Abstract

A wavelength-swept thulium-doped fiber laser system employing two parallel cavities with two different fiber gain stages is reported. The fiber gain stages were tailored to provide emission in complementary bands with external wavelength-dependent feedback cavities sharing a common rotating polygon mirror for wavelength scanning. The wavelength-swept laser outputs from the fiber gain elements were spectrally combined by means of a dichroic mirror and yielded over 500 mW of output with a scanning range from ~1740 nm to ~2070 nm for a scanning frequency of ~340 Hz.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band

M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson
Opt. Express 22(17) 20014-20019 (2014)

Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power

D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson
Opt. Express 16(15) 11021-11026 (2008)

High-power linearly-polarized single-frequency thulium-doped fiber master-oscillator power-amplifier

L. Pearson, J. W. Kim, Z. Zhang, M. Ibsen, J. K. Sahu, and W. A. Clarkson
Opt. Express 18(2) 1607-1612 (2010)

References

  • View by:
  • |
  • |
  • |

  1. W. A. Clarkson, A. Abdolvand, D. Y. Shen, R. A. Hayward, L. J. Cooper, R. B. Williams, and J. Nilsson, “High power two-micron fibre lasers,” Proc. SPIE 5120, 482–489 (2003).
    [Crossref]
  2. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
    [Crossref]
  3. T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 112 (2010).
  4. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50–57 (2006).
    [Crossref] [PubMed]
  5. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [Crossref] [PubMed]
  6. H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
    [Crossref]
  7. J. Geng, Q. Wang, J. Wang, S. Jiang, and K. Hsu, “All-fiber wavelength-swept laser near 2 μm,” Opt. Lett. 36(19), 3771–3773 (2011).
    [Crossref] [PubMed]
  8. M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band,” Opt. Express 22(17), 20014–20019 (2014).
    [Crossref] [PubMed]
  9. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 mum,” Opt. Express 14(13), 6084–6090 (2006).
    [Crossref] [PubMed]
  10. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Wide Tuning Range Wavelength-Swept Laser With Two Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 17(3), 678–680 (2005).
    [Crossref] [PubMed]
  11. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

2011 (1)

2010 (1)

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 112 (2010).

2009 (1)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

2006 (2)

2005 (1)

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Wide Tuning Range Wavelength-Swept Laser With Two Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 17(3), 678–680 (2005).
[Crossref] [PubMed]

2003 (2)

W. A. Clarkson, A. Abdolvand, D. Y. Shen, R. A. Hayward, L. J. Cooper, R. B. Williams, and J. Nilsson, “High power two-micron fibre lasers,” Proc. SPIE 5120, 482–489 (2003).
[Crossref]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
[Crossref] [PubMed]

1997 (1)

Abdolvand, A.

W. A. Clarkson, A. Abdolvand, D. Y. Shen, R. A. Hayward, L. J. Cooper, R. B. Williams, and J. Nilsson, “High power two-micron fibre lasers,” Proc. SPIE 5120, 482–489 (2003).
[Crossref]

Agger, S. D.

Boudoux, C.

Bouma, B. E.

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Wide Tuning Range Wavelength-Swept Laser With Two Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 17(3), 678–680 (2005).
[Crossref] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
[Crossref] [PubMed]

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Chenug, C. S.

Chinn, S. R.

Clarkson, W. A.

Cooper, L. J.

W. A. Clarkson, A. Abdolvand, D. Y. Shen, R. A. Hayward, L. J. Cooper, R. B. Williams, and J. Nilsson, “High power two-micron fibre lasers,” Proc. SPIE 5120, 482–489 (2003).
[Crossref]

Daniel, J. M. O.

Ehrenreich, T.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 112 (2010).

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Fujimoto, J. G.

Geng, J.

Hayward, R. A.

W. A. Clarkson, A. Abdolvand, D. Y. Shen, R. A. Hayward, L. J. Cooper, R. B. Williams, and J. Nilsson, “High power two-micron fibre lasers,” Proc. SPIE 5120, 482–489 (2003).
[Crossref]

Hsu, K.

Jiang, S.

Lange, R.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

Leveille, R.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 112 (2010).

Liang, H.

M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band,” Opt. Express 22(17), 20014–20019 (2014).
[Crossref] [PubMed]

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

Majid, I.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 112 (2010).

Moulton, P.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 112 (2010).

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Nilsson, J.

W. A. Clarkson, A. Abdolvand, D. Y. Shen, R. A. Hayward, L. J. Cooper, R. B. Williams, and J. Nilsson, “High power two-micron fibre lasers,” Proc. SPIE 5120, 482–489 (2003).
[Crossref]

Oh, W. Y.

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Wide Tuning Range Wavelength-Swept Laser With Two Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 17(3), 678–680 (2005).
[Crossref] [PubMed]

Peric, B.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

Povlsen, J. H.

Rines, G.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 112 (2010).

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Sahu, J. K.

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Shen, D. Y.

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 mum,” Opt. Express 14(13), 6084–6090 (2006).
[Crossref] [PubMed]

W. A. Clarkson, A. Abdolvand, D. Y. Shen, R. A. Hayward, L. J. Cooper, R. B. Williams, and J. Nilsson, “High power two-micron fibre lasers,” Proc. SPIE 5120, 482–489 (2003).
[Crossref]

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Spring, M.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

Swanson, E. A.

Tankala, K.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 112 (2010).

Tearney, G. J.

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Wide Tuning Range Wavelength-Swept Laser With Two Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 17(3), 678–680 (2005).
[Crossref] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
[Crossref] [PubMed]

Tokurakawa, M.

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Wang, J.

Wang, Q.

Williams, R. B.

W. A. Clarkson, A. Abdolvand, D. Y. Shen, R. A. Hayward, L. J. Cooper, R. B. Williams, and J. Nilsson, “High power two-micron fibre lasers,” Proc. SPIE 5120, 482–489 (2003).
[Crossref]

Yun, S. H.

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Wide Tuning Range Wavelength-Swept Laser With Two Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 17(3), 678–680 (2005).
[Crossref] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
[Crossref] [PubMed]

Appl. Phys. B (1)

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Wide Tuning Range Wavelength-Swept Laser With Two Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 17(3), 678–680 (2005).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Proc. SPIE (2)

W. A. Clarkson, A. Abdolvand, D. Y. Shen, R. A. Hayward, L. J. Cooper, R. B. Williams, and J. Nilsson, “High power two-micron fibre lasers,” Proc. SPIE 5120, 482–489 (2003).
[Crossref]

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm:fiber laser,” Proc. SPIE 7580, 112 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the wavelength swept Tm-doped fiber laser with two gain stages. The upper part is the core-pumped configuration and the lower part is the cladding-pumped configuration. Cross marks in the Fig. are splicing points. APC is angled fiber facet.
Fig. 2
Fig. 2 (a) Schematic diagram of the manually tunable Tm laser configuration. (b) Wavelength tuning curves for cladding-pumped and core-pumped Tm fiber lasers.
Fig. 3
Fig. 3 (a) Output spectrum of core-pumped WS-laser. (b) Output spectrum of cladding-pumped WS-laser. (c) and (d) Temporal characteristics of the core and cladding-pumped WS lasers, respectively. (e) and (f) Expanded temporal characteristics of the core and cladding-pumped WS lasers, respectively.
Fig. 4
Fig. 4 Output spectra of the wavelength-swept Tm doped fiber laser measured in ‘maximum-hold’ mode of the OSA. (a) Core-pumped configuration at a repetition rate of ~340 Hz and (b) cladding-pumped configuration at a repetition rate of ~340 Hz. (c) Core-pumped configuration at a repetition rate of ~1 kHz and (d) cladding-pumped configuration at a repetition rate of ~1 kHz.
Fig. 5
Fig. 5 (a) Spectrally-combined WS-laser output spectrum and (b) temporal profile.

Metrics