrovskaya, A. M. Prokhorov, V. N. Rodin, E. V. Trushin, V. Y. Khomich, M. I. Tsypin, Y. F. Shevakin, and Y. S. Shur, “Possibility of using structures with open pores in construction of cooled laser mirrors,” Sov. J. Quantum Electron. 8(5), 672–673 (1978).
[Crossref]

Anthony, F. M.

F. M. Anthony, “High heat load optics: an historical overview,” Opt. Eng. 34(2), 313–320 (1995).
[Crossref]

Apollonov, V. V.

V. V. Apollonov, “Power optics,” Quantum Electron. 44(2), 102–121 (2014).
[Crossref]

V. V. Apollonov, “High-power optics and its new manifestations,” Laser Phys. 23(6), 063001 (2013).
[Crossref]

V. V. Apollonov, A. M. Prokhorov, and A. H. Guenther, “Power optics, problems, developments, and opportunities,” Laser Phys. 11, 930–933 (2001).

V. V. Apollonov, S. Derzhavin, V. Kuzminov, D. Mashkovskiy, V. Timoshkin, and V. Philonenko, “Intensification of heat transfer in high-power laser diode bars by means of porous metal heat-sink,” Opt. Express 4(1), 27–32 (1999).
[Crossref] [PubMed]

V. V. Apollonov, P. I. Bystrov, Yu. A. Broval’skii, V. F. Goncharov, and A. M. Prokhorov, “On possible use of liquid-metal heat-transfer agents for cooling power-optics elements utilizing porous structures,” Kvantovaya Electron. 8, 1328–1331 (1981).

V. V. Apollonov, P. I. Bystrov, V. F. Goncharov, A. M. Prokhorov, and V. Yu. Khomich, “Prospects for use of porous structures for cooling power optics components,” Kvantovaya Electron. 6, 2533–2545 (1979).

V. V. Apollonov, A. I. Barchukov, V. I. Borodin, P. I. Bystrov, V. F. Goncharov, L. M. Ostrovskaya, A. M. Prokhorov, V. N. Rodin, E. V. Trushin, V. Y. Khomich, M. I. Tsypin, Y. F. Shevakin, and Y. S. Shur, “Possibility of using structures with open pores in construction of cooled laser mirrors,” Sov. J. Quantum Electron. 8(5), 672–673 (1978).
[Crossref]

Barchukov, A. I.

V. V. Apollonov, A. I. Barchukov, V. I. Borodin, P. I. Bystrov, V. F. Goncharov, L. M. Ostrovskaya, A. M. Prokhorov, V. N. Rodin, E. V. Trushin, V. Y. Khomich, M. I. Tsypin, Y. F. Shevakin, and Y. S. Shur, “Possibility of using structures with open pores in construction of cooled laser mirrors,” Sov. J. Quantum Electron. 8(5), 672–673 (1978).
[Crossref]

Becht, J. G. M.

J. G. M. Becht, F. J. J. van Loo, and R. Metselaar, “The influence of phosphorus on the solid state reaction between copper and silicon,” React. Solid 6(1), 45–59 (1988).
[Crossref]

Borodin, V. I.

V. V. Apollonov, A. I. Barchukov, V. I. Borodin, P. I. Bystrov, V. F. Goncharov, L. M. Ostrovskaya, A. M. Prokhorov, V. N. Rodin, E. V. Trushin, V. Y. Khomich, M. I. Tsypin, Y. F. Shevakin, and Y. S. Shur, “Possibility of using structures with open pores in construction of cooled laser mirrors,” Sov. J. Quantum Electron. 8(5), 672–673 (1978).
[Crossref]

Boteler, L.

L. Boteler, N. Jankowski, P. McCluskey, and B. Morgan, “Numerical investigation and sensitivity analysis of manifold micro-channel coolers,” Int. J. Heat Mass Tran. 55(25-26), 7698–7708 (2012).
[Crossref]

Broval’skii, Yu. A.

V. V. Apollonov, P. I. Bystrov, Yu. A. Broval’skii, V. F. Goncharov, and A. M. Prokhorov, “On possible use of liquid-metal heat-transfer agents for cooling power-optics elements utilizing porous structures,” Kvantovaya Electron. 8, 1328–1331 (1981).

Bystrov, P. I.

V. V. Apollonov, P. I. Bystrov, Yu. A. Broval’skii, V. F. Goncharov, and A. M. Prokhorov, “On possible use of liquid-metal heat-transfer agents for cooling power-optics elements utilizing porous structures,” Kvantovaya Electron. 8, 1328–1331 (1981).

V. V. Apollonov, P. I. Bystrov, V. F. Goncharov, A. M. Prokhorov, and V. Yu. Khomich, “Prospects for use of porous structures for cooling power optics components,” Kvantovaya Electron. 6, 2533–2545 (1979).

V. V. Apollonov, A. I. Barchukov, V. I. Borodin, P. I. Bystrov, V. F. Goncharov, L. M. Ostrovskaya, A. M. Prokhorov, V. N. Rodin, E. V. Trushin, V. Y. Khomich, M. I. Tsypin, Y. F. Shevakin, and Y. S. Shur, “Possibility of using structures with open pores in construction of cooled laser mirrors,” Sov. J. Quantum Electron. 8(5), 672–673 (1978).
[Crossref]

Chromik, R. R.

R. R. Chromik, W. K. Neils, and E. J. Cotts, “Thermodynamic and kinetic study of solid state reactions in the Cu–Si system,” J. Appl. Phys. 86(8), 4273–4281 (1999).
[Crossref]

Cotts, E. J.

R. R. Chromik, W. K. Neils, and E. J. Cotts, “Thermodynamic and kinetic study of solid state reactions in the Cu–Si system,” J. Appl. Phys. 86(8), 4273–4281 (1999).
[Crossref]

Dag, S.

M. Erdal, S. Dag, Y. Jande, and C. M. Tekin, “Manufacturing of functionally graded porous products by selective laser sintering,” Mater. Sci. Forum 631, 253–258 (2010).

Derzhavin, S.

Erdal, M.

M. Erdal, S. Dag, Y. Jande, and C. M. Tekin, “Manufacturing of functionally graded porous products by selective laser sintering,” Mater. Sci. Forum 631, 253–258 (2010).

Fan, X. W.

Fox, P.

J. W. Xie, P. Fox, W. O’Neill, and C. J. Sutcliffe, “Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels,” J. Mater. Process. Technol. 170(3), 516–523 (2005).
[Crossref]

Fuh, J. Y. H.

H. H. Zhu, L. Lu, and J. Y. H. Fuh, “Development and characterisation of direct laser sintering Cu-based metal powder,” J. Mater. Process. Technol. 140(1-3), 314–317 (2003).
[Crossref]

Goncharov, V. F.

V. V. Apollonov, P. I. Bystrov, Yu. A. Broval’skii, V. F. Goncharov, and A. M. Prokhorov, “On possible use of liquid-metal heat-transfer agents for cooling power-optics elements utilizing porous structures,” Kvantovaya Electron. 8, 1328–1331 (1981).

V. V. Apollonov, P. I. Bystrov, V. F. Goncharov, A. M. Prokhorov, and V. Yu. Khomich, “Prospects for use of porous structures for cooling power optics components,” Kvantovaya Electron. 6, 2533–2545 (1979).

V. V. Apollonov, A. I. Barchukov, V. I. Borodin, P. I. Bystrov, V. F. Goncharov, L. M. Ostrovskaya, A. M. Prokhorov, V. N. Rodin, E. V. Trushin, V. Y. Khomich, M. I. Tsypin, Y. F. Shevakin, and Y. S. Shur, “Possibility of using structures with open pores in construction of cooled laser mirrors,” Sov. J. Quantum Electron. 8(5), 672–673 (1978).
[Crossref]

Guenther, A. H.

V. V. Apollonov, A. M. Prokhorov, and A. H. Guenther, “Power optics, problems, developments, and opportunities,” Laser Phys. 11, 930–933 (2001).

Istratov, A. A.

A. A. Istratov and E. R. Weber, “Physics of Copper in Silicon,” J. Electrochem. Soc. 149(1), G21–G30 (2002).
[Crossref]

Jande, Y.

M. Erdal, S. Dag, Y. Jande, and C. M. Tekin, “Manufacturing of functionally graded porous products by selective laser sintering,” Mater. Sci. Forum 631, 253–258 (2010).

Jankowski, N.

L. Boteler, N. Jankowski, P. McCluskey, and B. Morgan, “Numerical investigation and sensitivity analysis of manifold micro-channel coolers,” Int. J. Heat Mass Tran. 55(25-26), 7698–7708 (2012).
[Crossref]

Khomich, V. Y.

V. V. Apollonov, A. I. Barchukov, V. I. Borodin, P. I. Bystrov, V. F. Goncharov, L. M. Ostrovskaya, A. M. Prokhorov, V. N. Rodin, E. V. Trushin, V. Y. Khomich, M. I. Tsypin, Y. F. Shevakin, and Y. S. Shur, “Possibility of using structures with open pores in construction of cooled laser mirrors,” Sov. J. Quantum Electron. 8(5), 672–673 (1978).
[Crossref]

Khomich, V. Yu.

V. V. Apollonov, P. I. Bystrov, V. F. Goncharov, A. M. Prokhorov, and V. Yu. Khomich, “Prospects for use of porous structures for cooling power optics components,” Kvantovaya Electron. 6, 2533–2545 (1979).

Kim, O. J.

K. H. Lee and O. J. Kim, “Analysis on the cooling performance of the thermoelectric micro-cooler,” Int. J. Heat Mass Tran. 50(9-10), 1982–1992 (2007).
[Crossref]

Kuzminov, V.

Lee, K. H.

K. H. Lee and O. J. Kim, “Analysis on the cooling performance of the thermoelectric micro-cooler,” Int. J. Heat Mass Tran. 50(9-10), 1982–1992 (2007).
[Crossref]

Lu, L.

H. H. Zhu, L. Lu, and J. Y. H. Fuh, “Development and characterisation of direct laser sintering Cu-based metal powder,” J. Mater. Process. Technol. 140(1-3), 314–317 (2003).
[Crossref]

Mashkovskiy, D.

McCluskey, P.

L. Boteler, N. Jankowski, P. McCluskey, and B. Morgan, “Numerical investigation and sensitivity analysis of manifold micro-channel coolers,” Int. J. Heat Mass Tran. 55(25-26), 7698–7708 (2012).
[Crossref]

Mei, J.

F. Wang, J. Mei, and X. H. Wu, “Direct laser fabrication of Ti6Al4V/TiB,” J. Mater. Process. Technol. 195(1-3), 321–326 (2008).
[Crossref]

Metselaar, R.

J. G. M. Becht, F. J. J. van Loo, and R. Metselaar, “The influence of phosphorus on the solid state reaction between copper and silicon,” React. Solid 6(1), 45–59 (1988).
[Crossref]

Morgan, B.

L. Boteler, N. Jankowski, P. McCluskey, and B. Morgan, “Numerical investigation and sensitivity analysis of manifold micro-channel coolers,” Int. J. Heat Mass Tran. 55(25-26), 7698–7708 (2012).
[Crossref]

Neils, W. K.

R. R. Chromik, W. K. Neils, and E. J. Cotts, “Thermodynamic and kinetic study of solid state reactions in the Cu–Si system,” J. Appl. Phys. 86(8), 4273–4281 (1999).
[Crossref]

North, M. T.

J. H. Rosenfeld and M. T. North, “Porous media heat exchangers for cooling of high- power optical components,” Opt. Eng. 34(2), 335–341 (1995).
[Crossref]

O’Neill, W.

J. W. Xie, P. Fox, W. O’Neill, and C. J. Sutcliffe, “Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels,” J. Mater. Process. Technol. 170(3), 516–523 (2005).
[Crossref]

Ostrovskaya, L. M.

V. V. Apollonov, A. I. Barchukov, V. I. Borodin, P. I. Bystrov, V. F. Goncharov, L. M. Ostrovskaya, A. M. Prokhorov, V. N. Rodin, E. V. Trushin, V. Y. Khomich, M. I. Tsypin, Y. F. Shevakin, and Y. S. Shur, “Possibility of using structures with open pores in construction of cooled laser mirrors,” Sov. J. Quantum Electron. 8(5), 672–673 (1978).
[Crossref]

Pease, R. F. W.

D. B. Tuckerman and R. F. W. Pease, “High-Performance Heat Sinking for VLSI,” IEEE Electron Device Lett. 2(5), 126–129 (1981).
[Crossref]

Peng, Y. F.

Philonenko, V.

Pohl, H.

A. Simchi and H. Pohl, “Direct laser sintering of iron-graphite powder mixture,” Mater. Sci. Eng. A 383(2), 191–200 (2004).
[Crossref]

Prokhorov, A. M.

V. V. Apollonov, A. M. Prokhorov, and A. H. Guenther, “Power optics, problems, developments, and opportunities,” Laser Phys. 11, 930–933 (2001).

V. V. Apollonov, P. I. Bystrov, Yu. A. Broval’skii, V. F. Goncharov, and A. M. Prokhorov, “On possible use of liquid-metal heat-transfer agents for cooling power-optics elements utilizing porous structures,” Kvantovaya Electron. 8, 1328–1331 (1981).

V. V. Apollonov, P. I. Bystrov, V. F. Goncharov, A. M. Prokhorov, and V. Yu. Khomich, “Prospects for use of porous structures for cooling power optics components,” Kvantovaya Electron. 6, 2533–2545 (1979).

V. V. Apollonov, A. I. Barchukov, V. I. Borodin, P. I. Bystrov, V. F. Goncharov, L. M. Ostrovskaya, A. M. Prokhorov, V. N. Rodin, E. V. Trushin, V. Y. Khomich, M. I. Tsypin, Y. F. Shevakin, and Y. S. Shur, “Possibility of using structures with open pores in construction of cooled laser mirrors,” Sov. J. Quantum Electron. 8(5), 672–673 (1978).
[Crossref]

Rodin, V. N.

V. V. Apollonov, A. I. Barchukov, V. I. Borodin, P. I. Bystrov, V. F. Goncharov, L. M. Ostrovskaya, A. M. Prokhorov, V. N. Rodin, E. V. Trushin, V. Y. Khomich, M. I. Tsypin, Y. F. Shevakin, and Y. S. Shur, “Possibility of using structures with open pores in construction of cooled laser mirrors,” Sov. J. Quantum Electron. 8(5), 672–673 (1978).
[Crossref]

Rosenfeld, J. H.

J. H. Rosenfeld and M. T. North, “Porous media heat exchangers for cooling of high- power optical components,” Opt. Eng. 34(2), 335–341 (1995).
[Crossref]

Sheng, Z. X.

Shevakin, Y. F.

V. V. Apollonov, A. I. Barchukov, V. I. Borodin, P. I. Bystrov, V. F. Goncharov, L. M. Ostrovskaya, A. M. Prokhorov, V. N. Rodin, E. V. Trushin, V. Y. Khomich, M. I. Tsypin, Y. F. Shevakin, and Y. S. Shur, “Possibility of using structures with open pores in construction of cooled laser mirrors,” Sov. J. Quantum Electron. 8(5), 672–673 (1978).
[Crossref]

Shur, Y. S.

V. V. Apollonov, A. I. Barchukov, V. I. Borodin, P. I. Bystrov, V. F. Goncharov, L. M. Ostrovskaya, A. M. Prokhorov, V. N. Rodin, E. V. Trushin, V. Y. Khomich, M. I. Tsypin, Y. F. Shevakin, and Y. S. Shur, “Possibility of using structures with open pores in construction of cooled laser mirrors,” Sov. J. Quantum Electron. 8(5), 672–673 (1978).
[Crossref]

Simchi, A.

A. Simchi and H. Pohl, “Direct laser sintering of iron-graphite powder mixture,” Mater. Sci. Eng. A 383(2), 191–200 (2004).
[Crossref]

Sutcliffe, C. J.

J. W. Xie, P. Fox, W. O’Neill, and C. J. Sutcliffe, “Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels,” J. Mater. Process. Technol. 170(3), 516–523 (2005).
[Crossref]

Tekin, C. M.

M. Erdal, S. Dag, Y. Jande, and C. M. Tekin, “Manufacturing of functionally graded porous products by selective laser sintering,” Mater. Sci. Forum 631, 253–258 (2010).

Timoshkin, V.

Trushin, E. V.

V. V. Apollonov, A. I. Barchukov, V. I. Borodin, P. I. Bystrov, V. F. Goncharov, L. M. Ostrovskaya, A. M. Prokhorov, V. N. Rodin, E. V. Trushin, V. Y. Khomich, M. I. Tsypin, Y. F. Shevakin, and Y. S. Shur, “Possibility of using structures with open pores in construction of cooled laser mirrors,” Sov. J. Quantum Electron. 8(5), 672–673 (1978).
[Crossref]

Tsypin, M. I.

V. V. Apollonov, A. I. Barchukov, V. I. Borodin, P. I. Bystrov, V. F. Goncharov, L. M. Ostrovskaya, A. M. Prokhorov, V. N. Rodin, E. V. Trushin, V. Y. Khomich, M. I. Tsypin, Y. F. Shevakin, and Y. S. Shur, “Possibility of using structures with open pores in construction of cooled laser mirrors,” Sov. J. Quantum Electron. 8(5), 672–673 (1978).
[Crossref]

Tuckerman, D. B.

D. B. Tuckerman and R. F. W. Pease, “High-Performance Heat Sinking for VLSI,” IEEE Electron Device Lett. 2(5), 126–129 (1981).
[Crossref]

van Loo, F. J. J.

J. G. M. Becht, F. J. J. van Loo, and R. Metselaar, “The influence of phosphorus on the solid state reaction between copper and silicon,” React. Solid 6(1), 45–59 (1988).
[Crossref]

Wang, F.

F. Wang, J. Mei, and X. H. Wu, “Direct laser fabrication of Ti6Al4V/TiB,” J. Mater. Process. Technol. 195(1-3), 321–326 (2008).
[Crossref]

Weber, E. R.

A. A. Istratov and E. R. Weber, “Physics of Copper in Silicon,” J. Electrochem. Soc. 149(1), G21–G30 (2002).
[Crossref]

Wu, X. H.

F. Wang, J. Mei, and X. H. Wu, “Direct laser fabrication of Ti6Al4V/TiB,” J. Mater. Process. Technol. 195(1-3), 321–326 (2008).
[Crossref]

Xie, J. W.

J. W. Xie, P. Fox, W. O’Neill, and C. J. Sutcliffe, “Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels,” J. Mater. Process. Technol. 170(3), 516–523 (2005).
[Crossref]

Zhang, H.

Zhu, H. H.

H. H. Zhu, L. Lu, and J. Y. H. Fuh, “Development and characterisation of direct laser sintering Cu-based metal powder,” J. Mater. Process. Technol. 140(1-3), 314–317 (2003).
[Crossref]

Appl. Opt. (1)

IEEE Electron Device Lett. (1)

D. B. Tuckerman and R. F. W. Pease, “High-Performance Heat Sinking for VLSI,” IEEE Electron Device Lett. 2(5), 126–129 (1981).
[Crossref]

Int. J. Heat Mass Tran. (2)

L. Boteler, N. Jankowski, P. McCluskey, and B. Morgan, “Numerical investigation and sensitivity analysis of manifold micro-channel coolers,” Int. J. Heat Mass Tran. 55(25-26), 7698–7708 (2012).
[Crossref]

K. H. Lee and O. J. Kim, “Analysis on the cooling performance of the thermoelectric micro-cooler,” Int. J. Heat Mass Tran. 50(9-10), 1982–1992 (2007).
[Crossref]

J. Appl. Phys. (1)

R. R. Chromik, W. K. Neils, and E. J. Cotts, “Thermodynamic and kinetic study of solid state reactions in the Cu–Si system,” J. Appl. Phys. 86(8), 4273–4281 (1999).
[Crossref]

J. Electrochem. Soc. (1)

A. A. Istratov and E. R. Weber, “Physics of Copper in Silicon,” J. Electrochem. Soc. 149(1), G21–G30 (2002).
[Crossref]

J. Mater. Process. Technol. (3)

J. W. Xie, P. Fox, W. O’Neill, and C. J. Sutcliffe, “Effect of direct laser re-melting processing parameters and scanning strategies on the densification of tool steels,” J. Mater. Process. Technol. 170(3), 516–523 (2005).
[Crossref]

H. H. Zhu, L. Lu, and J. Y. H. Fuh, “Development and characterisation of direct laser sintering Cu-based metal powder,” J. Mater. Process. Technol. 140(1-3), 314–317 (2003).
[Crossref]

F. Wang, J. Mei, and X. H. Wu, “Direct laser fabrication of Ti6Al4V/TiB,” J. Mater. Process. Technol. 195(1-3), 321–326 (2008).
[Crossref]

Kvantovaya Electron. (2)

V. V. Apollonov, P. I. Bystrov, Yu. A. Broval’skii, V. F. Goncharov, and A. M. Prokhorov, “On possible use of liquid-metal heat-transfer agents for cooling power-optics elements utilizing porous structures,” Kvantovaya Electron. 8, 1328–1331 (1981).

V. V. Apollonov, P. I. Bystrov, V. F. Goncharov, A. M. Prokhorov, and V. Yu. Khomich, “Prospects for use of porous structures for cooling power optics components,” Kvantovaya Electron. 6, 2533–2545 (1979).

Laser Phys. (2)

V. V. Apollonov, “High-power optics and its new manifestations,” Laser Phys. 23(6), 063001 (2013).
[Crossref]

V. V. Apollonov, A. M. Prokhorov, and A. H. Guenther, “Power optics, problems, developments, and opportunities,” Laser Phys. 11, 930–933 (2001).

Mater. Sci. Eng. A (1)

A. Simchi and H. Pohl, “Direct laser sintering of iron-graphite powder mixture,” Mater. Sci. Eng. A 383(2), 191–200 (2004).
[Crossref]

Mater. Sci. Forum (1)

M. Erdal, S. Dag, Y. Jande, and C. M. Tekin, “Manufacturing of functionally graded porous products by selective laser sintering,” Mater. Sci. Forum 631, 253–258 (2010).

Opt. Eng. (2)

J. H. Rosenfeld and M. T. North, “Porous media heat exchangers for cooling of high- power optical components,” Opt. Eng. 34(2), 335–341 (1995).
[Crossref]

F. M. Anthony, “High heat load optics: an historical overview,” Opt. Eng. 34(2), 313–320 (1995).
[Crossref]

Opt. Express (1)

Quantum Electron. (1)

V. V. Apollonov, “Power optics,” Quantum Electron. 44(2), 102–121 (2014).
[Crossref]

React. Solid (1)

J. G. M. Becht, F. J. J. van Loo, and R. Metselaar, “The influence of phosphorus on the solid state reaction between copper and silicon,” React. Solid 6(1), 45–59 (1988).
[Crossref]

Sov. J. Quantum Electron. (1)

V. V. Apollonov, A. I. Barchukov, V. I. Borodin, P. I. Bystrov, V. F. Goncharov, L. M. Ostrovskaya, A. M. Prokhorov, V. N. Rodin, E. V. Trushin, V. Y. Khomich, M. I. Tsypin, Y. F. Shevakin, and Y. S. Shur, “Possibility of using structures with open pores in construction of cooled laser mirrors,” Sov. J. Quantum Electron. 8(5), 672–673 (1978).
[Crossref]

Other (3)

L. Kuhler, US Patent No. 6792016 (2002).

J. Bluege and L. Park, US Patent No. 5076348 (1991).

S. Ashman and S. Kandlikar, “A review of manufacturing processes for microchannel heat exchanger fabrication,” Fourth International Conference on Nanochannels, Microchannels and Minichannels, (Limerick, Ireland, 2006), ICNMM96121.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The schematic diagram of the DLS system.
Fig. 2
Fig. 2 The schematic diagram of the structure of sintering Si mirror.
Fig. 3
Fig. 3 The section appearance of the transition layer.
Fig. 4
Fig. 4 XRD result of the transition layers on silicon substrate.
Fig. 5
Fig. 5 Photo of the fabricated silicon mirror.
Fig. 6
Fig. 6 The schematic diagram of the experimental setup for measuring thermal deformation.
Fig. 7
Fig. 7 The interference patterns of the mirror at different irradiation time with laser intensity of 5.3 × 105 W/m2.
Fig. 8
Fig. 8 The mirror surface interference patterns at 10 s with different absorbed laser intensity.
Fig. 9
Fig. 9 Maximum thermal deformation vs. time of mirror surface with different laser intensity.
Fig. 10
Fig. 10 Optical micrograph of the pores in a sintering sample.
Fig. 11
Fig. 11 Coolant flow diagram.

Tables (2)

Tables Icon

Table 1 Powder Composition of the Mixed Powder

Tables Icon

Table 2 Elementary Analysis of Point A

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x 2 = k 2 t 2
I=A P S
υ= K η p

Metrics