Abstract

This paper proposes a novel robust physical secure method for optical orthogonal frequency division multiplexing (OFDM) access system based on Turbo-coded subcarrier rotation. It can realize a secure communication while keep robustness to channel noise. The subcarrier rotation is controlled by the interleaver module of Turbo coding, which is under the charge of Logistic map. The random puncturing can further enhance the security. The channel feedback can ensure the puncturing module working at a suitable coding rate. A 72.28 Gb/s encrypted 16QAM-OFDM signal is successfully demonstrated in the experiment. The results show robust performance under different channel noise conditions and good resistance to illegal optical network unit (ONU).

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time–Frequency Domain Encryption With SLM Scheme for Physical-Layer Security in an OFDM-PON System

Yaoqiang Xiao, Zhiyi Wang, Jun Cao, Rui Deng, Yi Liu, Jing He, and Lin Chen
J. Opt. Commun. Netw. 10(1) 46-51 (2018)

Physical secure enhancement in optical OFDMA-PON based on two-dimensional scrambling

Lijia Zhang, Xiangjun Xin, Bo Liu, and Xiaoli Yin
Opt. Express 20(26) B32-B37 (2012)

A novel 3D constellation-masked method for physical security in hierarchical OFDMA system

Lijia Zhang, Bo Liu, Xiangjun Xin, and Deming Liu
Opt. Express 21(13) 15627-15633 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. S. Kanter, “Secure optical communications,” in proc. CLEO’10, USA, paper. CFC3 (2010).
  2. K. Kravtsov, Z. Wang, W. Trappe, and P. R. Prucnal, “Physical layer secret key generation for fiber-optical networks,” Opt. Express 21(20), 23756–23771 (2013).
    [Crossref] [PubMed]
  3. J. Zhang, J. Yu, F. Li, N. Chi, Z. Dong, and X. Li, “11 × 5 × 9.3Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection,” Opt. Express 21(16), 18842–18848 (2013).
    [Crossref] [PubMed]
  4. M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics and Security 6(3), 725–736 (2011).
    [Crossref]
  5. M. Hossen, K.-D. Kim, and Y. Park, “Synchronized latency secured MAC protocol for PON based large sensor network,” in proc. ICACT 10, 1528–1532 (2010).
  6. N. Jiang, C. F. Zhang, and K. Qiu, “Secure passive optical network based on chaos synchronization,” Opt. Lett. 37(21), 4501–4503 (2012).
    [Crossref] [PubMed]
  7. A. Teixeira, A. Vieira, J. Andrade, A. Quinta, M. Lima, R. Nogueira, P. André, and G. T. Beleffi, “Security issues in optical networks physical layer,” in proc.ICOCN'08, paper.We.A4.1 (2008).
    [Crossref]
  8. S.X.Wang, R.A.Lipa, D.Reilly, and G.S.Kanter, “Self-coherent differential phase detection for optical physical-layer secure communications,” in proc.OFC'13, paper. JW2A.41 (2013).
  9. N. Cvijetic, “OFDM for next-generation optical access networks,” J. Lightwave Technol. 30(4), 384–398 (2012).
    [Crossref]
  10. Q. W. Zhang, E. Hugues-Salas, R. P. Giddings, M. Wang, and J. M. Tang, “Experimental demonstrations of record high REAM intensity modulator-enabled 19.25Gb/s real-time end-to-end dual-band optical OFDM colorless transmissions over 25km SSMF IMDD systems,” Opt. Express 21(7), 9167–9179 (2013).
    [Crossref] [PubMed]
  11. W. Jin, C. F. Zhang, C. Chen, Q. Y. Zhang, and K. Qiu, “Scalable and reconfigurable all-optical VPN for OFDM-based metro-access integrated network,” J. Lightwave Technol. 32(2), 318–325 (2014).
    [Crossref]
  12. L. Zhang, X. Xin, B. Liu, and X. Yin, “Physical secure enhancement in optical OFDMA-PON based on two-dimensional scrambling,” Opt. Express 20(26), B32–B37 (2012).
    [Crossref] [PubMed]

2014 (1)

2013 (3)

2012 (3)

2011 (1)

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics and Security 6(3), 725–736 (2011).
[Crossref]

2010 (1)

M. Hossen, K.-D. Kim, and Y. Park, “Synchronized latency secured MAC protocol for PON based large sensor network,” in proc. ICACT 10, 1528–1532 (2010).

Chen, C.

Chi, N.

Cvijetic, N.

Deng, Y.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics and Security 6(3), 725–736 (2011).
[Crossref]

Dong, Z.

Fok, M. P.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics and Security 6(3), 725–736 (2011).
[Crossref]

Giddings, R. P.

Hossen, M.

M. Hossen, K.-D. Kim, and Y. Park, “Synchronized latency secured MAC protocol for PON based large sensor network,” in proc. ICACT 10, 1528–1532 (2010).

Hugues-Salas, E.

Jiang, N.

Jin, W.

Kim, K.-D.

M. Hossen, K.-D. Kim, and Y. Park, “Synchronized latency secured MAC protocol for PON based large sensor network,” in proc. ICACT 10, 1528–1532 (2010).

Kravtsov, K.

Li, F.

Li, X.

Liu, B.

Park, Y.

M. Hossen, K.-D. Kim, and Y. Park, “Synchronized latency secured MAC protocol for PON based large sensor network,” in proc. ICACT 10, 1528–1532 (2010).

Prucnal, P. R.

K. Kravtsov, Z. Wang, W. Trappe, and P. R. Prucnal, “Physical layer secret key generation for fiber-optical networks,” Opt. Express 21(20), 23756–23771 (2013).
[Crossref] [PubMed]

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics and Security 6(3), 725–736 (2011).
[Crossref]

Qiu, K.

Tang, J. M.

Trappe, W.

Wang, M.

Wang, Z.

K. Kravtsov, Z. Wang, W. Trappe, and P. R. Prucnal, “Physical layer secret key generation for fiber-optical networks,” Opt. Express 21(20), 23756–23771 (2013).
[Crossref] [PubMed]

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics and Security 6(3), 725–736 (2011).
[Crossref]

Xin, X.

Yin, X.

Yu, J.

Zhang, C. F.

Zhang, J.

Zhang, L.

Zhang, Q. W.

Zhang, Q. Y.

IEEE Trans. Inf. Forensics and Security (1)

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics and Security 6(3), 725–736 (2011).
[Crossref]

in proc. ICACT (1)

M. Hossen, K.-D. Kim, and Y. Park, “Synchronized latency secured MAC protocol for PON based large sensor network,” in proc. ICACT 10, 1528–1532 (2010).

J. Lightwave Technol. (2)

Opt. Express (4)

Opt. Lett. (1)

Other (3)

G. S. Kanter, “Secure optical communications,” in proc. CLEO’10, USA, paper. CFC3 (2010).

A. Teixeira, A. Vieira, J. Andrade, A. Quinta, M. Lima, R. Nogueira, P. André, and G. T. Beleffi, “Security issues in optical networks physical layer,” in proc.ICOCN'08, paper.We.A4.1 (2008).
[Crossref]

S.X.Wang, R.A.Lipa, D.Reilly, and G.S.Kanter, “Self-coherent differential phase detection for optical physical-layer secure communications,” in proc.OFC'13, paper. JW2A.41 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The schematic diagram of proposed method (MAP: maximum a posteriori).
Fig. 2
Fig. 2 The flow diagram of generation for R with bubble sorting method.
Fig. 3
Fig. 3 Experimental setup (AWG: arbitrary waveform generator; DSA: digital serial analyzer).
Fig. 4
Fig. 4 The measured BER curves of 16QAM-OFDM signal at regular and illegal ONUs.
Fig. 5
Fig. 5 The measured BER curves at regular ONU with different encoding rates.
Fig. 6
Fig. 6 The measured BER curves at the illegal ONU.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

x n+1 =μ x n (1 x n )+(ζ x n )mod(0.014μ)
R={r(1),r(2),...,r(k)}
x n ( m1 N , m N ],m=1,2,...,N
V p =[ V r (n) V r (n) ][ P , P ]
s t = n=1 N/ log 2 M S n × e j2π r(n) N/ log 2 M ×exp[j2π f n (l1) T s N ]

Metrics