Abstract

We report a study of terahertz waveguiding between parallel dielectric films, a system that can be viewed as a planar analogue of hollow core fibres that exploit anti-resonant reflection optical waveguiding (ARROW). With the aid of time domain waveguide mode imaging, the frequency dependent transition from ARROW to total internal reflection guiding in the individual films as the film separation is reduced and the effect on the transmission of adding variably spaced cladding layers are clearly revealed. Good agreement for the transmission, dispersion and loss is obtained with simple analytical models for film separations greater than about five wavelengths suggesting that the same models could be usefully used to predict the behavior in the case of the technologically more important cylindrical geometry.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz dielectric waveguides

Shaghik Atakaramians, Shahraam Afshar V., Tanya M. Monro, and Derek Abbott
Adv. Opt. Photon. 5(2) 169-215 (2013)

Hybrid metal wire–dielectric terahertz waveguides: challenges and opportunities [Invited]

Andrey Markov, Hichem Guerboukha, and Maksim Skorobogatiy
J. Opt. Soc. Am. B 31(11) 2587-2600 (2014)

Metallic and 3D-printed dielectric helical terahertz waveguides

Dominik Walter Vogt, Jessienta Anthony, and Rainer Leonhardt
Opt. Express 23(26) 33359-33369 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).
  3. S. R. Andrews, “Microstructured terahertz waveguides,” J. Phys. D Appl. Phys. 47(37), 374004 (2014).
    [Crossref]
  4. S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. in Opt. and Photon. 5(2), 169–215 (2013).
    [Crossref]
  5. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24(20), 1431–1433 (1999).
    [Crossref] [PubMed]
  6. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
    [Crossref] [PubMed]
  7. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
    [Crossref]
  8. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
    [Crossref] [PubMed]
  9. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
    [Crossref] [PubMed]
  10. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
    [Crossref]
  11. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express 19(19), 18470–18478 (2011).
    [Crossref] [PubMed]
  12. L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
    [Crossref]
  13. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  14. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18(5), 5142–5150 (2010).
    [Crossref] [PubMed]
  15. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
    [Crossref]
  16. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  17. B. Beaudou, F. Gerôme, Y. Y. Wang, M. Alharbi, T. D. Bradley, G. Humbert, J.-L. Auguste, J.-M. Blondy, and F. Benabid, “Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber,” Opt. Lett. 37(9), 1430–1432 (2012).
    [Crossref] [PubMed]
  18. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
    [Crossref] [PubMed]
  19. O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009).
    [Crossref]
  20. HiFi Industrial Films Ltd., Stevenage SG1 4SX, UK.
  21. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).
  22. M. Misra, Y. Pan, C. R. Williams, S. A. Maier, and S. R. Andrews, “Characterization of a hollow core fibre-coupled near field terahertz probe,” J. Appl. Phys. 113(19), 193104 (2013).
    [Crossref]
  23. M. Miyagi and S. Nishida, “A proposal of low-loss leaky waveguide for submillimeter waves transmission,” IEEE Trans. MTT 28(4), 398–401 (1980).
    [Crossref]
  24. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
    [Crossref]
  25. F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35(8), 1157–1159 (2010).
    [Crossref] [PubMed]
  26. F. Poletti, J. R. Hayes, and D. Richardson, “Optimising the performances of hollow antiresonant fibres,” in OSA Technical Digest (CD), Optical Society of America, Washington (2011).
  27. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
    [Crossref]
  28. M. Tacke and R. Ulrich, “Submillimeter wave-guiding on thin dielectric films,” Opt. Commun. 8(3), 234–238 (1973).
    [Crossref]

2014 (1)

S. R. Andrews, “Microstructured terahertz waveguides,” J. Phys. D Appl. Phys. 47(37), 374004 (2014).
[Crossref]

2013 (3)

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. in Opt. and Photon. 5(2), 169–215 (2013).
[Crossref]

M. Misra, Y. Pan, C. R. Williams, S. A. Maier, and S. R. Andrews, “Characterization of a hollow core fibre-coupled near field terahertz probe,” J. Appl. Phys. 113(19), 193104 (2013).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

2010 (2)

2009 (3)

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[Crossref] [PubMed]

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
[Crossref]

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009).
[Crossref]

2008 (1)

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

2007 (3)

M. Tonouchi, “Cutting edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[Crossref] [PubMed]

2006 (1)

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

2002 (1)

2001 (1)

2000 (1)

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
[Crossref]

1999 (1)

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

1980 (1)

M. Miyagi and S. Nishida, “A proposal of low-loss leaky waveguide for submillimeter waves transmission,” IEEE Trans. MTT 28(4), 398–401 (1980).
[Crossref]

1973 (1)

M. Tacke and R. Ulrich, “Submillimeter wave-guiding on thin dielectric films,” Opt. Commun. 8(3), 234–238 (1973).
[Crossref]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Abbott, D.

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. in Opt. and Photon. 5(2), 169–215 (2013).
[Crossref]

Abeeluck, A. K.

Afshar V, S.

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. in Opt. and Photon. 5(2), 169–215 (2013).
[Crossref]

Alharbi, M.

Andrews, S. R.

S. R. Andrews, “Microstructured terahertz waveguides,” J. Phys. D Appl. Phys. 47(37), 374004 (2014).
[Crossref]

M. Misra, Y. Pan, C. R. Williams, S. A. Maier, and S. R. Andrews, “Characterization of a hollow core fibre-coupled near field terahertz probe,” J. Appl. Phys. 113(19), 193104 (2013).
[Crossref]

Anthony, J.

Argyros, A.

Atakaramians, S.

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. in Opt. and Photon. 5(2), 169–215 (2013).
[Crossref]

Auguste, J.-L.

Beaudou, B.

Benabid, F.

Biriukov, A. S.

Blondy, J.-M.

Bowden, B.

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[Crossref] [PubMed]

Bradley, T. D.

Chang, H.-C.

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[Crossref] [PubMed]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Chen, H.-W.

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[Crossref] [PubMed]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Dianov, E. M.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Eggleton, B. J.

Février, S.

Gallot, G.

Gerôme, F.

Gérôme, F.

Grischkowsky, D.

Harrington, J. A.

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[Crossref] [PubMed]

Headley, C.

Hsueh, Y.-C.

Huang, Y.-J.

Humbert, G.

Jamier, R.

Jeon, S.-G.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Jin, Y.-S.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Kim, G.-J.

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Knight, J. C.

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Kolyadin, A. N.

Kosolapov, A. F.

Kurz, H.

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[Crossref]

Lai, C.-H.

Leonhardt, R.

Leon-Saval, S. G.

Li, Y.-T.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Litchinitser, N. M.

Lu, J.-Y.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Maier, S. A.

M. Misra, Y. Pan, C. R. Williams, S. A. Maier, and S. R. Andrews, “Characterization of a hollow core fibre-coupled near field terahertz probe,” J. Appl. Phys. 113(19), 193104 (2013).
[Crossref]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Mark, P. R.

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009).
[Crossref]

McGowan, R. W.

Mendis, R.

Misra, M.

M. Misra, Y. Pan, C. R. Williams, S. A. Maier, and S. R. Andrews, “Characterization of a hollow core fibre-coupled near field terahertz probe,” J. Appl. Phys. 113(19), 193104 (2013).
[Crossref]

Mitrofanov, O.

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009).
[Crossref]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007).
[Crossref] [PubMed]

Miyagi, M.

M. Miyagi and S. Nishida, “A proposal of low-loss leaky waveguide for submillimeter waves transmission,” IEEE Trans. MTT 28(4), 398–401 (1980).
[Crossref]

Monro, T. M.

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. in Opt. and Photon. 5(2), 169–215 (2013).
[Crossref]

Nagel, M.

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[Crossref]

Nishida, S.

M. Miyagi and S. Nishida, “A proposal of low-loss leaky waveguide for submillimeter waves transmission,” IEEE Trans. MTT 28(4), 398–401 (1980).
[Crossref]

Pan, C.-L.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Pan, Y.

M. Misra, Y. Pan, C. R. Williams, S. A. Maier, and S. R. Andrews, “Characterization of a hollow core fibre-coupled near field terahertz probe,” J. Appl. Phys. 113(19), 193104 (2013).
[Crossref]

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

Plotnichenko, V. G.

Pryamikov, A. D.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Sun, C.-K.

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[Crossref] [PubMed]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Tacke, M.

M. Tacke and R. Ulrich, “Submillimeter wave-guiding on thin dielectric films,” Opt. Commun. 8(3), 234–238 (1973).
[Crossref]

Tan, T.

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Ulrich, R.

M. Tacke and R. Ulrich, “Submillimeter wave-guiding on thin dielectric films,” Opt. Commun. 8(3), 234–238 (1973).
[Crossref]

Viale, P.

Vincetti, L.

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
[Crossref]

Wächter, M.

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[Crossref]

Wadsworth, W. J.

Wang, Y. Y.

Williams, C. R.

M. Misra, Y. Pan, C. R. Williams, S. A. Maier, and S. R. Andrews, “Characterization of a hollow core fibre-coupled near field terahertz probe,” J. Appl. Phys. 113(19), 193104 (2013).
[Crossref]

Yu, C.-P.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

Yu, F.

Adv. in Opt. and Photon. (1)

S. Atakaramians, S. Afshar V, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. in Opt. and Photon. 5(2), 169–215 (2013).
[Crossref]

Appl. Phys. Lett. (4)

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[Crossref]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[Crossref]

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[Crossref]

O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett. 94(17), 171104 (2009).
[Crossref]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

IEEE Trans. MTT (1)

M. Miyagi and S. Nishida, “A proposal of low-loss leaky waveguide for submillimeter waves transmission,” IEEE Trans. MTT 28(4), 398–401 (1980).
[Crossref]

J. Appl. Phys. (2)

M. Misra, Y. Pan, C. R. Williams, S. A. Maier, and S. R. Andrews, “Characterization of a hollow core fibre-coupled near field terahertz probe,” J. Appl. Phys. 113(19), 193104 (2013).
[Crossref]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
[Crossref]

J. Korean Phys. Soc. (1)

Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

J. Phys. D Appl. Phys. (1)

S. R. Andrews, “Microstructured terahertz waveguides,” J. Phys. D Appl. Phys. 47(37), 374004 (2014).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Commun. (1)

M. Tacke and R. Ulrich, “Submillimeter wave-guiding on thin dielectric films,” Opt. Commun. 8(3), 234–238 (1973).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
[Crossref]

Opt. Lett. (7)

Other (3)

F. Poletti, J. R. Hayes, and D. Richardson, “Optimising the performances of hollow antiresonant fibres,” in OSA Technical Digest (CD), Optical Society of America, Washington (2011).

X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).

HiFi Industrial Films Ltd., Stevenage SG1 4SX, UK.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The experimental TDTS geometry. The field incident on the waveguide, which is made from two parallel polyester films of thickness t and separation h, is polarized along x. In some experiments outer cladding layers of HDPE or a receiver aperture are added, as shown.
Fig. 2
Fig. 2 (a) Time domain traces obtained after propagation between two parallel polyester films with the film thicknesses shown. The film separation is 2.0 mm and the length is 13.5 cm. The reference signal shows the signal obtained by removing the waveguide. (b) Amplitude spectra (symbols) of the traces in (a). The solid curves are calculated using Eq. (1) and the reference transmission spectrum.
Fig. 3
Fig. 3 (a) Measured amplitude transmission coefficient of a 13.5 cm long guide with 36 µm films separated by 2.0 mm (solid black curve). The dotted curve is the transmission calculated using Eq. (1). The dashed curve is a calculation neglecting dielectric absorption. (b) Measured and calculated (using Eq. (3)) effective refractive index.
Fig. 4
Fig. 4 (a) Time domain electric field map for translation along the x-axis for a parallel dielectric film guide with a film separation of 1.8 mm and film thickness of 36 µm. Red corresponds to positive signal and blue to negative. The symbols show the x-profile of the field at −12.8 ps and the vertical dashed lines indicate zero field. (b) Corresponding spectral amplitude map. The horizontal dashed lines show the film positions.
Fig. 5
Fig. 5 Measured amplitude of TM0 mode at x = 0 and 1.1 THz as a function of the separation d between the thick cladding plates and the thin guiding films. The vertical dotted lines indicate the calculated loss minima values of d and the dashed horizontal line shows the amplitude when the outer cladding is removed.
Fig. 6
Fig. 6 (a) Spectra obtained after transmission along 13.5 cm polyester films of various thickness. A common vertical scale is used for all data. (b). The corresponding dispersion curves plotted as a function of effective index. Solid lines are calculations and points are measurements.
Fig. 7
Fig. 7 Spectral amplitude map of radiation guided by a single 12 μm thick polyester film. The white dots indicate the 1/e amplitude fall-off distance. The dashed line shows the position of the film.
Fig. 8
Fig. 8 (a) Experimental amplitude-time map showing the effect of changing the film separation. The film thicknesses are 36 µm. (b) Frequency domain map corresponding to (a).
Fig. 9
Fig. 9 (a) Calculated amplitude transmissivity for a 13.5 cm long waveguide with 36 µm film thickness and the film separations shown. (b) Transmitted spectra obtained by multiplying the system reference spectrum by the curves in (a).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

α E = 1 ν 2 [ ( n 2 1 ) n 4 k o u 3 ν 2 sin 2 ( 2 ν t / h ) + 4 u 2 ] ( 1 + k o h t 2 n u α d ) .
f p = p c 2 t n 2 1
n e f f = k o ( 1 ( m λ 2 h ) 2 ) 0.5 .
d = ( 2 q + 1 ) λ 4 1 - n e f f 2
α E = t 2 k o 2 ( n 2 1 ) α d 4 n 5 .
k o t n 2 n e f f 2 2 ϕ = m π
ϕ = tan 1 ( n 2 n e f f 2 1 / n 2 n e f f 2 ) .

Metrics