Abstract

We demonstrate an all-optically switchable ferroelectric liquid crystal (FLC) grating constructed in an alternating binary configuration with different optical properties from domain to domain. A dye-doped FLC is uniformly aligned in one type of domains whereas it is infiltrated into the photo-polymerized networks of reactive mesogens in the other. Compared to conventional nematic LC cases, our FLC grating allows more efficient all-optical modulation and faster diffraction switching between the 0th and the 1st orders in subsecond since the optical response associated with the dye molecules in the layered state is less hindered than in the orientationally ordered state. Our dye-doped FLC grating with periodically infiltrated structures will be useful for designing a new class of all-optically switching systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optical investigations of holographic-polymer-dispersed ferroelectric liquid crystals

Scott J. Woltman, James N. Eakin, Gregory P. Crawford, and Slobodan Žumer
J. Opt. Soc. Am. A 24(12) 3789-3799 (2007)

Silicon oxide deposition for enhanced optical switching in polydimethylsiloxane-liquid crystal hybrids

Luciano De Sio, Andreas E. Vasdekis, Julien G. Cuennet, Antonio De Luca, Alfredo Pane, and Demetri Psaltis
Opt. Express 19(23) 23532-23537 (2011)

Dynamic polarization grating based on a dye-doped liquid crystal controllable by a single beam in a homeotropic-planar geometry

Hak-Rin Kim, Eunje Jang, Jiyoon Kim, Kyung-Il Joo, and Sin-Doo Lee
Appl. Opt. 51(36) 8526-8534 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003).
    [Crossref]
  2. D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97(23), 231112 (2010).
    [Crossref]
  3. Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34(15), 2351–2353 (2009).
    [Crossref] [PubMed]
  4. L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: Liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96(13), 131112 (2010).
    [Crossref]
  5. L. De Sio, A. E. Vasdekis, J. G. Cuennet, A. De Luca, A. Pane, and D. Psaltis, “Silicon oxide deposition for enhanced optical switching in polydimethylsiloxane-liquid crystal hybrids,” Opt. Express 19(23), 23532–23537 (2011).
    [Crossref] [PubMed]
  6. H.-R. Kim, E. Jang, J. Kim, K.-I. Joo, and S.-D. Lee, “Dynamic polarization grating based on a dye-doped liquid crystal controllable by a single beam in a homeotropic-planar geometry,” Appl. Opt. 51(36), 8526–8534 (2012).
    [Crossref] [PubMed]
  7. L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93(18), 181115 (2008).
    [Crossref]
  8. X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Adv. Mater. 17(3), 370–374 (2005).
    [Crossref]
  9. L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
    [Crossref] [PubMed]
  10. H. Jashnsaz, N. H. Nataj, E. Mohajerani, and A. Khabbazi, “All-optical switchable holographic Fresnel lens based on azo-dye-doped polymer-dispersed liquid crystals,” Appl. Opt. 50(22), 4295–4301 (2011).
    [Crossref] [PubMed]
  11. S.-Y. Huang, T.-C. Tung, H.-C. Jau, J.-H. Liu, and A. Y.-G. Fuh, “All-optical controlling of the focal intensity of a liquid crystal polymer microlens array,” Appl. Opt. 50(30), 5883–5888 (2011).
    [Crossref] [PubMed]
  12. G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “Observation of tunable optical filtering in photosensitive composite structures containing liquid crystals,” Opt. Lett. 36(24), 4755–4757 (2011).
    [Crossref] [PubMed]
  13. D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12(19), 3598–3610 (2012).
    [Crossref] [PubMed]
  14. M. Shian Li, A. Y.-G. Fuh, and S.-T. Wu, “Optical switch of diffractive light from a BCT photonic crystal based on HPDLC doped with azo component,” Opt. Lett. 36(19), 3864–3866 (2011).
    [Crossref] [PubMed]
  15. M. S. Li, A. Y.-G. Fuh, J.-H. Liu, and S.-T. Wu, “Bichromatic optical switch of diffractive light from a BCT photonic crystal based on an azo component-doped HPDLC,” Opt. Express 20(23), 25545–25553 (2012).
    [Crossref] [PubMed]
  16. E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
    [Crossref]
  17. V. Caligiuri, L. De Sio, L. Petti, R. Capasso, M. Rippa, M. G. Maglione, N. Tabiryan, and C. Umeton, “Electro-/all-optical light extraction in gold photonic quasi-crystals layered with photosensitive liquid crystals,” Adv. Opt. Mater. 2(10), 950–955 (2014).
    [Crossref]
  18. R. P. Lemieux, “Photoswitching of ferroelectric liquid crystals using photochromic dopants,” Soft Matter 1(5), 348–354 (2005).
  19. H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
    [Crossref]
  20. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
    [Crossref]
  21. J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
    [Crossref]
  22. H. J. Coles, H. G. Walton, D. Guillon, and G. Poetti, “Photomechanically induced phase transitions in ferroelectric liquid crystals,” Liq. Cryst. 15(4), 551–558 (1993).
    [Crossref]
  23. J. Guan, M. Zhang, W. Gao, H. Yang, and G. Wang, “Reversible reflection color-control in smectic liquid crystal switched by photo-isomerization of azobenzene,” ChemPhysChem 13(6), 1425–1428 (2012).
    [Crossref] [PubMed]
  24. T. Ikeda, T. Sasaki, and K. Ichimura, “Photochemical switching of polarization in ferroelectric liquid-crystal films,” Nature 361(6411), 428–430 (1993).
    [Crossref]
  25. Y. Lansac, M. A. Glaser, N. A. Clark, and O. D. Lavrentovich, “Photocontrolled nanophase segregation in a liquid-crystal solvent,” Nature 398(6722), 54–57 (1999).
    [Crossref]
  26. T. Inoue and Y. Tomita, “Light-induced director axis reorientation in a dye-doped ferroelectric liquid crystal and its application to self-aligned spatial filtering,” J. Opt. Soc. Am. B 13(9), 1916–1920 (1996).
    [Crossref]
  27. A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y.-Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
    [Crossref]
  28. S. J. Woltman, J. N. Eakin, G. P. Crawford, and S. Zumer, “Holographic diffraction gratings using polymer-dispersed ferroelectric liquid crystals,” Opt. Lett. 31(22), 3273–3275 (2006).
    [Crossref] [PubMed]
  29. Data sheet of ZLI-5014–100 provided by Merck, Ltd.
  30. F. Zhang and J. W. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt. 32(13), 2213–2218 (1993).
    [Crossref] [PubMed]
  31. F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
    [Crossref] [PubMed]
  32. J. Xiang and O. D. Lavrentovich, “Blue-phase-polymer-templated nematic with sub-millisecond broad-temperature range electro-optic switching,” Appl. Phys. Lett. 103(5), 051112 (2013).
    [Crossref]
  33. M. E. Sousa, D. J. Broer, C. W. M. Bastiaansen, L. B. Freund, and G. P. Crawford, “Isotropic “island” in a cholesteric “sea”: patterned thermal expansion for responsive surface topologies,” Adv. Mater. 18(14), 1842–1845 (2006).
    [Crossref]
  34. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
    [Crossref] [PubMed]
  35. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience Publication, 1991).

2014 (1)

V. Caligiuri, L. De Sio, L. Petti, R. Capasso, M. Rippa, M. G. Maglione, N. Tabiryan, and C. Umeton, “Electro-/all-optical light extraction in gold photonic quasi-crystals layered with photosensitive liquid crystals,” Adv. Opt. Mater. 2(10), 950–955 (2014).
[Crossref]

2013 (1)

J. Xiang and O. D. Lavrentovich, “Blue-phase-polymer-templated nematic with sub-millisecond broad-temperature range electro-optic switching,” Appl. Phys. Lett. 103(5), 051112 (2013).
[Crossref]

2012 (6)

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

J. Guan, M. Zhang, W. Gao, H. Yang, and G. Wang, “Reversible reflection color-control in smectic liquid crystal switched by photo-isomerization of azobenzene,” ChemPhysChem 13(6), 1425–1428 (2012).
[Crossref] [PubMed]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y.-Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

M. S. Li, A. Y.-G. Fuh, J.-H. Liu, and S.-T. Wu, “Bichromatic optical switch of diffractive light from a BCT photonic crystal based on an azo component-doped HPDLC,” Opt. Express 20(23), 25545–25553 (2012).
[Crossref] [PubMed]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12(19), 3598–3610 (2012).
[Crossref] [PubMed]

H.-R. Kim, E. Jang, J. Kim, K.-I. Joo, and S.-D. Lee, “Dynamic polarization grating based on a dye-doped liquid crystal controllable by a single beam in a homeotropic-planar geometry,” Appl. Opt. 51(36), 8526–8534 (2012).
[Crossref] [PubMed]

2011 (6)

2010 (4)

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[Crossref] [PubMed]

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[Crossref] [PubMed]

D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97(23), 231112 (2010).
[Crossref]

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: Liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96(13), 131112 (2010).
[Crossref]

2009 (1)

2008 (1)

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93(18), 181115 (2008).
[Crossref]

2007 (1)

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
[Crossref]

2006 (2)

M. E. Sousa, D. J. Broer, C. W. M. Bastiaansen, L. B. Freund, and G. P. Crawford, “Isotropic “island” in a cholesteric “sea”: patterned thermal expansion for responsive surface topologies,” Adv. Mater. 18(14), 1842–1845 (2006).
[Crossref]

S. J. Woltman, J. N. Eakin, G. P. Crawford, and S. Zumer, “Holographic diffraction gratings using polymer-dispersed ferroelectric liquid crystals,” Opt. Lett. 31(22), 3273–3275 (2006).
[Crossref] [PubMed]

2005 (3)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

R. P. Lemieux, “Photoswitching of ferroelectric liquid crystals using photochromic dopants,” Soft Matter 1(5), 348–354 (2005).

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Adv. Mater. 17(3), 370–374 (2005).
[Crossref]

2003 (1)

T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003).
[Crossref]

1999 (1)

Y. Lansac, M. A. Glaser, N. A. Clark, and O. D. Lavrentovich, “Photocontrolled nanophase segregation in a liquid-crystal solvent,” Nature 398(6722), 54–57 (1999).
[Crossref]

1998 (1)

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

1996 (1)

1993 (3)

F. Zhang and J. W. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt. 32(13), 2213–2218 (1993).
[Crossref] [PubMed]

H. J. Coles, H. G. Walton, D. Guillon, and G. Poetti, “Photomechanically induced phase transitions in ferroelectric liquid crystals,” Liq. Cryst. 15(4), 551–558 (1993).
[Crossref]

T. Ikeda, T. Sasaki, and K. Ichimura, “Photochemical switching of polarization in ferroelectric liquid-crystal films,” Nature 361(6411), 428–430 (1993).
[Crossref]

Aizawa, M.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Asquini, R.

Bastiaansen, C. W. M.

M. E. Sousa, D. J. Broer, C. W. M. Bastiaansen, L. B. Freund, and G. P. Crawford, “Isotropic “island” in a cholesteric “sea”: patterned thermal expansion for responsive surface topologies,” Adv. Mater. 18(14), 1842–1845 (2006).
[Crossref]

Beccherelli, R.

Broer, D. J.

M. E. Sousa, D. J. Broer, C. W. M. Bastiaansen, L. B. Freund, and G. P. Crawford, “Isotropic “island” in a cholesteric “sea”: patterned thermal expansion for responsive surface topologies,” Adv. Mater. 18(14), 1842–1845 (2006).
[Crossref]

Caligiuri, V.

V. Caligiuri, L. De Sio, L. Petti, R. Capasso, M. Rippa, M. G. Maglione, N. Tabiryan, and C. Umeton, “Electro-/all-optical light extraction in gold photonic quasi-crystals layered with photosensitive liquid crystals,” Adv. Opt. Mater. 2(10), 950–955 (2014).
[Crossref]

Callan-Jones, A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Capasso, R.

V. Caligiuri, L. De Sio, L. Petti, R. Capasso, M. Rippa, M. G. Maglione, N. Tabiryan, and C. Umeton, “Electro-/all-optical light extraction in gold photonic quasi-crystals layered with photosensitive liquid crystals,” Adv. Opt. Mater. 2(10), 950–955 (2014).
[Crossref]

Castles, F.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Chigrinov, V. G.

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y.-Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Choi, S. S.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[Crossref] [PubMed]

Clark, N. A.

Y. Lansac, M. A. Glaser, N. A. Clark, and O. D. Lavrentovich, “Photocontrolled nanophase segregation in a liquid-crystal solvent,” Nature 398(6722), 54–57 (1999).
[Crossref]

Coles, H. J.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[Crossref] [PubMed]

H. J. Coles, H. G. Walton, D. Guillon, and G. Poetti, “Photomechanically induced phase transitions in ferroelectric liquid crystals,” Liq. Cryst. 15(4), 551–558 (1993).
[Crossref]

Crawford, G. P.

M. E. Sousa, D. J. Broer, C. W. M. Bastiaansen, L. B. Freund, and G. P. Crawford, “Isotropic “island” in a cholesteric “sea”: patterned thermal expansion for responsive surface topologies,” Adv. Mater. 18(14), 1842–1845 (2006).
[Crossref]

S. J. Woltman, J. N. Eakin, G. P. Crawford, and S. Zumer, “Holographic diffraction gratings using polymer-dispersed ferroelectric liquid crystals,” Opt. Lett. 31(22), 3273–3275 (2006).
[Crossref] [PubMed]

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Cuennet, J. G.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
[Crossref]

L. De Sio, A. E. Vasdekis, J. G. Cuennet, A. De Luca, A. Pane, and D. Psaltis, “Silicon oxide deposition for enhanced optical switching in polydimethylsiloxane-liquid crystal hybrids,” Opt. Express 19(23), 23532–23537 (2011).
[Crossref] [PubMed]

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: Liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96(13), 131112 (2010).
[Crossref]

d’Alessandro, A.

Day, F. V.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

De Luca, A.

De Sio, L.

V. Caligiuri, L. De Sio, L. Petti, R. Capasso, M. Rippa, M. G. Maglione, N. Tabiryan, and C. Umeton, “Electro-/all-optical light extraction in gold photonic quasi-crystals layered with photosensitive liquid crystals,” Adv. Opt. Mater. 2(10), 950–955 (2014).
[Crossref]

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
[Crossref]

L. De Sio, A. E. Vasdekis, J. G. Cuennet, A. De Luca, A. Pane, and D. Psaltis, “Silicon oxide deposition for enhanced optical switching in polydimethylsiloxane-liquid crystal hybrids,” Opt. Express 19(23), 23532–23537 (2011).
[Crossref] [PubMed]

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “Observation of tunable optical filtering in photosensitive composite structures containing liquid crystals,” Opt. Lett. 36(24), 4755–4757 (2011).
[Crossref] [PubMed]

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[Crossref] [PubMed]

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: Liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96(13), 131112 (2010).
[Crossref]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93(18), 181115 (2008).
[Crossref]

Eakin, J. N.

S. J. Woltman, J. N. Eakin, G. P. Crawford, and S. Zumer, “Holographic diffraction gratings using polymer-dispersed ferroelectric liquid crystals,” Opt. Lett. 31(22), 3273–3275 (2006).
[Crossref] [PubMed]

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Ferjani, S.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[Crossref] [PubMed]

Freund, L. B.

M. E. Sousa, D. J. Broer, C. W. M. Bastiaansen, L. B. Freund, and G. P. Crawford, “Isotropic “island” in a cholesteric “sea”: patterned thermal expansion for responsive surface topologies,” Adv. Mater. 18(14), 1842–1845 (2006).
[Crossref]

Friend, R. H.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Fuh, A. Y.-G.

Fujisawa, T.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Galstian, T.

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Adv. Mater. 17(3), 370–374 (2005).
[Crossref]

Gao, W.

J. Guan, M. Zhang, W. Gao, H. Yang, and G. Wang, “Reversible reflection color-control in smectic liquid crystal switched by photo-isomerization of azobenzene,” ChemPhysChem 13(6), 1425–1428 (2012).
[Crossref] [PubMed]

Gardiner, D. J.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Gilardi, G.

Glaser, M. A.

Y. Lansac, M. A. Glaser, N. A. Clark, and O. D. Lavrentovich, “Photocontrolled nanophase segregation in a liquid-crystal solvent,” Nature 398(6722), 54–57 (1999).
[Crossref]

Guan, J.

J. Guan, M. Zhang, W. Gao, H. Yang, and G. Wang, “Reversible reflection color-control in smectic liquid crystal switched by photo-isomerization of azobenzene,” ChemPhysChem 13(6), 1425–1428 (2012).
[Crossref] [PubMed]

Guillon, D.

H. J. Coles, H. G. Walton, D. Guillon, and G. Poetti, “Photomechanically induced phase transitions in ferroelectric liquid crystals,” Liq. Cryst. 15(4), 551–558 (1993).
[Crossref]

Hands, P. J. W.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Hu, W.

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y.-Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Huang, H.

Huang, S.-Y.

Huang, T. J.

Huck, W. T. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[Crossref] [PubMed]

Ichimura, K.

T. Ikeda, T. Sasaki, and K. Ichimura, “Photochemical switching of polarization in ferroelectric liquid-crystal films,” Nature 361(6411), 428–430 (1993).
[Crossref]

Ikeda, T.

T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003).
[Crossref]

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

T. Ikeda, T. Sasaki, and K. Ichimura, “Photochemical switching of polarization in ferroelectric liquid-crystal films,” Nature 361(6411), 428–430 (1993).
[Crossref]

Inoue, T.

Jang, E.

H.-R. Kim, E. Jang, J. Kim, K.-I. Joo, and S.-D. Lee, “Dynamic polarization grating based on a dye-doped liquid crystal controllable by a single beam in a homeotropic-planar geometry,” Appl. Opt. 51(36), 8526–8534 (2012).
[Crossref] [PubMed]

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
[Crossref]

Jashnsaz, H.

Jau, H.-C.

Joo, K.-I.

Kanazawa, A.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Khabbazi, A.

Kim, H.-R.

H.-R. Kim, E. Jang, J. Kim, K.-I. Joo, and S.-D. Lee, “Dynamic polarization grating based on a dye-doped liquid crystal controllable by a single beam in a homeotropic-planar geometry,” Appl. Opt. 51(36), 8526–8534 (2012).
[Crossref] [PubMed]

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
[Crossref]

Kim, J.

Kiselev, A. D.

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y.-Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Ko, D.-H.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Kriezis, E. E.

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12(19), 3598–3610 (2012).
[Crossref] [PubMed]

Lansac, Y.

Y. Lansac, M. A. Glaser, N. A. Clark, and O. D. Lavrentovich, “Photocontrolled nanophase segregation in a liquid-crystal solvent,” Nature 398(6722), 54–57 (1999).
[Crossref]

Lavrentovich, O. D.

J. Xiang and O. D. Lavrentovich, “Blue-phase-polymer-templated nematic with sub-millisecond broad-temperature range electro-optic switching,” Appl. Phys. Lett. 103(5), 051112 (2013).
[Crossref]

Y. Lansac, M. A. Glaser, N. A. Clark, and O. D. Lavrentovich, “Photocontrolled nanophase segregation in a liquid-crystal solvent,” Nature 398(6722), 54–57 (1999).
[Crossref]

Lee, B.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Lee, H.-K.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Lee, S.-D.

H.-R. Kim, E. Jang, J. Kim, K.-I. Joo, and S.-D. Lee, “Dynamic polarization grating based on a dye-doped liquid crystal controllable by a single beam in a homeotropic-planar geometry,” Appl. Opt. 51(36), 8526–8534 (2012).
[Crossref] [PubMed]

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
[Crossref]

Lemieux, R. P.

R. P. Lemieux, “Photoswitching of ferroelectric liquid crystals using photochromic dopants,” Soft Matter 1(5), 348–354 (2005).

Li, M. S.

Lit, J. W.

Liu, J.-H.

Liu, Y. J.

Lu, Y.-Q.

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y.-Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Lucchetta, D. E.

D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97(23), 231112 (2010).
[Crossref]

Maglione, M. G.

V. Caligiuri, L. De Sio, L. Petti, R. Capasso, M. Rippa, M. G. Maglione, N. Tabiryan, and C. Umeton, “Electro-/all-optical light extraction in gold photonic quasi-crystals layered with photosensitive liquid crystals,” Adv. Opt. Mater. 2(10), 950–955 (2014).
[Crossref]

Mohajerani, E.

Morris, S. M.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[Crossref] [PubMed]

Na, Y.-J.

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
[Crossref]

Nataj, N. H.

Nosheen, S.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Pane, A.

Pelcovits, R. A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Petti, L.

V. Caligiuri, L. De Sio, L. Petti, R. Capasso, M. Rippa, M. G. Maglione, N. Tabiryan, and C. Umeton, “Electro-/all-optical light extraction in gold photonic quasi-crystals layered with photosensitive liquid crystals,” Adv. Opt. Mater. 2(10), 950–955 (2014).
[Crossref]

Poetti, G.

H. J. Coles, H. G. Walton, D. Guillon, and G. Poetti, “Photomechanically induced phase transitions in ferroelectric liquid crystals,” Liq. Cryst. 15(4), 551–558 (1993).
[Crossref]

Psaltis, D.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
[Crossref]

L. De Sio, A. E. Vasdekis, J. G. Cuennet, A. De Luca, A. Pane, and D. Psaltis, “Silicon oxide deposition for enhanced optical switching in polydimethylsiloxane-liquid crystal hybrids,” Opt. Express 19(23), 23532–23537 (2011).
[Crossref] [PubMed]

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: Liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96(13), 131112 (2010).
[Crossref]

Qasim, M. M.

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Radcliffe, M. D.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

Rippa, M.

V. Caligiuri, L. De Sio, L. Petti, R. Capasso, M. Rippa, M. G. Maglione, N. Tabiryan, and C. Umeton, “Electro-/all-optical light extraction in gold photonic quasi-crystals layered with photosensitive liquid crystals,” Adv. Opt. Mater. 2(10), 950–955 (2014).
[Crossref]

Sasaki, T.

T. Ikeda, T. Sasaki, and K. Ichimura, “Photochemical switching of polarization in ferroelectric liquid-crystal films,” Nature 361(6411), 428–430 (1993).
[Crossref]

Serak, S.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[Crossref] [PubMed]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93(18), 181115 (2008).
[Crossref]

Shi, J.

Shian Li, M.

Shiono, T.

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

Simoni, F.

D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97(23), 231112 (2010).
[Crossref]

Sousa, M. E.

M. E. Sousa, D. J. Broer, C. W. M. Bastiaansen, L. B. Freund, and G. P. Crawford, “Isotropic “island” in a cholesteric “sea”: patterned thermal expansion for responsive surface topologies,” Adv. Mater. 18(14), 1842–1845 (2006).
[Crossref]

Srivastava, A. K.

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y.-Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Tabiryan, N.

V. Caligiuri, L. De Sio, L. Petti, R. Capasso, M. Rippa, M. G. Maglione, N. Tabiryan, and C. Umeton, “Electro-/all-optical light extraction in gold photonic quasi-crystals layered with photosensitive liquid crystals,” Adv. Opt. Mater. 2(10), 950–955 (2014).
[Crossref]

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[Crossref] [PubMed]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93(18), 181115 (2008).
[Crossref]

Tomita, Y.

Tong, X.

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Adv. Mater. 17(3), 370–374 (2005).
[Crossref]

Tung, T.-C.

Umeton, C.

V. Caligiuri, L. De Sio, L. Petti, R. Capasso, M. Rippa, M. G. Maglione, N. Tabiryan, and C. Umeton, “Electro-/all-optical light extraction in gold photonic quasi-crystals layered with photosensitive liquid crystals,” Adv. Opt. Mater. 2(10), 950–955 (2014).
[Crossref]

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “Observation of tunable optical filtering in photosensitive composite structures containing liquid crystals,” Opt. Lett. 36(24), 4755–4757 (2011).
[Crossref] [PubMed]

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[Crossref] [PubMed]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93(18), 181115 (2008).
[Crossref]

Vasdekis, A. E.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
[Crossref]

L. De Sio, A. E. Vasdekis, J. G. Cuennet, A. De Luca, A. Pane, and D. Psaltis, “Silicon oxide deposition for enhanced optical switching in polydimethylsiloxane-liquid crystal hybrids,” Opt. Express 19(23), 23532–23537 (2011).
[Crossref] [PubMed]

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: Liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96(13), 131112 (2010).
[Crossref]

Veltri, A.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[Crossref] [PubMed]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93(18), 181115 (2008).
[Crossref]

Vita, F.

D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97(23), 231112 (2010).
[Crossref]

Walker, T. R.

Walton, H. G.

H. J. Coles, H. G. Walton, D. Guillon, and G. Poetti, “Photomechanically induced phase transitions in ferroelectric liquid crystals,” Liq. Cryst. 15(4), 551–558 (1993).
[Crossref]

Wang, G.

J. Guan, M. Zhang, W. Gao, H. Yang, and G. Wang, “Reversible reflection color-control in smectic liquid crystal switched by photo-isomerization of azobenzene,” ChemPhysChem 13(6), 1425–1428 (2012).
[Crossref] [PubMed]

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Adv. Mater. 17(3), 370–374 (2005).
[Crossref]

Woltman, S. J.

Wu, S.-T.

Xiang, J.

J. Xiang and O. D. Lavrentovich, “Blue-phase-polymer-templated nematic with sub-millisecond broad-temperature range electro-optic switching,” Appl. Phys. Lett. 103(5), 051112 (2013).
[Crossref]

Yang, H.

J. Guan, M. Zhang, W. Gao, H. Yang, and G. Wang, “Reversible reflection color-control in smectic liquid crystal switched by photo-isomerization of azobenzene,” ChemPhysChem 13(6), 1425–1428 (2012).
[Crossref] [PubMed]

Yavrian, A.

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Adv. Mater. 17(3), 370–374 (2005).
[Crossref]

Zhang, F.

Zhang, M.

J. Guan, M. Zhang, W. Gao, H. Yang, and G. Wang, “Reversible reflection color-control in smectic liquid crystal switched by photo-isomerization of azobenzene,” ChemPhysChem 13(6), 1425–1428 (2012).
[Crossref] [PubMed]

Zhao, Y.

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Adv. Mater. 17(3), 370–374 (2005).
[Crossref]

Zheng, Y. B.

Zografopoulos, D. C.

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12(19), 3598–3610 (2012).
[Crossref] [PubMed]

Zumer, S.

Adv. Mater. (4)

X. Tong, G. Wang, A. Yavrian, T. Galstian, and Y. Zhao, “Dual-mode switching of diffraction gratings based on azobenzene-polymer-stabilized liquid crystals,” Adv. Mater. 17(3), 370–374 (2005).
[Crossref]

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[Crossref] [PubMed]

M. E. Sousa, D. J. Broer, C. W. M. Bastiaansen, L. B. Freund, and G. P. Crawford, “Isotropic “island” in a cholesteric “sea”: patterned thermal expansion for responsive surface topologies,” Adv. Mater. 18(14), 1842–1845 (2006).
[Crossref]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

V. Caligiuri, L. De Sio, L. Petti, R. Capasso, M. Rippa, M. G. Maglione, N. Tabiryan, and C. Umeton, “Electro-/all-optical light extraction in gold photonic quasi-crystals layered with photosensitive liquid crystals,” Adv. Opt. Mater. 2(10), 950–955 (2014).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (6)

J. Xiang and O. D. Lavrentovich, “Blue-phase-polymer-templated nematic with sub-millisecond broad-temperature range electro-optic switching,” Appl. Phys. Lett. 103(5), 051112 (2013).
[Crossref]

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91(7), 071109 (2007).
[Crossref]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. D. Kiselev, and Y.-Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

D. E. Lucchetta, F. Vita, and F. Simoni, “All-optical switching of diffraction gratings infiltrated with dye-doped liquid crystals,” Appl. Phys. Lett. 97(23), 231112 (2010).
[Crossref]

L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: Liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96(13), 131112 (2010).
[Crossref]

L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93(18), 181115 (2008).
[Crossref]

Chem. Mater. (1)

H.-K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[Crossref]

ChemPhysChem (1)

J. Guan, M. Zhang, W. Gao, H. Yang, and G. Wang, “Reversible reflection color-control in smectic liquid crystal switched by photo-isomerization of azobenzene,” ChemPhysChem 13(6), 1425–1428 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (1)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98(12), 123102 (2005).
[Crossref]

J. Mater. Chem. (1)

T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

Lab Chip (1)

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12(19), 3598–3610 (2012).
[Crossref] [PubMed]

Liq. Cryst. (1)

H. J. Coles, H. G. Walton, D. Guillon, and G. Poetti, “Photomechanically induced phase transitions in ferroelectric liquid crystals,” Liq. Cryst. 15(4), 551–558 (1993).
[Crossref]

Nat. Mater. (1)

F. Castles, F. V. Day, S. M. Morris, D.-H. Ko, D. J. Gardiner, M. M. Qasim, S. Nosheen, P. J. W. Hands, S. S. Choi, R. H. Friend, and H. J. Coles, “Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications,” Nat. Mater. 11(7), 599–603 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011).
[Crossref]

Nature (2)

T. Ikeda, T. Sasaki, and K. Ichimura, “Photochemical switching of polarization in ferroelectric liquid-crystal films,” Nature 361(6411), 428–430 (1993).
[Crossref]

Y. Lansac, M. A. Glaser, N. A. Clark, and O. D. Lavrentovich, “Photocontrolled nanophase segregation in a liquid-crystal solvent,” Nature 398(6722), 54–57 (1999).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Soft Matter (1)

R. P. Lemieux, “Photoswitching of ferroelectric liquid crystals using photochromic dopants,” Soft Matter 1(5), 348–354 (2005).

Other (2)

Data sheet of ZLI-5014–100 provided by Merck, Ltd.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience Publication, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Conceptual diagram of an optically tunable binary grating device containing the static and tunable regions. The white and red arrows denote the optic axes in the static and tunable regions, respectively. Schematic representation of the photoresponse of (b) the MR-doped NLC and (c) the MR-doped FLC.
Fig. 2
Fig. 2 (a) Schematic diagram of the MR-doped LC cell. The rubbing direction is denoted by R. (b) Pump-probe experiment for the measurement of the optically induced phase retardation. The measured values of the optical phase retardation as a function of the azimuthal angle (θ) in the pump-off state (black circles) and the pump-on state (red inverted triangles) for (c) the MR-doped ZLI-5014-100, (d) the MR-doped E7, (e) the MR-doped 5CB, and (f) the MR-doped ZLI-5600-100.
Fig. 3
Fig. 3 Schematic diagrams showing (a) the fabrication process of the binary grating structure, (b) the binary grating structure with periodic domains of vertically aligned RMs forming polymer networks (the SEM image), and (c) the MR-doped FLC grating cell.
Fig. 4
Fig. 4 Microscopic textures of the MR-doped FLC grating cell under crossed polarizers when the polarizer makes angles of (a) 90°, (b) 45°, and (c) 0° with respect to the rubbing direction R. Region 1 is an optically tunable region and region 2 is a static region. The analyzer and the polarizer are denoted by A and P, respectively.
Fig. 5
Fig. 5 (a) Experimental geometry for the measurement of the dynamic diffraction properties of the MR-doped FLC grating cell. (b) The diffraction patterns observed at the rotation angle ϕ = 90° in the pump-off state. (c) Dynamic diffraction efficiencies of 0th and + 1st orders for different values of the rotation angle ϕ.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D0= 1 2 ( ( 1+cos( 2π( n s n o )d λ ) ) cos 2 ϕ+( 1+cos( 2π( n e n s )d λ ) ) sin 2 ϕ ),
D±1= 1 π 2 ( ( 22cos( 2π( n s n o )d λ ) ) cos 2 ϕ+( 22cos( 2π( n e n s )d λ ) ) sin 2 ϕ )

Metrics