Abstract

Far-field imaging beyond the diffraction limit is a long sought-after goal in various imaging applications, which requires usually mechanical scanning or an array of antennas. Here, we propose to solve this challenging problem using a single sensor in combination with a spatio-temporal resonant aperture antenna. We theoretically and numerically demonstrate that such resonant aperture antenna is capable of converting part evanescent waves into propagating waves and delivering them to far fields. The proposed imaging concept provides the unique ability to achieve super resolution for real-time data when illuminated by broadband electromagnetic waves, without the harsh requirements such as near- field scanning, mechanical scanning, or antenna arrays. We expect the imaging methodology to make breakthroughs in super-resolution imaging in microwave, terahertz, optical, and ultrasound regimes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Feasibility of resonant metalens for the subwavelength imaging using a single sensor in the far field

Lianlin Li, Fang Li, and Tie Jun Cui
Opt. Express 22(15) 18688-18697 (2014)

2D and 3D sub-diffraction source imaging with a superoscillatory filter

Reza K. Amineh and George V. Eleftheriades
Opt. Express 21(7) 8142-8157 (2013)

Computational superoscillation imaging beyond the Rayleigh limit from far-Field measurements

Lianlin Li, Fang Li, and Tie Jun Cui
Opt. Express 22(5) 5431-5441 (2014)

References

  • View by:
  • |
  • |
  • |

  1. http://en.wikipedia.org/wiki/Near-field_scanning_optical_microscope .
  2. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat Commun 3, 1205 (2012).
    [Crossref] [PubMed]
  3. E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).
    [Crossref]
  4. O. Malyuskin and V. Fusco, “Far-field subwavelength source resolution using phase conjugating lens assisted with evanescent-to-propagating spectrum conversion,” IEEE Trans. Antenn. Propag. 58(2), 459–468 (2010).
    [Crossref]
  5. O. Malyuskin and V. Fusco, “Near field focusing using phase conjugating impedance loaded wire lens,” IEEE Trans. Antenn. Propag. 58(9), 2884–2893 (2010).
    [Crossref]
  6. J. Ding, M. Kahl, O. Loffeld, and P. H. Bolivar, “THz 3-D image formation using SAR techniques: simulation, processing and experimental results,” IEEE Trans. THz. Sci.Technol. 3, 606–616 (2013).
  7. O. Mollet, G. Bachelier, C. Genet, S. Huant, and A. Drezet, “Plasmonic interferometry: probing launching dipoles in scanning-probe plasmonics,” J. Appl. Phys. 115(9), 093105 (2014).
    [Crossref]
  8. R. Pierrat, C. Vandenbem, M. Fink, and R. Carminati, “Subwavelength focusing inside an open disordered medium by time reversal at a single point antenna,” Phys. Rev. A 87(4), 041801 (2013).
    [Crossref]
  9. J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
    [Crossref] [PubMed]
  10. G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
    [PubMed]
  11. L. Li, “Subwavelength imaging of sparse broadband sources in an open disordered medium from a single antenna,” IEEE Antennas Wirel. Propag. Lett. 13, 1461–1464 (2014).
    [Crossref]
  12. L. Li, F. Li, and T. J. Cui, “Feasibility of resonant metalens for the subwavelength imaging using a single sensor in the far field,” Opt. Express 22(15), 18688–18697 (2014).
    [Crossref] [PubMed]
  13. J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 026601 (2004).
    [Crossref] [PubMed]
  14. A. Yu, D. Zueco, F. J. Garcia-Vidal, and L. Martin-Moreno, “Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness,” Phys. Rev. B 78(16), 165429 (2008).
    [Crossref]
  15. Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10(6), 1991–1997 (2010).
    [Crossref] [PubMed]
  16. F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat Commun 3, 889 (2012).
    [Crossref] [PubMed]
  17. I. J. Cox and C. R. Sheppard, “Information capacity and resolution in an optical system,” J. Opt. Soc. Am. A 3(8), 1152–1158 (1986).
    [Crossref]
  18. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer Press, 2010).
  19. E. Candes and C. F. Granda, “Towards a mathematical theory of super resolution,” Commun. Pure Appl. Math. 67(6), 906–956 (2014).
    [Crossref]
  20. A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
    [Crossref] [PubMed]
  21. L. Li and B. Jafarpour, “Effective solution of nonlinear subsurface flow inverse problems in spare bases,” Inverse Probl. 26(10), 105016 (2010).
    [Crossref]

2014 (4)

O. Mollet, G. Bachelier, C. Genet, S. Huant, and A. Drezet, “Plasmonic interferometry: probing launching dipoles in scanning-probe plasmonics,” J. Appl. Phys. 115(9), 093105 (2014).
[Crossref]

L. Li, “Subwavelength imaging of sparse broadband sources in an open disordered medium from a single antenna,” IEEE Antennas Wirel. Propag. Lett. 13, 1461–1464 (2014).
[Crossref]

L. Li, F. Li, and T. J. Cui, “Feasibility of resonant metalens for the subwavelength imaging using a single sensor in the far field,” Opt. Express 22(15), 18688–18697 (2014).
[Crossref] [PubMed]

E. Candes and C. F. Granda, “Towards a mathematical theory of super resolution,” Commun. Pure Appl. Math. 67(6), 906–956 (2014).
[Crossref]

2013 (5)

R. Pierrat, C. Vandenbem, M. Fink, and R. Carminati, “Subwavelength focusing inside an open disordered medium by time reversal at a single point antenna,” Phys. Rev. A 87(4), 041801 (2013).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[PubMed]

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).
[Crossref]

J. Ding, M. Kahl, O. Loffeld, and P. H. Bolivar, “THz 3-D image formation using SAR techniques: simulation, processing and experimental results,” IEEE Trans. THz. Sci.Technol. 3, 606–616 (2013).

2012 (3)

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat Commun 3, 1205 (2012).
[Crossref] [PubMed]

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat Commun 3, 889 (2012).
[Crossref] [PubMed]

2010 (4)

L. Li and B. Jafarpour, “Effective solution of nonlinear subsurface flow inverse problems in spare bases,” Inverse Probl. 26(10), 105016 (2010).
[Crossref]

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10(6), 1991–1997 (2010).
[Crossref] [PubMed]

O. Malyuskin and V. Fusco, “Far-field subwavelength source resolution using phase conjugating lens assisted with evanescent-to-propagating spectrum conversion,” IEEE Trans. Antenn. Propag. 58(2), 459–468 (2010).
[Crossref]

O. Malyuskin and V. Fusco, “Near field focusing using phase conjugating impedance loaded wire lens,” IEEE Trans. Antenn. Propag. 58(9), 2884–2893 (2010).
[Crossref]

2008 (1)

A. Yu, D. Zueco, F. J. Garcia-Vidal, and L. Martin-Moreno, “Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness,” Phys. Rev. B 78(16), 165429 (2008).
[Crossref]

2004 (1)

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 026601 (2004).
[Crossref] [PubMed]

1986 (1)

Bachelier, G.

O. Mollet, G. Bachelier, C. Genet, S. Huant, and A. Drezet, “Plasmonic interferometry: probing launching dipoles in scanning-probe plasmonics,” J. Appl. Phys. 115(9), 093105 (2014).
[Crossref]

Bartal, G.

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10(6), 1991–1997 (2010).
[Crossref] [PubMed]

Bolivar, P. H.

J. Ding, M. Kahl, O. Loffeld, and P. H. Bolivar, “THz 3-D image formation using SAR techniques: simulation, processing and experimental results,” IEEE Trans. THz. Sci.Technol. 3, 606–616 (2013).

Brady, D.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[PubMed]

Bravo-Abad, J.

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 026601 (2004).
[Crossref] [PubMed]

Bullkich, E.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Candes, E.

E. Candes and C. F. Granda, “Towards a mathematical theory of super resolution,” Commun. Pure Appl. Math. 67(6), 906–956 (2014).
[Crossref]

Carminati, R.

R. Pierrat, C. Vandenbem, M. Fink, and R. Carminati, “Subwavelength focusing inside an open disordered medium by time reversal at a single point antenna,” Phys. Rev. A 87(4), 041801 (2013).
[Crossref]

Cohen, O.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Cohen-Hyams, T.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Cox, I. J.

Cui, T. J.

Dana, H.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Ding, J.

J. Ding, M. Kahl, O. Loffeld, and P. H. Bolivar, “THz 3-D image formation using SAR techniques: simulation, processing and experimental results,” IEEE Trans. THz. Sci.Technol. 3, 606–616 (2013).

Drezet, A.

O. Mollet, G. Bachelier, C. Genet, S. Huant, and A. Drezet, “Plasmonic interferometry: probing launching dipoles in scanning-probe plasmonics,” J. Appl. Phys. 115(9), 093105 (2014).
[Crossref]

Driscoll, T.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[PubMed]

Eldar, Y. C.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Fink, M.

R. Pierrat, C. Vandenbem, M. Fink, and R. Carminati, “Subwavelength focusing inside an open disordered medium by time reversal at a single point antenna,” Phys. Rev. A 87(4), 041801 (2013).
[Crossref]

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat Commun 3, 889 (2012).
[Crossref] [PubMed]

Fusco, V.

O. Malyuskin and V. Fusco, “Near field focusing using phase conjugating impedance loaded wire lens,” IEEE Trans. Antenn. Propag. 58(9), 2884–2893 (2010).
[Crossref]

O. Malyuskin and V. Fusco, “Far-field subwavelength source resolution using phase conjugating lens assisted with evanescent-to-propagating spectrum conversion,” IEEE Trans. Antenn. Propag. 58(2), 459–468 (2010).
[Crossref]

Garcia-Vidal, F. J.

A. Yu, D. Zueco, F. J. Garcia-Vidal, and L. Martin-Moreno, “Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness,” Phys. Rev. B 78(16), 165429 (2008).
[Crossref]

García-Vidal, F. J.

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 026601 (2004).
[Crossref] [PubMed]

Gazit, S.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Genet, C.

O. Mollet, G. Bachelier, C. Genet, S. Huant, and A. Drezet, “Plasmonic interferometry: probing launching dipoles in scanning-probe plasmonics,” J. Appl. Phys. 115(9), 093105 (2014).
[Crossref]

Granda, C. F.

E. Candes and C. F. Granda, “Towards a mathematical theory of super resolution,” Commun. Pure Appl. Math. 67(6), 906–956 (2014).
[Crossref]

Huant, S.

O. Mollet, G. Bachelier, C. Genet, S. Huant, and A. Drezet, “Plasmonic interferometry: probing launching dipoles in scanning-probe plasmonics,” J. Appl. Phys. 115(9), 093105 (2014).
[Crossref]

Hunt, J.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[PubMed]

Jafarpour, B.

L. Li and B. Jafarpour, “Effective solution of nonlinear subsurface flow inverse problems in spare bases,” Inverse Probl. 26(10), 105016 (2010).
[Crossref]

Kahl, M.

J. Ding, M. Kahl, O. Loffeld, and P. H. Bolivar, “THz 3-D image formation using SAR techniques: simulation, processing and experimental results,” IEEE Trans. THz. Sci.Technol. 3, 606–616 (2013).

Kley, E. B.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Lemoult, F.

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat Commun 3, 889 (2012).
[Crossref] [PubMed]

Lerosey, G.

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat Commun 3, 889 (2012).
[Crossref] [PubMed]

Li, F.

Li, L.

L. Li, F. Li, and T. J. Cui, “Feasibility of resonant metalens for the subwavelength imaging using a single sensor in the far field,” Opt. Express 22(15), 18688–18697 (2014).
[Crossref] [PubMed]

L. Li, “Subwavelength imaging of sparse broadband sources in an open disordered medium from a single antenna,” IEEE Antennas Wirel. Propag. Lett. 13, 1461–1464 (2014).
[Crossref]

L. Li and B. Jafarpour, “Effective solution of nonlinear subsurface flow inverse problems in spare bases,” Inverse Probl. 26(10), 105016 (2010).
[Crossref]

Lipworth, G.

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[PubMed]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10(6), 1991–1997 (2010).
[Crossref] [PubMed]

Liu, Z.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat Commun 3, 1205 (2012).
[Crossref] [PubMed]

Loffeld, O.

J. Ding, M. Kahl, O. Loffeld, and P. H. Bolivar, “THz 3-D image formation using SAR techniques: simulation, processing and experimental results,” IEEE Trans. THz. Sci.Technol. 3, 606–616 (2013).

Lu, D.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat Commun 3, 1205 (2012).
[Crossref] [PubMed]

Malyuskin, O.

O. Malyuskin and V. Fusco, “Far-field subwavelength source resolution using phase conjugating lens assisted with evanescent-to-propagating spectrum conversion,” IEEE Trans. Antenn. Propag. 58(2), 459–468 (2010).
[Crossref]

O. Malyuskin and V. Fusco, “Near field focusing using phase conjugating impedance loaded wire lens,” IEEE Trans. Antenn. Propag. 58(9), 2884–2893 (2010).
[Crossref]

Marks, D. L.

Martin-Moreno, L.

A. Yu, D. Zueco, F. J. Garcia-Vidal, and L. Martin-Moreno, “Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness,” Phys. Rev. B 78(16), 165429 (2008).
[Crossref]

Martín-Moreno, L.

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 026601 (2004).
[Crossref] [PubMed]

Mollet, O.

O. Mollet, G. Bachelier, C. Genet, S. Huant, and A. Drezet, “Plasmonic interferometry: probing launching dipoles in scanning-probe plasmonics,” J. Appl. Phys. 115(9), 093105 (2014).
[Crossref]

Mrozack, A.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[PubMed]

Osherovich, E.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Pierrat, R.

R. Pierrat, C. Vandenbem, M. Fink, and R. Carminati, “Subwavelength focusing inside an open disordered medium by time reversal at a single point antenna,” Phys. Rev. A 87(4), 041801 (2013).
[Crossref]

Reynolds, M.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Rogers, E. T. F.

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).
[Crossref]

Segev, M.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Shechtman, Y.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Sheppard, C. R.

Shoham, S.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Sidorenko, P.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Smith, D. R.

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[PubMed]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Steiner, S.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Szameit, A.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Vandenbem, C.

R. Pierrat, C. Vandenbem, M. Fink, and R. Carminati, “Subwavelength focusing inside an open disordered medium by time reversal at a single point antenna,” Phys. Rev. A 87(4), 041801 (2013).
[Crossref]

Yavneh, I.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Yu, A.

A. Yu, D. Zueco, F. J. Garcia-Vidal, and L. Martin-Moreno, “Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness,” Phys. Rev. B 78(16), 165429 (2008).
[Crossref]

Zentgraf, T.

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10(6), 1991–1997 (2010).
[Crossref] [PubMed]

Zhang, X.

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10(6), 1991–1997 (2010).
[Crossref] [PubMed]

Zheludev, N. I.

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).
[Crossref]

Zibulevsky, M.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Zueco, D.

A. Yu, D. Zueco, F. J. Garcia-Vidal, and L. Martin-Moreno, “Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness,” Phys. Rev. B 78(16), 165429 (2008).
[Crossref]

Commun. Pure Appl. Math. (1)

E. Candes and C. F. Granda, “Towards a mathematical theory of super resolution,” Commun. Pure Appl. Math. 67(6), 906–956 (2014).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

L. Li, “Subwavelength imaging of sparse broadband sources in an open disordered medium from a single antenna,” IEEE Antennas Wirel. Propag. Lett. 13, 1461–1464 (2014).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

O. Malyuskin and V. Fusco, “Far-field subwavelength source resolution using phase conjugating lens assisted with evanescent-to-propagating spectrum conversion,” IEEE Trans. Antenn. Propag. 58(2), 459–468 (2010).
[Crossref]

O. Malyuskin and V. Fusco, “Near field focusing using phase conjugating impedance loaded wire lens,” IEEE Trans. Antenn. Propag. 58(9), 2884–2893 (2010).
[Crossref]

IEEE Trans. THz. Sci.Technol. (1)

J. Ding, M. Kahl, O. Loffeld, and P. H. Bolivar, “THz 3-D image formation using SAR techniques: simulation, processing and experimental results,” IEEE Trans. THz. Sci.Technol. 3, 606–616 (2013).

Inverse Probl. (1)

L. Li and B. Jafarpour, “Effective solution of nonlinear subsurface flow inverse problems in spare bases,” Inverse Probl. 26(10), 105016 (2010).
[Crossref]

J. Appl. Phys. (1)

O. Mollet, G. Bachelier, C. Genet, S. Huant, and A. Drezet, “Plasmonic interferometry: probing launching dipoles in scanning-probe plasmonics,” J. Appl. Phys. 115(9), 093105 (2014).
[Crossref]

J. Opt. (1)

E. T. F. Rogers and N. I. Zheludev, “Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging,” J. Opt. 15(9), 094008 (2013).
[Crossref]

J. Opt. Soc. Am. A (2)

Nano Lett. (1)

Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10(6), 1991–1997 (2010).
[Crossref] [PubMed]

Nat Commun (2)

F. Lemoult, M. Fink, and G. Lerosey, “A polychromatic approach to far-field superlensing at visible wavelengths,” Nat Commun 3, 889 (2012).
[Crossref] [PubMed]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat Commun 3, 1205 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11(5), 455–459 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. A (1)

R. Pierrat, C. Vandenbem, M. Fink, and R. Carminati, “Subwavelength focusing inside an open disordered medium by time reversal at a single point antenna,” Phys. Rev. A 87(4), 041801 (2013).
[Crossref]

Phys. Rev. B (1)

A. Yu, D. Zueco, F. J. Garcia-Vidal, and L. Martin-Moreno, “Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness,” Phys. Rev. B 78(16), 165429 (2008).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 026601 (2004).
[Crossref] [PubMed]

Science (1)

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Other (2)

http://en.wikipedia.org/wiki/Near-field_scanning_optical_microscope .

M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer Press, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The schematic setup of proposed imaging system for the far-field imaging beyond the subwavelength resolution, which consists of a single far-field sensor located at r d =(x,y,z) and a spatio-temporal resonant aperture in the vicinity of the probed object. Here, the object under consideration is a Chinese character “北”. (b) The schematic configuration of the resonant aperture, which is a square hole in a perfect conductor filled with a dispersive material characterized by the Drude model ε r =1 ω p 2 ω 2 iωΓ , where ω p =1.62× 10 10 rad/s and Γ=7.64× 10 7 rad/s .
Fig. 2
Fig. 2 The amplitudes of x-polarized electric field as the function of k in,ρ / k p and ω/ ω p acquired at r d =(0,2.5 λ 0 ,5 λ 0 ) , where the incidence is a TM-polarized plane wave, the x-axis is k in,ρ / k p , and the y-axis denotes ω/ ω p . This result is calculated by Eq. (1).
Fig. 3
Fig. 3 The map of PS= m=0 Int(2 L x /λ) | E m O | 2 normalized by its maximum as the function of k in,ρ / k p and ω/ ω p , where simulation parameters are same as those considered in Fig. 2. The Matlab code of reproducing this result can be freely achieved by sending a request email to lianlin.li@pku.edu.cn.
Fig. 4
Fig. 4 The map of normalized PS as a function of k in,ρ / k p and ω/ ω p when the radiation aperture is filled with homogeneous non-dispersive medium with relative permittivity ε r . (a) is for the case of ε r = 8, (b) for ε r = 2,.This figures are normalized by their own maximum.
Fig. 5
Fig. 5 (a) A small dipole source of 2.5ns (red line), which is placed at z = −18.76mm away from the bottom of the resonant aperture ( λ 0 =188nm ). The response at r d =(0,94mm,62mm) is recorded and shown by the black line. The inset is the zoomed part. (b) The normalized amplitude of the frequency-dependent response at r d . This set of figures shows many abrupt changes within a very small frequency separation, implying that the response is highly sensitivity to frequency.
Fig. 6
Fig. 6 Ground truth and reconstructed results by different methods. (a)The ground truth consisting of a Chinese character “北”. (b)Reconstruction results for different noise level of 40dB, 30dB, and 20dB using proposed imaging system as sketched in Fig. 1(a). In the simulation, the single sensor is located at r d =(5 λ 0 ,5 λ 0 ,10 λ 0 ) , the wavelengths used for broadband illumination varies from 150mm to 300 mm with a step of 0.02 mm, and the probed objects is located at 0.1 λ 0 at the bottom of the resonant aperture antenna. (c)Reconstruction results without the resonant aperture antenna, where other simulation parameters are the same as those used in Fig. 5(b) but SNR being 30dB. (d)Reconstruction result without the resonant aperture antenna, where 50×50 receivers are uniformly distributed over a square of 10 λ 0 ×10 λ 0 at z=10 λ 0 , and SNR is set to be 30dB.
Fig. 7
Fig. 7 This set of figures are for some uncertainty on the phase/amplitude of plane wave illumination. (a) σ=0.01 ,(b) σ=0.03 , and (c) σ=0.05 . For these results, 30dB additive white noise is considered. Additionally, the values of regularization factors are set to be 1, 10 and 50, respectively. Other simulation parameters are the same as those used in Fig. 6.

Tables (1)

Tables Icon

Table 1 The Procedure of IRA Algorithm

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E t ( r d ; k in ) T TM ( k in )sinc( L x ( k r,x - k in,x ) 2π )sinc( L y ( k r,y - k in,y ) 2π ),
R op TM e i k pz d =±1,
H(r)= m=0 Int(2 L x / λ 0 ) E m O G m (r)+ m=Int(2 L x / λ 0 )+1 E m O (r) G m (r) ,
d dω E t ( r d ; k in ) d T TM ( k in ) dω sinc( L x ( k r,x - k in,x ) 2π )sinc( L y ( k r,y - k in,y ) 2π ).
O ^ (r)=argmi n O(r') [ |E(ω) D G( r d ,r';ω) E in (r';ω)O(r')dr'| 2 dω+γ D |O(r')|dr' ].
E(ρ,z)=2× [ z ^ × E t (ρ',0) ]G(ρρ',z)dρ' ,
E(ρ,z)=2× e i k 0 r d 4π r d [ z ^ × E t (ρ',0) ] e i k r,ρ ρ' dρ' .
E(ρ,z)=2×( e i k 0 r d 4π r d C T TM e i( k inc,ρ k r,ρ )ρ' dρ' ) =2 L x L y T TE,TM sinc( L x ( k r,x - k in,x ) 2π )sinc( L y ( k r,y - k in,y ) 2π )×( C e i k 0 r d 4π r d )
E inc =( x ^ cos θ i cos φ i + y ^ cos θ i sin φ i z ^ sin θ i ) e i k inc,z z e i k inc,ρ ρ .
E t ={ k inc,z k in,ρ 2 sin θ i T TM e i k in,z z k in,ρ e i k in,ρ ρ ,ρΩ 0,ρΩ ,
C p = T op TM 1 ( R op TM ) 2 e i2 k pz d , R op TM = k in,z ε r k pz k in,z ε r + k pz , T op TM = 2 k in,z ε r k in,z ε r + k pz
O ^ =arg min O [ EAO 2 2 +γ O 1 ] ,

Metrics