Abstract

In this work, we have demonstrated for the first time grating regeneration in hydrogenated fibers by direct CO2 laser annealing. During the annealing process, the center wavelength redshifts as the intensity of the focused CO2 laser on the grating is elevated. The reflectivity of the grating begins to decay as the temperature induced in the grating approaches the erasure temperature. The grating is completely erased and regenerated afterwards. The observed spectral results have provided the proof of occurrence of dehydroxylation and stress relaxation in the fiber core during the annealing process. Regenerated gratings with low loss, good temperature sensitivities and sustainability have been successfully developed by this technique.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of two annealing processes on the thermal regeneration of fiber Bragg gratings in hydrogenated standard optical fibers

Kai Lu, Hangzhou Yang, Kok-Sing Lim, Harith Ahmad, Pan Zhang, Qin Tian, Xiangzi Ding, and Xueguang Qiao
Appl. Opt. 57(24) 6971-6975 (2018)

A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing

S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta
Opt. Express 19(2) 1198-1206 (2011)

Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre

Kevin Cook, Li-Yang Shao, and John Canning
Opt. Mater. Express 2(12) 1733-1742 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high temperature measurement,” Meas. Sci. Technol. 24(9), 094010 (2013).
    [Crossref]
  2. G. Laffont, R. Cotillard, and P. Ferdinand, “9000 hours-long high temperature annealing of regenerated FBGs,” Proc. SPIE 8794, 87941X (2013).
    [Crossref]
  3. H. Z. Yang, X. G. Qiao, S. Das, and M. C. Paul, “Thermal regenerated grating operation at temperatures up to 1400°C using new class of multimaterial glass-based photosensitive fiber,” Opt. Lett. 39(22), 6438–6441 (2014).
    [Crossref] [PubMed]
  4. A. Bueno, D. Kinet, P. Mégret, and C. Caucheteur, “Fast thermal regeneration of fiber Bragg gratings,” Opt. Lett. 38(20), 4178–4181 (2013).
    [Crossref] [PubMed]
  5. M. Fokine and W. Margulis, “Large increase in photosensitivity through massive hydroxyl formation,” Opt. Lett. 25(5), 302–304 (2000).
    [Crossref] [PubMed]
  6. E. J. Friebele, G. H. Sigel, and M. E. Gingerich, “Radiation response of fiber optic waveguides in the 0.4 to 1.7 μ region,” IEEE Trans. Nucl. Sci. 25(6), 1261–1266 (1978).
    [Crossref]
  7. F. Messina, M. Cannas, K. Médjahdi, A. Boukenter, and Y. Ouerdane, “UV-photoinduced defects in Ge-doped optical fibers,” in Proceedings of WFOPC2005 - 4th IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE, 2005), pp. 313–317.
    [Crossref]
  8. Y. Watanabe, H. Kawazoe, K. Shibuya, and K. Muta, “Structure and mechanism of formation of drawing- or radiation-induced defects in SiO2:GeO2 optical fiber,” Jpn. J. Appl. Phys. 25(3), 425–431 (1986).
    [Crossref]
  9. D. Barrera and S. Sales, “High-temperature optical sensor based in high birefringence regenerated FBGs and a simple interrogation scheme,” Proc. SPIE 8794, 87941K (2013).
    [Crossref]
  10. K. Cook, L.-Y. Shao, and J. Canning, “Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre,” Opt. Mater. Express 2(12), 1733–1742 (2012).
    [Crossref]
  11. J. Canning, S. Bandyopadhyay, P. Biswas, M. Aslund, M. Stevenson, and K. Cook, “Regenerated fiber Bragg gratings,” in Frontier in Guided Wave Optics and Optoelectronics, B. Pal, Ed.–(INTECH, 2010), pp. 365–384.
  12. H. Z. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
    [Crossref]
  13. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
    [Crossref]
  14. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Anomalous refractive index changes in optical fibers resulting from frozen-in viscoelastic strain,” in Proceedings of Optical Fiber Communication Conf. (OSA 2003), pp. PD6–1-3.
  15. C. Fiori and R. A. B. Devine, “Ultraviolet irradiation induced compaction and photoetching in amorphous, thermal SiO2,” in Proceedings of Defects in Glasses, F. L. Galeener, D. L. Griscom, and M. J. Weber, Eds. (Materials Research Society Symp. Proc., 1986), pp. 187–195.
  16. K. W. Raine, R. Feced, S. E. Kanellopoulos, and V. A. Handerek, “Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers,” Appl. Opt. 38(7), 1086–1095 (1999).
    [Crossref] [PubMed]
  17. H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
    [Crossref]
  18. P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20(11), 1346–1348 (1995).
    [Crossref] [PubMed]
  19. B. H. Kim, Y. Park, T.-J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W.-T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26(21), 1657–1659 (2001).
    [Crossref] [PubMed]
  20. C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185(4–6), 337–342 (2000).
    [Crossref]
  21. D. A. Barber, P. Elbourn, J. Greuters, and N. H. Rizvi, “A completely laser-based production method for fibre Bragg grating devices,” Opt. Laser Technol. 35(1), 25–29 (2003).
    [Crossref]
  22. L. Xia, P. Shum, and C. Lu, “Phase-shifted bandpass filter fabrication through CO2 laser irradiation,” Opt. Express 13(15), 5878–5882 (2005).
    [Crossref] [PubMed]
  23. A. L. Abed and B. G. Rasheed, “Study the effect of CO2 laser annealing on silicon nanostructures,” Modern Appl. Sci. 4(12), 56 (2010).
    [Crossref]
  24. C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on Erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater. 31(9), 1310–1314 (2009).
    [Crossref]
  25. E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, “Properties of Sapphire,” in Sapphire: Material, Manufacturing, Applications, (Springer, 2009), pp. 55–176.
  26. P. Holmberg and M. Fokine, “Thermometric study of CO2-laser heated optical fibers in excess of 1700°C using fiber Bragg gratings,” J. Opt. Soc. Am. B 30(7), 1835–1842 (2013).
    [Crossref]
  27. C. R. Liao, D. N. Wang, Y. H. Li, T. Sun, and K. T. V. Grattan, “Temporal thermal response of Type II-IR fiber Bragg gratings,” Appl. Opt. 48(16), 3001–3007 (2009).
    [Crossref] [PubMed]
  28. M. Benatsou and M. Bouazaoui, “Fluorescence properties of sol-gel derived Er3+:SiO2,-GeO2 planar waveguides,” Opt. Commun. 137(1–3), 143–150 (1997).
    [Crossref]

2014 (1)

2013 (6)

A. Bueno, D. Kinet, P. Mégret, and C. Caucheteur, “Fast thermal regeneration of fiber Bragg gratings,” Opt. Lett. 38(20), 4178–4181 (2013).
[Crossref] [PubMed]

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high temperature measurement,” Meas. Sci. Technol. 24(9), 094010 (2013).
[Crossref]

G. Laffont, R. Cotillard, and P. Ferdinand, “9000 hours-long high temperature annealing of regenerated FBGs,” Proc. SPIE 8794, 87941X (2013).
[Crossref]

D. Barrera and S. Sales, “High-temperature optical sensor based in high birefringence regenerated FBGs and a simple interrogation scheme,” Proc. SPIE 8794, 87941K (2013).
[Crossref]

H. Z. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

P. Holmberg and M. Fokine, “Thermometric study of CO2-laser heated optical fibers in excess of 1700°C using fiber Bragg gratings,” J. Opt. Soc. Am. B 30(7), 1835–1842 (2013).
[Crossref]

2012 (1)

2010 (1)

A. L. Abed and B. G. Rasheed, “Study the effect of CO2 laser annealing on silicon nanostructures,” Modern Appl. Sci. 4(12), 56 (2010).
[Crossref]

2009 (2)

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on Erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater. 31(9), 1310–1314 (2009).
[Crossref]

C. R. Liao, D. N. Wang, Y. H. Li, T. Sun, and K. T. V. Grattan, “Temporal thermal response of Type II-IR fiber Bragg gratings,” Appl. Opt. 48(16), 3001–3007 (2009).
[Crossref] [PubMed]

2005 (1)

2004 (1)

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[Crossref]

2003 (1)

D. A. Barber, P. Elbourn, J. Greuters, and N. H. Rizvi, “A completely laser-based production method for fibre Bragg grating devices,” Opt. Laser Technol. 35(1), 25–29 (2003).
[Crossref]

2001 (1)

2000 (2)

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185(4–6), 337–342 (2000).
[Crossref]

M. Fokine and W. Margulis, “Large increase in photosensitivity through massive hydroxyl formation,” Opt. Lett. 25(5), 302–304 (2000).
[Crossref] [PubMed]

1999 (1)

1997 (1)

M. Benatsou and M. Bouazaoui, “Fluorescence properties of sol-gel derived Er3+:SiO2,-GeO2 planar waveguides,” Opt. Commun. 137(1–3), 143–150 (1997).
[Crossref]

1996 (1)

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[Crossref]

1995 (1)

1986 (1)

Y. Watanabe, H. Kawazoe, K. Shibuya, and K. Muta, “Structure and mechanism of formation of drawing- or radiation-induced defects in SiO2:GeO2 optical fiber,” Jpn. J. Appl. Phys. 25(3), 425–431 (1986).
[Crossref]

1978 (1)

E. J. Friebele, G. H. Sigel, and M. E. Gingerich, “Radiation response of fiber optic waveguides in the 0.4 to 1.7 μ region,” IEEE Trans. Nucl. Sci. 25(6), 1261–1266 (1978).
[Crossref]

Abed, A. L.

A. L. Abed and B. G. Rasheed, “Study the effect of CO2 laser annealing on silicon nanostructures,” Modern Appl. Sci. 4(12), 56 (2010).
[Crossref]

Ahmad, H.

H. Z. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Ahn, T.-J.

Armellini, C.

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on Erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater. 31(9), 1310–1314 (2009).
[Crossref]

Barber, D. A.

D. A. Barber, P. Elbourn, J. Greuters, and N. H. Rizvi, “A completely laser-based production method for fibre Bragg grating devices,” Opt. Laser Technol. 35(1), 25–29 (2003).
[Crossref]

Barrera, D.

D. Barrera and S. Sales, “High-temperature optical sensor based in high birefringence regenerated FBGs and a simple interrogation scheme,” Proc. SPIE 8794, 87941K (2013).
[Crossref]

Benatsou, M.

M. Benatsou and M. Bouazaoui, “Fluorescence properties of sol-gel derived Er3+:SiO2,-GeO2 planar waveguides,” Opt. Commun. 137(1–3), 143–150 (1997).
[Crossref]

Bouazaoui, M.

M. Benatsou and M. Bouazaoui, “Fluorescence properties of sol-gel derived Er3+:SiO2,-GeO2 planar waveguides,” Opt. Commun. 137(1–3), 143–150 (1997).
[Crossref]

Bueno, A.

Canning, J.

Caucheteur, C.

Cheong, Y. K.

H. Z. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Chiasera, A.

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on Erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater. 31(9), 1310–1314 (2009).
[Crossref]

Chong, W. Y.

H. Z. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Chung, Y.

B. H. Kim, Y. Park, T.-J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W.-T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26(21), 1657–1659 (2001).
[Crossref] [PubMed]

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185(4–6), 337–342 (2000).
[Crossref]

Cochet, F.

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[Crossref]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20(11), 1346–1348 (1995).
[Crossref] [PubMed]

Cook, K.

Cotillard, R.

G. Laffont, R. Cotillard, and P. Ferdinand, “9000 hours-long high temperature annealing of regenerated FBGs,” Proc. SPIE 8794, 87941X (2013).
[Crossref]

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high temperature measurement,” Meas. Sci. Technol. 24(9), 094010 (2013).
[Crossref]

Das, S.

Elbourn, P.

D. A. Barber, P. Elbourn, J. Greuters, and N. H. Rizvi, “A completely laser-based production method for fibre Bragg grating devices,” Opt. Laser Technol. 35(1), 25–29 (2003).
[Crossref]

Feced, R.

Ferdinand, P.

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high temperature measurement,” Meas. Sci. Technol. 24(9), 094010 (2013).
[Crossref]

G. Laffont, R. Cotillard, and P. Ferdinand, “9000 hours-long high temperature annealing of regenerated FBGs,” Proc. SPIE 8794, 87941X (2013).
[Crossref]

Ferrari, M.

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on Erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater. 31(9), 1310–1314 (2009).
[Crossref]

Fokine, M.

Fonjallaz, P. Y.

Fonjallaz, P.-Y.

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[Crossref]

Fonthal, F.

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on Erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater. 31(9), 1310–1314 (2009).
[Crossref]

Friebele, E. J.

E. J. Friebele, G. H. Sigel, and M. E. Gingerich, “Radiation response of fiber optic waveguides in the 0.4 to 1.7 μ region,” IEEE Trans. Nucl. Sci. 25(6), 1261–1266 (1978).
[Crossref]

Gingerich, M. E.

E. J. Friebele, G. H. Sigel, and M. E. Gingerich, “Radiation response of fiber optic waveguides in the 0.4 to 1.7 μ region,” IEEE Trans. Nucl. Sci. 25(6), 1261–1266 (1978).
[Crossref]

Goyes, C.

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on Erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater. 31(9), 1310–1314 (2009).
[Crossref]

Grattan, K. T. V.

Greuters, J.

D. A. Barber, P. Elbourn, J. Greuters, and N. H. Rizvi, “A completely laser-based production method for fibre Bragg grating devices,” Opt. Laser Technol. 35(1), 25–29 (2003).
[Crossref]

Han, W. T.

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185(4–6), 337–342 (2000).
[Crossref]

Han, W.-T.

Han, Y.

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185(4–6), 337–342 (2000).
[Crossref]

Handerek, V. A.

Harun, S. W.

H. Z. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Holmberg, P.

Jestin, Y.

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on Erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater. 31(9), 1310–1314 (2009).
[Crossref]

Kanellopoulos, S. E.

Kawazoe, H.

Y. Watanabe, H. Kawazoe, K. Shibuya, and K. Muta, “Structure and mechanism of formation of drawing- or radiation-induced defects in SiO2:GeO2 optical fiber,” Jpn. J. Appl. Phys. 25(3), 425–431 (1986).
[Crossref]

Kim, B. H.

Kim, C. S.

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185(4–6), 337–342 (2000).
[Crossref]

Kim, D. Y.

Kinet, D.

Laffont, G.

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high temperature measurement,” Meas. Sci. Technol. 24(9), 094010 (2013).
[Crossref]

G. Laffont, R. Cotillard, and P. Ferdinand, “9000 hours-long high temperature annealing of regenerated FBGs,” Proc. SPIE 8794, 87941X (2013).
[Crossref]

Lee, B. H.

B. H. Kim, Y. Park, T.-J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W.-T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26(21), 1657–1659 (2001).
[Crossref] [PubMed]

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185(4–6), 337–342 (2000).
[Crossref]

Leuenberger, B.

Li, Y. H.

Liao, C. R.

Lim, K. S.

H. Z. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Limberger, H. G.

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[Crossref]

P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20(11), 1346–1348 (1995).
[Crossref] [PubMed]

Lu, C.

Margulis, W.

Mégret, P.

Muta, K.

Y. Watanabe, H. Kawazoe, K. Shibuya, and K. Muta, “Structure and mechanism of formation of drawing- or radiation-induced defects in SiO2:GeO2 optical fiber,” Jpn. J. Appl. Phys. 25(3), 425–431 (1986).
[Crossref]

Paek, U. C.

B. H. Kim, Y. Park, T.-J. Ahn, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, and W.-T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26(21), 1657–1659 (2001).
[Crossref] [PubMed]

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185(4–6), 337–342 (2000).
[Crossref]

Park, Y.

Paul, M. C.

Pua, C. H.

H. Z. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Qiao, X. G.

Raine, K. W.

Rasheed, B. G.

A. L. Abed and B. G. Rasheed, “Study the effect of CO2 laser annealing on silicon nanostructures,” Modern Appl. Sci. 4(12), 56 (2010).
[Crossref]

Righini, G. C.

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on Erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater. 31(9), 1310–1314 (2009).
[Crossref]

Rizvi, N. H.

D. A. Barber, P. Elbourn, J. Greuters, and N. H. Rizvi, “A completely laser-based production method for fibre Bragg grating devices,” Opt. Laser Technol. 35(1), 25–29 (2003).
[Crossref]

Salathe, R. P.

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[Crossref]

Salathé, R. P.

Sales, S.

D. Barrera and S. Sales, “High-temperature optical sensor based in high birefringence regenerated FBGs and a simple interrogation scheme,” Proc. SPIE 8794, 87941K (2013).
[Crossref]

Shao, L.-Y.

Shibuya, K.

Y. Watanabe, H. Kawazoe, K. Shibuya, and K. Muta, “Structure and mechanism of formation of drawing- or radiation-induced defects in SiO2:GeO2 optical fiber,” Jpn. J. Appl. Phys. 25(3), 425–431 (1986).
[Crossref]

Shum, P.

Sigel, G. H.

E. J. Friebele, G. H. Sigel, and M. E. Gingerich, “Radiation response of fiber optic waveguides in the 0.4 to 1.7 μ region,” IEEE Trans. Nucl. Sci. 25(6), 1261–1266 (1978).
[Crossref]

Solarte, E.

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on Erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater. 31(9), 1310–1314 (2009).
[Crossref]

Sun, T.

Wang, D. N.

Watanabe, Y.

Y. Watanabe, H. Kawazoe, K. Shibuya, and K. Muta, “Structure and mechanism of formation of drawing- or radiation-induced defects in SiO2:GeO2 optical fiber,” Jpn. J. Appl. Phys. 25(3), 425–431 (1986).
[Crossref]

Xia, L.

Yablon, A. D.

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[Crossref]

Yang, H. Z.

H. Z. Yang, X. G. Qiao, S. Das, and M. C. Paul, “Thermal regenerated grating operation at temperatures up to 1400°C using new class of multimaterial glass-based photosensitive fiber,” Opt. Lett. 39(22), 6438–6441 (2014).
[Crossref] [PubMed]

H. Z. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. G. Limberger, P.-Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069–3071 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10(2), 300–311 (2004).
[Crossref]

IEEE Sens. J. (1)

H. Z. Yang, W. Y. Chong, Y. K. Cheong, K. S. Lim, C. H. Pua, S. W. Harun, and H. Ahmad, “Thermal regeneration in etched-core fiber Bragg grating,” IEEE Sens. J. 13(7), 2581–2585 (2013).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

E. J. Friebele, G. H. Sigel, and M. E. Gingerich, “Radiation response of fiber optic waveguides in the 0.4 to 1.7 μ region,” IEEE Trans. Nucl. Sci. 25(6), 1261–1266 (1978).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

Y. Watanabe, H. Kawazoe, K. Shibuya, and K. Muta, “Structure and mechanism of formation of drawing- or radiation-induced defects in SiO2:GeO2 optical fiber,” Jpn. J. Appl. Phys. 25(3), 425–431 (1986).
[Crossref]

Meas. Sci. Technol. (1)

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high temperature measurement,” Meas. Sci. Technol. 24(9), 094010 (2013).
[Crossref]

Modern Appl. Sci. (1)

A. L. Abed and B. G. Rasheed, “Study the effect of CO2 laser annealing on silicon nanostructures,” Modern Appl. Sci. 4(12), 56 (2010).
[Crossref]

Opt. Commun. (2)

M. Benatsou and M. Bouazaoui, “Fluorescence properties of sol-gel derived Er3+:SiO2,-GeO2 planar waveguides,” Opt. Commun. 137(1–3), 143–150 (1997).
[Crossref]

C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, and Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185(4–6), 337–342 (2000).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

D. A. Barber, P. Elbourn, J. Greuters, and N. H. Rizvi, “A completely laser-based production method for fibre Bragg grating devices,” Opt. Laser Technol. 35(1), 25–29 (2003).
[Crossref]

Opt. Lett. (5)

Opt. Mater. (1)

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on Erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater. 31(9), 1310–1314 (2009).
[Crossref]

Opt. Mater. Express (1)

Proc. SPIE (2)

G. Laffont, R. Cotillard, and P. Ferdinand, “9000 hours-long high temperature annealing of regenerated FBGs,” Proc. SPIE 8794, 87941X (2013).
[Crossref]

D. Barrera and S. Sales, “High-temperature optical sensor based in high birefringence regenerated FBGs and a simple interrogation scheme,” Proc. SPIE 8794, 87941K (2013).
[Crossref]

Other (5)

F. Messina, M. Cannas, K. Médjahdi, A. Boukenter, and Y. Ouerdane, “UV-photoinduced defects in Ge-doped optical fibers,” in Proceedings of WFOPC2005 - 4th IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE, 2005), pp. 313–317.
[Crossref]

J. Canning, S. Bandyopadhyay, P. Biswas, M. Aslund, M. Stevenson, and K. Cook, “Regenerated fiber Bragg gratings,” in Frontier in Guided Wave Optics and Optoelectronics, B. Pal, Ed.–(INTECH, 2010), pp. 365–384.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Anomalous refractive index changes in optical fibers resulting from frozen-in viscoelastic strain,” in Proceedings of Optical Fiber Communication Conf. (OSA 2003), pp. PD6–1-3.

C. Fiori and R. A. B. Devine, “Ultraviolet irradiation induced compaction and photoetching in amorphous, thermal SiO2,” in Proceedings of Defects in Glasses, F. L. Galeener, D. L. Griscom, and M. J. Weber, Eds. (Materials Research Society Symp. Proc., 1986), pp. 187–195.

E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, “Properties of Sapphire,” in Sapphire: Material, Manufacturing, Applications, (Springer, 2009), pp. 55–176.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagram of experimental setup for CO2 laser annealing. OSA: Optical Spectrum Analyzer; ASE: Amplified Spontaneous Emission Source. Inset shows the dimension of the sapphire furnace.
Fig. 2
Fig. 2 (a) Thermal response of the RFBG (PS1250/1500) scanning through beam waist of the focused CO2 laser (b) The output response of PS1250/1500 RFBG with increasing laser power with and without the assistance of sapphire furnace.
Fig. 3
Fig. 3 (a) The spectral response of grating and (b) variation of the center wavelength under the irradiation of on-off CO2 laser.
Fig. 4
Fig. 4 Output responses of a grating (PS1250/1500) during CO2 laser annealing process. The laser power is incremented at rate of 1W per minute until it reaches 15.9 W.
Fig. 5
Fig. 5 The reflection spectrum of the grating (PS1250/1500) before and after regeneration process.
Fig. 6
Fig. 6 Wavelength response of regenerated grating (PS1250/1500) in the range of 100-700 °C, calibrated using a conventional furnace at an increment rate of 50 °C every 5 minutes.
Fig. 7
Fig. 7 The regeneration process of the grating (PS1250/1500) at different heating rates.
Fig. 8
Fig. 8 The evolution of reflection spectra during regeneration process of the grating (PS1250/1500).
Fig. 9
Fig. 9 Transmission spectra of the seed grating and regenerated gratings (PS1250/1500) before and after annealing.
Fig. 10
Fig. 10 The regeneration process for the gratings written in SM1500 at different heating rates.
Fig. 11
Fig. 11 The regeneration process for gratings written in ZWP-SMF at different heating rates.

Tables (1)

Tables Icon

Table 1 Summary of the properties of each type of RFBG

Metrics