Abstract

We report the photo-assisted proton exchange and chemical etching on Fe-doped LiNbO3 crystals. Selective proton exchange and chemical etching are realized through the 455nm-laser irradiation on the crystal surface in pyrophosphoric acid. Optical microscopy and Micro-IR spectroscopy analysis show that the hydrogen incorporation is confined spatially by the laser irradiation. Moreover, under the laser irradiation, + z surface is found to be more easily etched than –z surface. This unexpected etching anisotropy is attributed to the photogalvanic effect of the crystal.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photoinduced Ag-nanoparticle deposition on Fe-doped lithium niobate crystals

Fangfang Jia, Wenbo Yan, Donghui Wang, Lixia Zhang, Lihong Shi, Aidiao Lin, Guohong Liang, Min Li, Yuwei Zhang, Jiushuang Zhang, Haiyun Dong, Guifeng Chen, and Hongjian Chen
Opt. Mater. Express 4(2) 359-365 (2014)

Waveguides in single-crystal lithium niobate thin film by proton exchange

Lutong Cai, Shuang Li Huangpu Han, and Hui Hu
Opt. Express 23(2) 1240-1248 (2015)

Low-loss bent channel waveguides in lithium niobate thin film by proton exchange and dry etching

Xue Peng Li, Kai Xin Chen, and Zhe Feng Hu
Opt. Mater. Express 8(5) 1322-1327 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201(2), 253–283 (2004).
    [Crossref]
  2. J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
    [Crossref]
  3. J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45(5), 349–392 (1996).
    [Crossref]
  4. Y. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: The correlation between optical and structural properties,” IEEE J. Sel. Top. Quantum Electron. 2(2), 187–196 (1996).
    [Crossref]
  5. Y. N. Korkishko, V. A. Fedorov, and S. M. Kostritskii, “Optical and x-ray characterization of HxLi1-xNbO3 phases in proton-exchanged LiNbO3 optical waveguides,” J. Appl. Phys. 84(5), 2411–2419 (1998).
    [Crossref]
  6. Y. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, A. N. Alkaev, C. Sada, N. Argiolas, and M. Bazzan, “Proton-exchanged waveguides in MgO-doped LiNbO3: Optical and structural properties,” J. Appl. Phys. 94(2), 1163–1170 (2003).
    [Crossref]
  7. J. Rams and J. M. Cabrera, “Characterization of LiNbO3 waveguides fabricated by proton exchange in water,” Appl. Phys., A Mater. Sci. Process. 81(1), 205–208 (2005).
    [Crossref]
  8. J. Carnicero, M. Carrascosa, A. Mendez, A. García-Cabañes, and J. M. Cabrera, “Optical damage control via the Fe2+/Fe3+ ratio in proton-exchanged LiNbO3 waveguides,” Opt. Lett. 32(16), 2294–2296 (2007).
    [Crossref] [PubMed]
  9. M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3.,” Opt. Express 16(1), 115–120 (2008).
    [Crossref] [PubMed]
  10. S. M. Kostritskii, S. V. Rodnov, Y. N. Korkishko, V. A. Fedorov, and O. G. Sevostyanov, “Electro-Optical Properties of Different HxLi1-xNbO3 Phases in Proton-Exchanged LiNbO3 Waveguides,” Ferroelectrics 440(1), 47–56 (2012).
    [Crossref]
  11. H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett. 97(20), 201901 (2010).
    [Crossref]
  12. C. L. Sones, A. C. Muir, Y. J. Ying, S. Mailis, R. W. Eason, T. Jungk, A. Hoffmann, and E. Soergel, “Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling,” Appl. Phys. Lett. 92(7), 072905 (2008).
    [Crossref]
  13. A. C. Muir, S. Mailis, and R. W. Eason, “Ultraviolet laser-induced submicron spatially resolved superhydrophilicity on single crystal lithium niobate surfaces,” J. Appl. Phys. 101(10), 104916 (2007).
    [Crossref]
  14. C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
    [Crossref]

2012 (1)

S. M. Kostritskii, S. V. Rodnov, Y. N. Korkishko, V. A. Fedorov, and O. G. Sevostyanov, “Electro-Optical Properties of Different HxLi1-xNbO3 Phases in Proton-Exchanged LiNbO3 Waveguides,” Ferroelectrics 440(1), 47–56 (2012).
[Crossref]

2010 (1)

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett. 97(20), 201901 (2010).
[Crossref]

2008 (2)

C. L. Sones, A. C. Muir, Y. J. Ying, S. Mailis, R. W. Eason, T. Jungk, A. Hoffmann, and E. Soergel, “Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling,” Appl. Phys. Lett. 92(7), 072905 (2008).
[Crossref]

M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3.,” Opt. Express 16(1), 115–120 (2008).
[Crossref] [PubMed]

2007 (2)

A. C. Muir, S. Mailis, and R. W. Eason, “Ultraviolet laser-induced submicron spatially resolved superhydrophilicity on single crystal lithium niobate surfaces,” J. Appl. Phys. 101(10), 104916 (2007).
[Crossref]

J. Carnicero, M. Carrascosa, A. Mendez, A. García-Cabañes, and J. M. Cabrera, “Optical damage control via the Fe2+/Fe3+ ratio in proton-exchanged LiNbO3 waveguides,” Opt. Lett. 32(16), 2294–2296 (2007).
[Crossref] [PubMed]

2005 (1)

J. Rams and J. M. Cabrera, “Characterization of LiNbO3 waveguides fabricated by proton exchange in water,” Appl. Phys., A Mater. Sci. Process. 81(1), 205–208 (2005).
[Crossref]

2004 (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201(2), 253–283 (2004).
[Crossref]

2003 (1)

Y. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, A. N. Alkaev, C. Sada, N. Argiolas, and M. Bazzan, “Proton-exchanged waveguides in MgO-doped LiNbO3: Optical and structural properties,” J. Appl. Phys. 94(2), 1163–1170 (2003).
[Crossref]

2002 (1)

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

1998 (1)

Y. N. Korkishko, V. A. Fedorov, and S. M. Kostritskii, “Optical and x-ray characterization of HxLi1-xNbO3 phases in proton-exchanged LiNbO3 optical waveguides,” J. Appl. Phys. 84(5), 2411–2419 (1998).
[Crossref]

1996 (2)

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45(5), 349–392 (1996).
[Crossref]

Y. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: The correlation between optical and structural properties,” IEEE J. Sel. Top. Quantum Electron. 2(2), 187–196 (1996).
[Crossref]

1982 (1)

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Alkaev, A. N.

Y. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, A. N. Alkaev, C. Sada, N. Argiolas, and M. Bazzan, “Proton-exchanged waveguides in MgO-doped LiNbO3: Optical and structural properties,” J. Appl. Phys. 94(2), 1163–1170 (2003).
[Crossref]

Argiolas, N.

Y. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, A. N. Alkaev, C. Sada, N. Argiolas, and M. Bazzan, “Proton-exchanged waveguides in MgO-doped LiNbO3: Optical and structural properties,” J. Appl. Phys. 94(2), 1163–1170 (2003).
[Crossref]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201(2), 253–283 (2004).
[Crossref]

Bazzan, M.

Y. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, A. N. Alkaev, C. Sada, N. Argiolas, and M. Bazzan, “Proton-exchanged waveguides in MgO-doped LiNbO3: Optical and structural properties,” J. Appl. Phys. 94(2), 1163–1170 (2003).
[Crossref]

Brocklesby, W. S.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

Cabrera, J. M.

M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3.,” Opt. Express 16(1), 115–120 (2008).
[Crossref] [PubMed]

J. Carnicero, M. Carrascosa, A. Mendez, A. García-Cabañes, and J. M. Cabrera, “Optical damage control via the Fe2+/Fe3+ ratio in proton-exchanged LiNbO3 waveguides,” Opt. Lett. 32(16), 2294–2296 (2007).
[Crossref] [PubMed]

J. Rams and J. M. Cabrera, “Characterization of LiNbO3 waveguides fabricated by proton exchange in water,” Appl. Phys., A Mater. Sci. Process. 81(1), 205–208 (2005).
[Crossref]

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45(5), 349–392 (1996).
[Crossref]

Carnicero, J.

Carrascosa, M.

Chen, S.

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett. 97(20), 201901 (2010).
[Crossref]

Diéguez, E.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45(5), 349–392 (1996).
[Crossref]

Eason, R. W.

C. L. Sones, A. C. Muir, Y. J. Ying, S. Mailis, R. W. Eason, T. Jungk, A. Hoffmann, and E. Soergel, “Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling,” Appl. Phys. Lett. 92(7), 072905 (2008).
[Crossref]

A. C. Muir, S. Mailis, and R. W. Eason, “Ultraviolet laser-induced submicron spatially resolved superhydrophilicity on single crystal lithium niobate surfaces,” J. Appl. Phys. 101(10), 104916 (2007).
[Crossref]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

Fedorov, V. A.

S. M. Kostritskii, S. V. Rodnov, Y. N. Korkishko, V. A. Fedorov, and O. G. Sevostyanov, “Electro-Optical Properties of Different HxLi1-xNbO3 Phases in Proton-Exchanged LiNbO3 Waveguides,” Ferroelectrics 440(1), 47–56 (2012).
[Crossref]

Y. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, A. N. Alkaev, C. Sada, N. Argiolas, and M. Bazzan, “Proton-exchanged waveguides in MgO-doped LiNbO3: Optical and structural properties,” J. Appl. Phys. 94(2), 1163–1170 (2003).
[Crossref]

Y. N. Korkishko, V. A. Fedorov, and S. M. Kostritskii, “Optical and x-ray characterization of HxLi1-xNbO3 phases in proton-exchanged LiNbO3 optical waveguides,” J. Appl. Phys. 84(5), 2411–2419 (1998).
[Crossref]

Y. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: The correlation between optical and structural properties,” IEEE J. Sel. Top. Quantum Electron. 2(2), 187–196 (1996).
[Crossref]

Frolova, M. V.

Y. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, A. N. Alkaev, C. Sada, N. Argiolas, and M. Bazzan, “Proton-exchanged waveguides in MgO-doped LiNbO3: Optical and structural properties,” J. Appl. Phys. 94(2), 1163–1170 (2003).
[Crossref]

García-Cabañes, A.

Hoffmann, A.

C. L. Sones, A. C. Muir, Y. J. Ying, S. Mailis, R. W. Eason, T. Jungk, A. Hoffmann, and E. Soergel, “Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling,” Appl. Phys. Lett. 92(7), 072905 (2008).
[Crossref]

Jackel, J. L.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Jungk, T.

C. L. Sones, A. C. Muir, Y. J. Ying, S. Mailis, R. W. Eason, T. Jungk, A. Hoffmann, and E. Soergel, “Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling,” Appl. Phys. Lett. 92(7), 072905 (2008).
[Crossref]

Kong, Y.

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett. 97(20), 201901 (2010).
[Crossref]

Korkishko, Y. N.

S. M. Kostritskii, S. V. Rodnov, Y. N. Korkishko, V. A. Fedorov, and O. G. Sevostyanov, “Electro-Optical Properties of Different HxLi1-xNbO3 Phases in Proton-Exchanged LiNbO3 Waveguides,” Ferroelectrics 440(1), 47–56 (2012).
[Crossref]

Y. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, A. N. Alkaev, C. Sada, N. Argiolas, and M. Bazzan, “Proton-exchanged waveguides in MgO-doped LiNbO3: Optical and structural properties,” J. Appl. Phys. 94(2), 1163–1170 (2003).
[Crossref]

Y. N. Korkishko, V. A. Fedorov, and S. M. Kostritskii, “Optical and x-ray characterization of HxLi1-xNbO3 phases in proton-exchanged LiNbO3 optical waveguides,” J. Appl. Phys. 84(5), 2411–2419 (1998).
[Crossref]

Y. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: The correlation between optical and structural properties,” IEEE J. Sel. Top. Quantum Electron. 2(2), 187–196 (1996).
[Crossref]

Kostritskii, S. M.

S. M. Kostritskii, S. V. Rodnov, Y. N. Korkishko, V. A. Fedorov, and O. G. Sevostyanov, “Electro-Optical Properties of Different HxLi1-xNbO3 Phases in Proton-Exchanged LiNbO3 Waveguides,” Ferroelectrics 440(1), 47–56 (2012).
[Crossref]

Y. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, A. N. Alkaev, C. Sada, N. Argiolas, and M. Bazzan, “Proton-exchanged waveguides in MgO-doped LiNbO3: Optical and structural properties,” J. Appl. Phys. 94(2), 1163–1170 (2003).
[Crossref]

Y. N. Korkishko, V. A. Fedorov, and S. M. Kostritskii, “Optical and x-ray characterization of HxLi1-xNbO3 phases in proton-exchanged LiNbO3 optical waveguides,” J. Appl. Phys. 84(5), 2411–2419 (1998).
[Crossref]

Mailis, S.

C. L. Sones, A. C. Muir, Y. J. Ying, S. Mailis, R. W. Eason, T. Jungk, A. Hoffmann, and E. Soergel, “Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling,” Appl. Phys. Lett. 92(7), 072905 (2008).
[Crossref]

A. C. Muir, S. Mailis, and R. W. Eason, “Ultraviolet laser-induced submicron spatially resolved superhydrophilicity on single crystal lithium niobate surfaces,” J. Appl. Phys. 101(10), 104916 (2007).
[Crossref]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

Maslennikov, E. I.

Y. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, A. N. Alkaev, C. Sada, N. Argiolas, and M. Bazzan, “Proton-exchanged waveguides in MgO-doped LiNbO3: Optical and structural properties,” J. Appl. Phys. 94(2), 1163–1170 (2003).
[Crossref]

Mendez, A.

Muir, A. C.

C. L. Sones, A. C. Muir, Y. J. Ying, S. Mailis, R. W. Eason, T. Jungk, A. Hoffmann, and E. Soergel, “Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling,” Appl. Phys. Lett. 92(7), 072905 (2008).
[Crossref]

A. C. Muir, S. Mailis, and R. W. Eason, “Ultraviolet laser-induced submicron spatially resolved superhydrophilicity on single crystal lithium niobate surfaces,” J. Appl. Phys. 101(10), 104916 (2007).
[Crossref]

Müller, R.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45(5), 349–392 (1996).
[Crossref]

Olivares, J.

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45(5), 349–392 (1996).
[Crossref]

Owen, J. R.

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

Rams, J.

J. Rams and J. M. Cabrera, “Characterization of LiNbO3 waveguides fabricated by proton exchange in water,” Appl. Phys., A Mater. Sci. Process. 81(1), 205–208 (2005).
[Crossref]

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45(5), 349–392 (1996).
[Crossref]

Rice, C. E.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Rodnov, S. V.

S. M. Kostritskii, S. V. Rodnov, Y. N. Korkishko, V. A. Fedorov, and O. G. Sevostyanov, “Electro-Optical Properties of Different HxLi1-xNbO3 Phases in Proton-Exchanged LiNbO3 Waveguides,” Ferroelectrics 440(1), 47–56 (2012).
[Crossref]

Rupp, R.

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett. 97(20), 201901 (2010).
[Crossref]

Sada, C.

Y. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, A. N. Alkaev, C. Sada, N. Argiolas, and M. Bazzan, “Proton-exchanged waveguides in MgO-doped LiNbO3: Optical and structural properties,” J. Appl. Phys. 94(2), 1163–1170 (2003).
[Crossref]

Sevostyanov, O. G.

S. M. Kostritskii, S. V. Rodnov, Y. N. Korkishko, V. A. Fedorov, and O. G. Sevostyanov, “Electro-Optical Properties of Different HxLi1-xNbO3 Phases in Proton-Exchanged LiNbO3 Waveguides,” Ferroelectrics 440(1), 47–56 (2012).
[Crossref]

Soergel, E.

C. L. Sones, A. C. Muir, Y. J. Ying, S. Mailis, R. W. Eason, T. Jungk, A. Hoffmann, and E. Soergel, “Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling,” Appl. Phys. Lett. 92(7), 072905 (2008).
[Crossref]

Sones, C. L.

C. L. Sones, A. C. Muir, Y. J. Ying, S. Mailis, R. W. Eason, T. Jungk, A. Hoffmann, and E. Soergel, “Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling,” Appl. Phys. Lett. 92(7), 072905 (2008).
[Crossref]

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

Sun, T.

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett. 97(20), 201901 (2010).
[Crossref]

Tian, T.

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett. 97(20), 201901 (2010).
[Crossref]

Veselka, J. J.

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

Villarroel, J.

Xu, J.

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett. 97(20), 201901 (2010).
[Crossref]

Ying, Y. J.

C. L. Sones, A. C. Muir, Y. J. Ying, S. Mailis, R. W. Eason, T. Jungk, A. Hoffmann, and E. Soergel, “Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling,” Appl. Phys. Lett. 92(7), 072905 (2008).
[Crossref]

Zeng, H.

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett. 97(20), 201901 (2010).
[Crossref]

Zhang, L.

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett. 97(20), 201901 (2010).
[Crossref]

Adv. Phys. (1)

J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in lithium niobate,” Adv. Phys. 45(5), 349–392 (1996).
[Crossref]

Appl. Phys. Lett. (3)

J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41(7), 607–608 (1982).
[Crossref]

H. Zeng, Y. Kong, T. Tian, S. Chen, L. Zhang, T. Sun, R. Rupp, and J. Xu, “Transcription of domain patterns in near-stoichiometric magnesium-doped lithium niobate,” Appl. Phys. Lett. 97(20), 201901 (2010).
[Crossref]

C. L. Sones, A. C. Muir, Y. J. Ying, S. Mailis, R. W. Eason, T. Jungk, A. Hoffmann, and E. Soergel, “Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling,” Appl. Phys. Lett. 92(7), 072905 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. Rams and J. M. Cabrera, “Characterization of LiNbO3 waveguides fabricated by proton exchange in water,” Appl. Phys., A Mater. Sci. Process. 81(1), 205–208 (2005).
[Crossref]

Ferroelectrics (1)

S. M. Kostritskii, S. V. Rodnov, Y. N. Korkishko, V. A. Fedorov, and O. G. Sevostyanov, “Electro-Optical Properties of Different HxLi1-xNbO3 Phases in Proton-Exchanged LiNbO3 Waveguides,” Ferroelectrics 440(1), 47–56 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: The correlation between optical and structural properties,” IEEE J. Sel. Top. Quantum Electron. 2(2), 187–196 (1996).
[Crossref]

J. Appl. Phys. (3)

Y. N. Korkishko, V. A. Fedorov, and S. M. Kostritskii, “Optical and x-ray characterization of HxLi1-xNbO3 phases in proton-exchanged LiNbO3 optical waveguides,” J. Appl. Phys. 84(5), 2411–2419 (1998).
[Crossref]

Y. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, A. N. Alkaev, C. Sada, N. Argiolas, and M. Bazzan, “Proton-exchanged waveguides in MgO-doped LiNbO3: Optical and structural properties,” J. Appl. Phys. 94(2), 1163–1170 (2003).
[Crossref]

A. C. Muir, S. Mailis, and R. W. Eason, “Ultraviolet laser-induced submicron spatially resolved superhydrophilicity on single crystal lithium niobate surfaces,” J. Appl. Phys. 101(10), 104916 (2007).
[Crossref]

J. Mater. Chem. (1)

C. L. Sones, S. Mailis, W. S. Brocklesby, R. W. Eason, and J. R. Owen, “Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations,” J. Mater. Chem. 12(2), 295–298 (2002).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Status Solidi A (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201(2), 253–283 (2004).
[Crossref]

Supplementary Material (3)

» Media 1: JPG (26 KB)     
» Media 2: JPG (23 KB)     
» Media 3: JPG (21 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) UV-VIS spectrum of Fe-doped LN samples used in Case 1, 2, 3 and 4. (b) Outline of the experimental setup for PAPE and PACE.
Fig. 2
Fig. 2 Micro-IR spectroscopy results reflecting the spatial distribution of the relative proton concentration after PAPE and PACE. a) and b) corresponds to Case 1, c) and d) to Case 3, and e) and f) to Case 4. In a), c) and e), the 100 points (10 × 10 lattice) denote the sample region where the FT-IR spectrum was collected, and the O-H vibration bands shown in the insets are collected respectively from the region points labeled 1 to10. In b), d) and f), the integration of the O-H vibration band is plotted as function of spatial axis (x and y-axis) in 2D and 3D.
Fig. 3
Fig. 3 Topographic images of photo-assisted chemical etching on a) the –z surface in Case 1, b) the + z surface in Case 2, c) the –z surface in Case 3 and d) the + z surface in Case 4. The insets are the back surfaces of these samples in Case 3 and 4. e) The cross-section of the deep etching hole on the + z surface in Case 4.
Fig. 4
Fig. 4 The PAPE and PACE mechanism related with the photogalvanic effect.

Tables (1)

Tables Icon

Table 1 Treatment conditions and parameters

Metrics