Abstract

In this paper, we propose a novel microfluidic tunable metamaterial (MM) absorber printed on a paper substrate in silver nanoparticle ink. The metamaterial is designed using a periodic array consisting of square patches. The conductive patterns are inkjet-printed on paper using silver nanoparticle inks. The microfluidic channels are laser-etched on polymethyl methacrylate (PMMA). The conductive patterns on paper and the microfluidic channels on PMMA are bonded by an SU-8 layer that is also inkjet-printed on the conductive patterns. The proposed MM absorber provides frequency-tuning capability for different fluids in the microfluidic channels. We performed full-wave simulations and measurements that confirmed that the resonant frequency decreased from 4.42 GHz to 3.97 GHz after the injection of distilled water into the microfluidic channels. For both empty and water-filled channels, the absorptivity is higher than 90% at horizontal and vertical polarizations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Flexible inkjet-printed metamaterial absorber for coating a cylindrical object

Hyung Ki Kim, Kenyu Ling, Kyeongseob Kim, and Sungjoon Lim
Opt. Express 23(5) 5898-5906 (2015)

Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS)

Kenyu Ling, Kyeoungseob Kim, and Sungjoon Lim
Opt. Express 23(16) 21375-21383 (2015)

Low-cost metamaterial-on-paper chemical sensor

Aydin Sadeqi, Hojatollah Rezaei Nejad, and Sameer Sonkusale
Opt. Express 25(14) 16092-16100 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  4. B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
    [Crossref]
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  6. G. Keiser, K. Fan, X. Zhang, and R. Averitt, “Towards Dynamic, Tunable, and Nonlinear Metamaterials via Near Field Interactions: A Review,” J. Infrared, Millimeter, and Terahertz Waves 34(11), 709–723 (2013).
    [Crossref]
  7. Y. Kotsuka, K. Murano, M. Amano, and S. Sugiyama, “Novel right-handed metamaterial based on the concept of “autonomous control system of living cells” and its absorber applications,” IEEE Trans. Electromagn. Compat. 52(3), 556–565 (2010).
    [Crossref]
  8. C. Mias and J. H. Yap, “A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid,” IEEE Trans. Antenn. Propag. 55(7), 1955–1962 (2007).
    [Crossref]
  9. D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
    [Crossref] [PubMed]
  10. C. P. Ho, P. Pitchappa, Y. Lin, C. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
    [Crossref]
  11. B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “Frequency continuous tunable terahertz metamaterial absorber,” J. Lightwave Technol. 32(6), 1183–1189 (2014).
    [Crossref]
  12. F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett. 37(11), 1886–1888 (2012).
    [Crossref] [PubMed]
  13. T. S. Kasirga, Y. N. Ertas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95(21), 214102 (2009).
    [Crossref]
  14. L. Liu, A. R. Katko, D. Li, and S. A. Cummer, “Broadband electromagnetic metamaterials with reconfigurable fluid channels,” Phys. Rev. B 89(24), 245132 (2014).
    [Crossref]
  15. A. Liu, W. Zhu, D. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
    [Crossref]
  16. M. Datta and L. T. Romankiw, “Application of chemical and electrochemical micromachining in the electronics industry,” J. Electrochem. Soc. 136(6), 285C–292C (1989).
    [Crossref]
  17. B. S. Cook and A. Shamim, “Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate,” IEEE Trans. Antenn. Propag. 60(9), 4148–4156 (2012).
    [Crossref]
  18. H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23(28), 3197–3201 (2011).
    [Crossref] [PubMed]
  19. H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
    [Crossref]
  20. W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1), 137–141 (2003).
    [Crossref]
  21. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
    [Crossref] [PubMed]
  22. B. S. Cook, J. R. Cooper, and M. M. Tentzeris, “An inkjet-printed microfluidic RFID-enabled platform for wireless Lab-on-Chip applications,” IEEE Trans. Microw. Theory Tech. 61(12), 4714–4723 (2013).
    [Crossref]

2014 (3)

C. P. Ho, P. Pitchappa, Y. Lin, C. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
[Crossref]

L. Liu, A. R. Katko, D. Li, and S. A. Cummer, “Broadband electromagnetic metamaterials with reconfigurable fluid channels,” Phys. Rev. B 89(24), 245132 (2014).
[Crossref]

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “Frequency continuous tunable terahertz metamaterial absorber,” J. Lightwave Technol. 32(6), 1183–1189 (2014).
[Crossref]

2013 (3)

B. S. Cook, J. R. Cooper, and M. M. Tentzeris, “An inkjet-printed microfluidic RFID-enabled platform for wireless Lab-on-Chip applications,” IEEE Trans. Microw. Theory Tech. 61(12), 4714–4723 (2013).
[Crossref]

G. Keiser, K. Fan, X. Zhang, and R. Averitt, “Towards Dynamic, Tunable, and Nonlinear Metamaterials via Near Field Interactions: A Review,” J. Infrared, Millimeter, and Terahertz Waves 34(11), 709–723 (2013).
[Crossref]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

2012 (3)

A. Liu, W. Zhu, D. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

B. S. Cook and A. Shamim, “Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate,” IEEE Trans. Antenn. Propag. 60(9), 4148–4156 (2012).
[Crossref]

F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri, “Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber,” Opt. Lett. 37(11), 1886–1888 (2012).
[Crossref] [PubMed]

2011 (1)

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23(28), 3197–3201 (2011).
[Crossref] [PubMed]

2010 (1)

Y. Kotsuka, K. Murano, M. Amano, and S. Sugiyama, “Novel right-handed metamaterial based on the concept of “autonomous control system of living cells” and its absorber applications,” IEEE Trans. Electromagn. Compat. 52(3), 556–565 (2010).
[Crossref]

2009 (2)

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[Crossref]

T. S. Kasirga, Y. N. Ertas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95(21), 214102 (2009).
[Crossref]

2008 (2)

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (1)

C. Mias and J. H. Yap, “A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid,” IEEE Trans. Antenn. Propag. 55(7), 1955–1962 (2007).
[Crossref]

2006 (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

2003 (1)

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1), 137–141 (2003).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

1989 (1)

M. Datta and L. T. Romankiw, “Application of chemical and electrochemical micromachining in the electronics industry,” J. Electrochem. Soc. 136(6), 285C–292C (1989).
[Crossref]

Alves, F.

Amano, M.

Y. Kotsuka, K. Murano, M. Amano, and S. Sugiyama, “Novel right-handed metamaterial based on the concept of “autonomous control system of living cells” and its absorber applications,” IEEE Trans. Electromagn. Compat. 52(3), 556–565 (2010).
[Crossref]

Aussenegg, F.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1), 137–141 (2003).
[Crossref]

Averitt, R.

G. Keiser, K. Fan, X. Zhang, and R. Averitt, “Towards Dynamic, Tunable, and Nonlinear Metamaterials via Near Field Interactions: A Review,” J. Infrared, Millimeter, and Terahertz Waves 34(11), 709–723 (2013).
[Crossref]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Averitt, R. D.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23(28), 3197–3201 (2011).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Bayindir, M.

T. S. Kasirga, Y. N. Ertas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95(21), 214102 (2009).
[Crossref]

Bingham, C.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Brenckle, M. A.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23(28), 3197–3201 (2011).
[Crossref] [PubMed]

Chen, W. C.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Chieffo, L. R.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23(28), 3197–3201 (2011).
[Crossref] [PubMed]

Cook, B. S.

B. S. Cook, J. R. Cooper, and M. M. Tentzeris, “An inkjet-printed microfluidic RFID-enabled platform for wireless Lab-on-Chip applications,” IEEE Trans. Microw. Theory Tech. 61(12), 4714–4723 (2013).
[Crossref]

B. S. Cook and A. Shamim, “Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate,” IEEE Trans. Antenn. Propag. 60(9), 4148–4156 (2012).
[Crossref]

Cooper, J. R.

B. S. Cook, J. R. Cooper, and M. M. Tentzeris, “An inkjet-printed microfluidic RFID-enabled platform for wireless Lab-on-Chip applications,” IEEE Trans. Microw. Theory Tech. 61(12), 4714–4723 (2013).
[Crossref]

Cummer, S. A.

L. Liu, A. R. Katko, D. Li, and S. A. Cummer, “Broadband electromagnetic metamaterials with reconfigurable fluid channels,” Phys. Rev. B 89(24), 245132 (2014).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Datta, M.

M. Datta and L. T. Romankiw, “Application of chemical and electrochemical micromachining in the electronics industry,” J. Electrochem. Soc. 136(6), 285C–292C (1989).
[Crossref]

Ertas, Y. N.

T. S. Kasirga, Y. N. Ertas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95(21), 214102 (2009).
[Crossref]

Fan, K.

G. Keiser, K. Fan, X. Zhang, and R. Averitt, “Towards Dynamic, Tunable, and Nonlinear Metamaterials via Near Field Interactions: A Review,” J. Infrared, Millimeter, and Terahertz Waves 34(11), 709–723 (2013).
[Crossref]

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23(28), 3197–3201 (2011).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Grbovic, D.

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Ho, C. P.

C. P. Ho, P. Pitchappa, Y. Lin, C. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
[Crossref]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1), 137–141 (2003).
[Crossref]

Huang, C.

C. P. Ho, P. Pitchappa, Y. Lin, C. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
[Crossref]

Huang, W.

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kaplan, D. L.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23(28), 3197–3201 (2011).
[Crossref] [PubMed]

Karunasiri, G.

Kasirga, T. S.

T. S. Kasirga, Y. N. Ertas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95(21), 214102 (2009).
[Crossref]

Katko, A. R.

L. Liu, A. R. Katko, D. Li, and S. A. Cummer, “Broadband electromagnetic metamaterials with reconfigurable fluid channels,” Phys. Rev. B 89(24), 245132 (2014).
[Crossref]

Kearney, B.

Keiser, G.

G. Keiser, K. Fan, X. Zhang, and R. Averitt, “Towards Dynamic, Tunable, and Nonlinear Metamaterials via Near Field Interactions: A Review,” J. Infrared, Millimeter, and Terahertz Waves 34(11), 709–723 (2013).
[Crossref]

Koschny, T.

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[Crossref]

Kotsuka, Y.

Y. Kotsuka, K. Murano, M. Amano, and S. Sugiyama, “Novel right-handed metamaterial based on the concept of “autonomous control system of living cells” and its absorber applications,” IEEE Trans. Electromagn. Compat. 52(3), 556–565 (2010).
[Crossref]

Krenn, J.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1), 137–141 (2003).
[Crossref]

Kropelnicki, P.

C. P. Ho, P. Pitchappa, Y. Lin, C. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
[Crossref]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1), 137–141 (2003).
[Crossref]

Landy, N.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, C.

C. P. Ho, P. Pitchappa, Y. Lin, C. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
[Crossref]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1), 137–141 (2003).
[Crossref]

Li, D.

L. Liu, A. R. Katko, D. Li, and S. A. Cummer, “Broadband electromagnetic metamaterials with reconfigurable fluid channels,” Phys. Rev. B 89(24), 245132 (2014).
[Crossref]

Li, X.

Lin, Y.

C. P. Ho, P. Pitchappa, Y. Lin, C. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
[Crossref]

Liu, A.

A. Liu, W. Zhu, D. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Liu, L.

L. Liu, A. R. Katko, D. Li, and S. A. Cummer, “Broadband electromagnetic metamaterials with reconfigurable fluid channels,” Phys. Rev. B 89(24), 245132 (2014).
[Crossref]

Liu, M.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23(28), 3197–3201 (2011).
[Crossref] [PubMed]

Mias, C.

C. Mias and J. H. Yap, “A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid,” IEEE Trans. Antenn. Propag. 55(7), 1955–1962 (2007).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Murano, K.

Y. Kotsuka, K. Murano, M. Amano, and S. Sugiyama, “Novel right-handed metamaterial based on the concept of “autonomous control system of living cells” and its absorber applications,” IEEE Trans. Electromagn. Compat. 52(3), 556–565 (2010).
[Crossref]

Omenetto, F. G.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23(28), 3197–3201 (2011).
[Crossref] [PubMed]

Padilla, W.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Padilla, W. J.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Pilon, D.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Pitchappa, P.

C. P. Ho, P. Pitchappa, Y. Lin, C. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
[Crossref]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1), 137–141 (2003).
[Crossref]

Romankiw, L. T.

M. Datta and L. T. Romankiw, “Application of chemical and electrochemical micromachining in the electronics industry,” J. Electrochem. Soc. 136(6), 285C–292C (1989).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Shamim, A.

B. S. Cook and A. Shamim, “Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate,” IEEE Trans. Antenn. Propag. 60(9), 4148–4156 (2012).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shrekenhamer, D.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Siebert, S. M.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23(28), 3197–3201 (2011).
[Crossref] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Soukoulis, C. M.

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Strikwerda, A.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Strikwerda, A. C.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23(28), 3197–3201 (2011).
[Crossref] [PubMed]

Sugiyama, S.

Y. Kotsuka, K. Murano, M. Amano, and S. Sugiyama, “Novel right-handed metamaterial based on the concept of “autonomous control system of living cells” and its absorber applications,” IEEE Trans. Electromagn. Compat. 52(3), 556–565 (2010).
[Crossref]

Tao, H.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23(28), 3197–3201 (2011).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Taylor, A. J.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Tentzeris, M. M.

B. S. Cook, J. R. Cooper, and M. M. Tentzeris, “An inkjet-printed microfluidic RFID-enabled platform for wireless Lab-on-Chip applications,” IEEE Trans. Microw. Theory Tech. 61(12), 4714–4723 (2013).
[Crossref]

Tsai, D.

A. Liu, W. Zhu, D. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Wang, B.

B. Wang, L. Wang, G. Wang, W. Huang, X. Li, and X. Zhai, “Frequency continuous tunable terahertz metamaterial absorber,” J. Lightwave Technol. 32(6), 1183–1189 (2014).
[Crossref]

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[Crossref]

Wang, G.

Wang, L.

Wiltshire, M. C.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Yap, J. H.

C. Mias and J. H. Yap, “A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid,” IEEE Trans. Antenn. Propag. 55(7), 1955–1962 (2007).
[Crossref]

Zhai, X.

Zhang, X.

G. Keiser, K. Fan, X. Zhang, and R. Averitt, “Towards Dynamic, Tunable, and Nonlinear Metamaterials via Near Field Interactions: A Review,” J. Infrared, Millimeter, and Terahertz Waves 34(11), 709–723 (2013).
[Crossref]

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23(28), 3197–3201 (2011).
[Crossref] [PubMed]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

Zheludev, N. I.

A. Liu, W. Zhu, D. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Zhu, W.

A. Liu, W. Zhu, D. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Adv. Mater. (1)

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23(28), 3197–3201 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

C. P. Ho, P. Pitchappa, Y. Lin, C. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104(16), 161104 (2014).
[Crossref]

T. S. Kasirga, Y. N. Ertas, and M. Bayindir, “Microfluidics for reconfigurable electromagnetic metamaterials,” Appl. Phys. Lett. 95(21), 214102 (2009).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

C. Mias and J. H. Yap, “A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid,” IEEE Trans. Antenn. Propag. 55(7), 1955–1962 (2007).
[Crossref]

B. S. Cook and A. Shamim, “Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate,” IEEE Trans. Antenn. Propag. 60(9), 4148–4156 (2012).
[Crossref]

IEEE Trans. Electromagn. Compat. (1)

Y. Kotsuka, K. Murano, M. Amano, and S. Sugiyama, “Novel right-handed metamaterial based on the concept of “autonomous control system of living cells” and its absorber applications,” IEEE Trans. Electromagn. Compat. 52(3), 556–565 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

B. S. Cook, J. R. Cooper, and M. M. Tentzeris, “An inkjet-printed microfluidic RFID-enabled platform for wireless Lab-on-Chip applications,” IEEE Trans. Microw. Theory Tech. 61(12), 4714–4723 (2013).
[Crossref]

J. Electrochem. Soc. (1)

M. Datta and L. T. Romankiw, “Application of chemical and electrochemical micromachining in the electronics industry,” J. Electrochem. Soc. 136(6), 285C–292C (1989).
[Crossref]

J. Infrared, Millimeter, and Terahertz Waves (1)

G. Keiser, K. Fan, X. Zhang, and R. Averitt, “Towards Dynamic, Tunable, and Nonlinear Metamaterials via Near Field Interactions: A Review,” J. Infrared, Millimeter, and Terahertz Waves 34(11), 709–723 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

A. Liu, W. Zhu, D. Tsai, and N. I. Zheludev, “Micromachined tunable metamaterials: a review,” J. Opt. 14(11), 114009 (2012).
[Crossref]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1), 137–141 (2003).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (3)

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
[Crossref]

L. Liu, A. R. Katko, D. Li, and S. A. Cummer, “Broadband electromagnetic metamaterials with reconfigurable fluid channels,” Phys. Rev. B 89(24), 245132 (2014).
[Crossref]

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80(3), 033108 (2009).
[Crossref]

Phys. Rev. Lett. (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Science (3)

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Top and side view of the unit cell of the MM absorber: a = 16 mm, b = 15 mm, s = 1 mm.
Fig. 2
Fig. 2 Full-wave simulated distributions of (a) magnitude of electric field and (b) resonant electric current vector.
Fig. 3
Fig. 3 Illustration of the proposed microfluidic MM absorber and its unit cell. Dimensions: c = 1.5 mm, d = 2 mm, g = 1.13 mm, and h = 1.5 mm.
Fig. 4
Fig. 4 Simulated reflection coefficients when the microfluidic channel is filled with distilled water. (a) The width (c) of the channel is 0.5 mm, 1.5 mm, and 2.5 mm at d = 2 mm. (b) The length (d) of the channel is 1 mm, 1.5 mm, 2 mm, and 2.5 mm at c = 1.5 mm.
Fig. 5
Fig. 5 Examples of capillary channel design for the unit cell: (a) without the capillary channel design, (b) cross-shaped channel design, (c) Z-type channel design, and (d) proposed channel design.
Fig. 6
Fig. 6 Simulated reflection coefficients of four different unit cell geometries in Fig. 5.
Fig. 7
Fig. 7 Illustration of fabrication process for the proposed microfluidic inkjet-printed MM absorber.
Fig. 8
Fig. 8 Fabricated microfluidic MM absorber. (a) Top view of overall structure in 6 × 6 array configuration with inlet/outlet tubes. (b) Fluid flow in the channel of the unit cell (blur color). (c) Magnified view of the water-filled microfluidic channels on the gap between two square patches. (d) Cross section of the PMMA layer with the microfluidic channel.
Fig. 9
Fig. 9 Experimental setup to measure absorptivity.
Fig. 10
Fig. 10 Simulated and measured absorptivity when channel is empty and filled with distilled water, ethanol, and tap water.
Fig. 11
Fig. 11 Simulated and measured absorptivity with empty and distilled water-filled microfluidic channels for horizontal and vertical polarization incidence.
Fig. 12
Fig. 12 Measured absorptivity of the proposed MM absorber at three states: initial empty (first used), water-filled, and empty after filling (reused).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Z MM ( ω ) μ( ω )/ε( ω ) .
Γ( ω )= Z 0 Z MM ( ω ) Z 0 + Z MM ( ω ) .
A( ω )=1Γ( ω )Τ( ω ).
f r c 2( 2b+s ) ε avg .

Metrics