Abstract

Gas leak infrared imaging detection technology has become one of the most effective means to detect gas leaks. We propose a novel MRGC (minimum resolvable gas concentration) model that is suitable for evaluating the performance of passive GLIIDSs (gas leak infrared imaging detection systems). An MRGC equivalent calculation method and a direct MRGC measurement method based on the MRTD (minimum resolvable temperature difference) model are also proposed. The MRGC measurement system is designed and built. The measured and calculated results are in good agreement, which verifies the MRGC model’s correctness and demonstrates the effectiveness of the MRGC performance evaluation method.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Minimum detectable gas concentration performance evaluation method for gas leak infrared imaging detection systems

Xu Zhang, Weiqi Jin, Jiakun Li, Xia Wang, and Shuo Li
Appl. Opt. 56(10) 2952-2959 (2017)

Band optimization of passive methane gas leak detection based on uncooled infrared focal plane array

Zhang Xu, Weiqi Jin, Li Li, Xia Wang, Ji Chen, and YuChao Jia
Appl. Opt. 57(15) 3991-4001 (2018)

Development of a pulsed backscatter-absorption gas-imaging system and its application to the visualization of natural gas leaks

Thomas J. Kulp, Peter Powers, Randall Kennedy, and Uta-Barbara Goers
Appl. Opt. 37(18) 3912-3922 (1998)

References

  • View by:
  • |
  • |
  • |

  1. B. R. Cosofret, C. M. Gittins, and W. J. Marinelli, “Visualization and tomographic analysis of chemical vapor plumes via LWIR imaging Fabry-Perot spectrometry,” Proc. SPIE 5584, 112–121 (2004).
  2. V. Farley, A. Vallières, M. Chamberland, A. Villemaire, and J.-F. Legault, “Performance of the FIRST, a longwave infrared hyperspectral imaging sensor,” Proc. SPIE 6398, 63980T (2006).
  3. S. Sabbah, R. Harig, P. Rusch, J. Eichmann, A. Keens, and J.-H. Gerhard, “Remote sensing of gases by hyperspectral imaging: system performance and measurements,” Opt. Eng. 51(11), 111717 (2012).
    [Crossref]
  4. J. Sandsten, P. Weibring, H. Edner, and S. Svanberg, “Real-time gas-correlation imaging employing thermal background radiation,” Opt. Express 6(4), 92–103 (2000).
    [Crossref] [PubMed]
  5. B. R. Cosofret, W. J. Marinelli, T. E. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. L. Coxe, S. D. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” Proc. SPIE 5584, 93–99 (2004).
  6. E. Naranjo, S. Baliga, and P. Bernascolle, “IR gas imaging in an industrial setting,” Proc. SPIE 7661, 76610K (2010).
  7. N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).
  8. R. Benson, R. Madding, R. Lucier, J. Lyons, and P. Czerepuszko, “Standoff passive optical leak detection of volatile organic compounds using a cooled InSb based infrared imager,” in AWMA 99th Annual Meeting, Papers (2006), 06-A-131.
  9. J. M. Lloyd, Thermal Imaging Systems (Plenum, 1975).
  10. M. C. Dudzik, ed., Electro-Optical Systems Design, Analysis, and Testing, Vol. 4 of The Infrared and Electro-Optical System Handbook (SPIE, 1993).

2013 (1)

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).

2012 (1)

S. Sabbah, R. Harig, P. Rusch, J. Eichmann, A. Keens, and J.-H. Gerhard, “Remote sensing of gases by hyperspectral imaging: system performance and measurements,” Opt. Eng. 51(11), 111717 (2012).
[Crossref]

2010 (1)

E. Naranjo, S. Baliga, and P. Bernascolle, “IR gas imaging in an industrial setting,” Proc. SPIE 7661, 76610K (2010).

2006 (1)

V. Farley, A. Vallières, M. Chamberland, A. Villemaire, and J.-F. Legault, “Performance of the FIRST, a longwave infrared hyperspectral imaging sensor,” Proc. SPIE 6398, 63980T (2006).

2004 (2)

B. R. Cosofret, C. M. Gittins, and W. J. Marinelli, “Visualization and tomographic analysis of chemical vapor plumes via LWIR imaging Fabry-Perot spectrometry,” Proc. SPIE 5584, 112–121 (2004).

B. R. Cosofret, W. J. Marinelli, T. E. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. L. Coxe, S. D. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” Proc. SPIE 5584, 93–99 (2004).

2000 (1)

Adams, E.

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).

Baliga, S.

E. Naranjo, S. Baliga, and P. Bernascolle, “IR gas imaging in an industrial setting,” Proc. SPIE 7661, 76610K (2010).

Bernascolle, P.

E. Naranjo, S. Baliga, and P. Bernascolle, “IR gas imaging in an industrial setting,” Proc. SPIE 7661, 76610K (2010).

Boies, M. T.

B. R. Cosofret, W. J. Marinelli, T. E. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. L. Coxe, S. D. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” Proc. SPIE 5584, 93–99 (2004).

Chamberland, M.

V. Farley, A. Vallières, M. Chamberland, A. Villemaire, and J.-F. Legault, “Performance of the FIRST, a longwave infrared hyperspectral imaging sensor,” Proc. SPIE 6398, 63980T (2006).

Chang, S. D.

B. R. Cosofret, W. J. Marinelli, T. E. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. L. Coxe, S. D. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” Proc. SPIE 5584, 93–99 (2004).

Cosofret, B. R.

B. R. Cosofret, C. M. Gittins, and W. J. Marinelli, “Visualization and tomographic analysis of chemical vapor plumes via LWIR imaging Fabry-Perot spectrometry,” Proc. SPIE 5584, 112–121 (2004).

B. R. Cosofret, W. J. Marinelli, T. E. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. L. Coxe, S. D. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” Proc. SPIE 5584, 93–99 (2004).

Coxe, R. L.

B. R. Cosofret, W. J. Marinelli, T. E. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. L. Coxe, S. D. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” Proc. SPIE 5584, 93–99 (2004).

Drayton, P.

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).

Edner, H.

Eichmann, J.

S. Sabbah, R. Harig, P. Rusch, J. Eichmann, A. Keens, and J.-H. Gerhard, “Remote sensing of gases by hyperspectral imaging: system performance and measurements,” Opt. Eng. 51(11), 111717 (2012).
[Crossref]

Farley, V.

V. Farley, A. Vallières, M. Chamberland, A. Villemaire, and J.-F. Legault, “Performance of the FIRST, a longwave infrared hyperspectral imaging sensor,” Proc. SPIE 6398, 63980T (2006).

Fashimpaur, D.

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).

Gerhard, J.-H.

S. Sabbah, R. Harig, P. Rusch, J. Eichmann, A. Keens, and J.-H. Gerhard, “Remote sensing of gases by hyperspectral imaging: system performance and measurements,” Opt. Eng. 51(11), 111717 (2012).
[Crossref]

Gittins, C. M.

B. R. Cosofret, W. J. Marinelli, T. E. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. L. Coxe, S. D. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” Proc. SPIE 5584, 93–99 (2004).

B. R. Cosofret, C. M. Gittins, and W. J. Marinelli, “Visualization and tomographic analysis of chemical vapor plumes via LWIR imaging Fabry-Perot spectrometry,” Proc. SPIE 5584, 112–121 (2004).

Green, B. D.

B. R. Cosofret, W. J. Marinelli, T. E. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. L. Coxe, S. D. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” Proc. SPIE 5584, 93–99 (2004).

Hagen, N.

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).

Harig, R.

S. Sabbah, R. Harig, P. Rusch, J. Eichmann, A. Keens, and J.-H. Gerhard, “Remote sensing of gases by hyperspectral imaging: system performance and measurements,” Opt. Eng. 51(11), 111717 (2012).
[Crossref]

Hinds, M. F.

B. R. Cosofret, W. J. Marinelli, T. E. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. L. Coxe, S. D. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” Proc. SPIE 5584, 93–99 (2004).

Keens, A.

S. Sabbah, R. Harig, P. Rusch, J. Eichmann, A. Keens, and J.-H. Gerhard, “Remote sensing of gases by hyperspectral imaging: system performance and measurements,” Opt. Eng. 51(11), 111717 (2012).
[Crossref]

Kester, R. T.

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).

Legault, J.-F.

V. Farley, A. Vallières, M. Chamberland, A. Villemaire, and J.-F. Legault, “Performance of the FIRST, a longwave infrared hyperspectral imaging sensor,” Proc. SPIE 6398, 63980T (2006).

Marinelli, W. J.

B. R. Cosofret, C. M. Gittins, and W. J. Marinelli, “Visualization and tomographic analysis of chemical vapor plumes via LWIR imaging Fabry-Perot spectrometry,” Proc. SPIE 5584, 112–121 (2004).

B. R. Cosofret, W. J. Marinelli, T. E. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. L. Coxe, S. D. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” Proc. SPIE 5584, 93–99 (2004).

Morlier, C. G.

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).

Nakamura, T.

B. R. Cosofret, W. J. Marinelli, T. E. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. L. Coxe, S. D. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” Proc. SPIE 5584, 93–99 (2004).

Naranjo, E.

E. Naranjo, S. Baliga, and P. Bernascolle, “IR gas imaging in an industrial setting,” Proc. SPIE 7661, 76610K (2010).

Panek, J. A.

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).

Rossi, D. C.

B. R. Cosofret, W. J. Marinelli, T. E. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. L. Coxe, S. D. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” Proc. SPIE 5584, 93–99 (2004).

Rusch, P.

S. Sabbah, R. Harig, P. Rusch, J. Eichmann, A. Keens, and J.-H. Gerhard, “Remote sensing of gases by hyperspectral imaging: system performance and measurements,” Opt. Eng. 51(11), 111717 (2012).
[Crossref]

Sabbah, S.

S. Sabbah, R. Harig, P. Rusch, J. Eichmann, A. Keens, and J.-H. Gerhard, “Remote sensing of gases by hyperspectral imaging: system performance and measurements,” Opt. Eng. 51(11), 111717 (2012).
[Crossref]

Sandsten, J.

Stone, P.

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).

Svanberg, S.

Ustun, T. E.

B. R. Cosofret, W. J. Marinelli, T. E. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. L. Coxe, S. D. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” Proc. SPIE 5584, 93–99 (2004).

Vallières, A.

V. Farley, A. Vallières, M. Chamberland, A. Villemaire, and J.-F. Legault, “Performance of the FIRST, a longwave infrared hyperspectral imaging sensor,” Proc. SPIE 6398, 63980T (2006).

Villemaire, A.

V. Farley, A. Vallières, M. Chamberland, A. Villemaire, and J.-F. Legault, “Performance of the FIRST, a longwave infrared hyperspectral imaging sensor,” Proc. SPIE 6398, 63980T (2006).

Weibring, P.

Opt. Eng. (1)

S. Sabbah, R. Harig, P. Rusch, J. Eichmann, A. Keens, and J.-H. Gerhard, “Remote sensing of gases by hyperspectral imaging: system performance and measurements,” Opt. Eng. 51(11), 111717 (2012).
[Crossref]

Opt. Express (1)

Proc. SPIE (5)

B. R. Cosofret, W. J. Marinelli, T. E. Ustun, C. M. Gittins, M. T. Boies, M. F. Hinds, D. C. Rossi, R. L. Coxe, S. D. Chang, B. D. Green, and T. Nakamura, “Passive infrared imaging sensor for standoff detection of methane leaks,” Proc. SPIE 5584, 93–99 (2004).

E. Naranjo, S. Baliga, and P. Bernascolle, “IR gas imaging in an industrial setting,” Proc. SPIE 7661, 76610K (2010).

N. Hagen, R. T. Kester, C. G. Morlier, J. A. Panek, P. Drayton, D. Fashimpaur, P. Stone, and E. Adams, “Video-rate spectral imaging of gas leaks in the longwave infrared,” Proc. SPIE 8710, 871005 (2013).

B. R. Cosofret, C. M. Gittins, and W. J. Marinelli, “Visualization and tomographic analysis of chemical vapor plumes via LWIR imaging Fabry-Perot spectrometry,” Proc. SPIE 5584, 112–121 (2004).

V. Farley, A. Vallières, M. Chamberland, A. Villemaire, and J.-F. Legault, “Performance of the FIRST, a longwave infrared hyperspectral imaging sensor,” Proc. SPIE 6398, 63980T (2006).

Other (3)

R. Benson, R. Madding, R. Lucier, J. Lyons, and P. Czerepuszko, “Standoff passive optical leak detection of volatile organic compounds using a cooled InSb based infrared imager,” in AWMA 99th Annual Meeting, Papers (2006), 06-A-131.

J. M. Lloyd, Thermal Imaging Systems (Plenum, 1975).

M. C. Dudzik, ed., Electro-Optical Systems Design, Analysis, and Testing, Vol. 4 of The Infrared and Electro-Optical System Handbook (SPIE, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Image of the four-bar pattern.
Fig. 2
Fig. 2 Part of the infrared absorption spectrum of ethylene (1ppm·m@296K, Pacific Northwest National Laboratory).
Fig. 3
Fig. 3 MRGC measurement target and gas chamber.
Fig. 4
Fig. 4 Schematic diagram of the MRTD measurement system.
Fig. 5
Fig. 5 Plot of the simulated MRTD(f) curve.
Fig. 6
Fig. 6 Plot of the simulated MRGC(f, Tgas) surface.
Fig. 7
Fig. 7 Plots of the simulated MRGC(f) curves for various gas temperatures.
Fig. 8
Fig. 8 Plot of the relationship between MRGC(f0) and the gas temperature Tgas (the blue curve). The red vertical line is the asymptote Tgas = 300 K.
Fig. 9
Fig. 9 Block diagram of the MRGC measurement system.
Fig. 10
Fig. 10 Setup of the MRGC measurement system.
Fig. 11
Fig. 11 Results of the calculated and measured MRGC of ethylene [Tgas ≈293.15 ± 0.2 K; the green line is the calculated MRGC value (corresponding to the left axis), the red line is the measured MRGC value (corresponding to the left axis), and the blue line is the measured negative MRTD value (corresponding to the right axis)].

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

SNR 0 = V s V n = ΔT NETD
V s V n = D 0 2 αβ 4 ( A d Δf ) 1/2 λ 1 λ 2 D * ( λ ) τ α ( λ ) τ 0 ( λ )Δ M tb dλ
Δ M tb = ε t ( λ )M( λ, T t ) ε b ( λ )M( λ, T b )
M( λ,T )= c 1 λ 5 1 exp( c 2 / λT )1
Δ M tb b =M( λ, T t )M( λ, T b ) T M(λ, T b )ΔT
SNR V (f)= p corr ( f ) SNR 0 = p corr ( f ) D 0 2 αβ 4 ( A d Δf ) 1/2 λ 1 λ 2 D * ( λ )Δ M tb dλ = p corr ( f )ΔT D 0 2 αβ 4 ( A d Δf ) 1/2 λ 1 λ 2 D * ( λ ) M(λ, T b ) T dλ
MRTD(f)= SNR DT NETD p corr (f) = SNR DT p corr ( f ) D 0 2 αβ 4 ( A d Δf ) 1/2 λ 1 λ 2 D * ( λ ) M(λ, T b ) T dλ
SNR V = p corr V s V n
Δ M gas-b =[ 1 τ gas ( λ ) ]M( λ, T gas )+ τ gas (λ)M( λ, T t )M( λ, T b )
τ gas ( λ )=exp[ α gas ( λ )cl ]
Δ M gas-b (λ)=[ 1 τ gas ( λ ) ][ M( λ, T gas )M( λ, T b ) ]
SNR V (f)= p corr (f) D 0 2 αβ 4 ( A d Δf ) 1/2 λ 1 λ 2 D * ( λ )[ 1 τ gas ( λ ) ][ M( λ, T gas )M( λ, T b ) ] dλ
MRTD(f) cl λ 1 λ 2 D * ( λ ) α gas (λ)[ M( λ, T gas )M( λ, T b ) ] dλ λ 1 λ 2 D * ( λ ) M(λ, T b ) T dλ
MRGC( f, T gas )= c min l=MRTD(f) λ 1 λ 2 D * ( λ ) M(λ, T b ) T dλ λ 1 λ 2 D * ( λ ) α gas (λ)[ M( λ, T gas )M( λ, T b ) ] dλ
λ 1 λ 2 D * ( λ )Δ M gas-b dλ= λ 1 λ 2 D * ( λ )Δ M tb b dλ

Metrics