Abstract

A novel fluorescence emission difference technique is proposed for further enhancements of the lateral resolution in surface plasmon-coupled emission microscopy (SPCEM). In the proposed method, the difference between the image with phase modulation by using a 0-2π vortex phase plate (VPP) along with a diaphragm and the original image obtained from SPCEM is used to estimate the spatial distribution of the analyzed sample. By optimizing the size of the diaphragm and the subtractive factor, the lateral resolution can be enhanced by about 20% and 33%, compared with that in SPCEM with a single 0-2π VPP and conventional wide-field fluorescence microscopy, respectively. Related simulation results are presented to verify the capability of the proposed method for improving lateral resolution and reducing imaging distortion. It is believed that the proposed method has potentials to improve the performance of SPCEM, thus facilitating biological observation and research.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence emission difference with defocused surface plasmon-coupled emission microscopy

Baoliang Ge, Liangfu Zhu, Cuifang Kuang, Douguo Zhang, Yue Fang, Ye Ma, and Xu Liu
Opt. Express 23(25) 32561-32572 (2015)

Fluorescence emission difference with surface plasmon-coupled emission applied in confocal microscopy

Kang Jiang, Xinrui Lei, Kuanguo Li, Yonghua Lu, and Pei Wang
Opt. Express 26(3) 2380-2389 (2018)

Resolution enhancement of saturated fluorescence emission difference microscopy

Guangyuan Zhao, Cuifang Kuang, Zhihua Ding, and Xu Liu
Opt. Express 24(20) 23596-23609 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
    [Crossref] [PubMed]
  2. S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. 5(1), 317–336 (2012).
    [Crossref] [PubMed]
  3. D. G. Zhang, K. J. Moh, and X.-C. Yuan, “Surface plasmon-coupled emission from shaped PMMA films doped with fluorescence molecules,” Opt. Express 18(12), 12185–12190 (2010).
    [Crossref] [PubMed]
  4. D. Zhang, X. Wang, Y. Chen, L. Han, P. Wang, and H. Ming, “Polymer based plasmonic elements with dye molecules,” in Photonics Asia (International Society for Optics and Photonics, 2012), pp. 855504–855510.
  5. W. T. Tang, E. Chung, Y.-H. Kim, P. T. So, and C. J. Sheppard, “Surface-plasmon-coupled emission microscopy with a spiral phase plate,” Opt. Lett. 35(4), 517–519 (2010).
    [Crossref] [PubMed]
  6. W. T. Tang, E. Chung, Y.-H. Kim, P. T. So, and C. J. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission microscopy,” Opt. Express 15(8), 4634–4646 (2007).
    [Crossref] [PubMed]
  7. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
    [Crossref] [PubMed]
  8. T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90(12), 4662–4671 (2006).
    [Crossref] [PubMed]
  9. J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
    [Crossref] [PubMed]
  10. J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
    [Crossref] [PubMed]
  11. J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14(17), 7878–7888 (2006).
    [Crossref] [PubMed]
  12. E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of aptamers as sensors,” Annu. Rev. Anal. Chem. 2(1), 241–264 (2009).
    [Crossref] [PubMed]
  13. J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic technology: novel approach to ultrasensitive immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
    [Crossref] [PubMed]
  14. E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
    [Crossref] [PubMed]
  15. K.-C. Chiu, C.-Y. Lin, C. Y. Dong, and S.-J. Chen, “Optimizing silver film for surface plasmon-coupled emission induced two-photon excited fluorescence imaging,” Opt. Express 19(6), 5386–5396 (2011).
    [PubMed]
  16. G. Terakado, J. Ning, K. Watanabe, and H. Kano, “High-resolution simultaneous microscopy of refractive index and fluorescent intensity distributions by using localized surface plasmons,” Appl. Opt. 52(14), 3324–3328 (2013).
    [Crossref] [PubMed]
  17. Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett. 38(5), 736–738 (2013).
    [Crossref] [PubMed]
  18. C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
    [Crossref] [PubMed]
  19. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [Crossref]
  20. M. Padgett, J. Courtial, and L. Allen, “Light's orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
    [Crossref]
  21. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (CUP Archive, 1999).
  22. S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
    [Crossref]
  23. S. You, C. Kuang, Z. Rong, and X. Liu, “Eliminating deformations in fluorescence emission difference microscopy,” Opt. Express 22(21), 26375–26385 (2014).
    [Crossref] [PubMed]
  24. N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Direct optical nanoscopy with axially localized detection,” arXiv preprint arXiv:1410.1563 (2014)
  25. N. Wang and T. Kobayashi, “Numerical study of the subtraction threshold for fluorescence difference microscopy,” Opt. Express 22(23), 28819–28830 (2014).
    [Crossref] [PubMed]

2014 (2)

2013 (4)

S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
[Crossref]

G. Terakado, J. Ning, K. Watanabe, and H. Kano, “High-resolution simultaneous microscopy of refractive index and fluorescent intensity distributions by using localized surface plasmons,” Appl. Opt. 52(14), 3324–3328 (2013).
[Crossref] [PubMed]

Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett. 38(5), 736–738 (2013).
[Crossref] [PubMed]

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

2012 (1)

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. 5(1), 317–336 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

2009 (1)

E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of aptamers as sensors,” Annu. Rev. Anal. Chem. 2(1), 241–264 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (3)

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90(12), 4662–4671 (2006).
[Crossref] [PubMed]

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14(17), 7878–7888 (2006).
[Crossref] [PubMed]

2005 (2)

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic technology: novel approach to ultrasensitive immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

2004 (2)

M. Padgett, J. Courtial, and L. Allen, “Light's orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

2003 (2)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[Crossref] [PubMed]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Ajtai, K.

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90(12), 4662–4671 (2006).
[Crossref] [PubMed]

Allen, L.

M. Padgett, J. Courtial, and L. Allen, “Light's orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Berndt, K. W.

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

Borejdo, J.

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14(17), 7878–7888 (2006).
[Crossref] [PubMed]

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

Burghardt, T. P.

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90(12), 4662–4671 (2006).
[Crossref] [PubMed]

Cai, W.-P.

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. 5(1), 317–336 (2012).
[Crossref] [PubMed]

Calander, N.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14(17), 7878–7888 (2006).
[Crossref] [PubMed]

Cao, S.-H.

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. 5(1), 317–336 (2012).
[Crossref] [PubMed]

Charlesworth, J. E.

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90(12), 4662–4671 (2006).
[Crossref] [PubMed]

Chen, S.-J.

Chen, Y.

Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett. 38(5), 736–738 (2013).
[Crossref] [PubMed]

D. Zhang, X. Wang, Y. Chen, L. Han, P. Wang, and H. Ming, “Polymer based plasmonic elements with dye molecules,” in Photonics Asia (International Society for Optics and Photonics, 2012), pp. 855504–855510.

Chiu, K.-C.

Cho, E. J.

E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of aptamers as sensors,” Annu. Rev. Anal. Chem. 2(1), 241–264 (2009).
[Crossref] [PubMed]

Chung, E.

Courtial, J.

M. Padgett, J. Courtial, and L. Allen, “Light's orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Dong, C. Y.

Ellington, A. D.

E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of aptamers as sensors,” Annu. Rev. Anal. Chem. 2(1), 241–264 (2009).
[Crossref] [PubMed]

Ge, J.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
[Crossref]

Goldys, E.

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

Gryczynski, I.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14(17), 7878–7888 (2006).
[Crossref] [PubMed]

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic technology: novel approach to ultrasensitive immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[Crossref] [PubMed]

Gryczynski, Z.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14(17), 7878–7888 (2006).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic technology: novel approach to ultrasensitive immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[Crossref] [PubMed]

Gu, Z.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Halstead, M. F.

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90(12), 4662–4671 (2006).
[Crossref] [PubMed]

Han, L.

Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett. 38(5), 736–738 (2013).
[Crossref] [PubMed]

D. Zhang, X. Wang, Y. Chen, L. Han, P. Wang, and H. Ming, “Polymer based plasmonic elements with dye molecules,” in Photonics Asia (International Society for Optics and Photonics, 2012), pp. 855504–855510.

Hao, X.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
[Crossref]

Howe, J.

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

Kano, H.

Kim, Y.-H.

Kobayashi, T.

Kuang, C.

S. You, C. Kuang, Z. Rong, and X. Liu, “Eliminating deformations in fluorescence emission difference microscopy,” Opt. Express 22(21), 26375–26385 (2014).
[Crossref] [PubMed]

S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
[Crossref]

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Lakowicz, J. R.

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic technology: novel approach to ultrasensitive immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

Lee, J.-W.

E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of aptamers as sensors,” Annu. Rev. Anal. Chem. 2(1), 241–264 (2009).
[Crossref] [PubMed]

Li, H.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Li, S.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
[Crossref]

Li, Y.-Q.

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. 5(1), 317–336 (2012).
[Crossref] [PubMed]

Lin, C.-Y.

Liu, Q.

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. 5(1), 317–336 (2012).
[Crossref] [PubMed]

Liu, W.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Liu, X.

S. You, C. Kuang, Z. Rong, and X. Liu, “Eliminating deformations in fluorescence emission difference microscopy,” Opt. Express 22(21), 26375–26385 (2014).
[Crossref] [PubMed]

S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
[Crossref]

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Malicka, J.

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic technology: novel approach to ultrasensitive immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

Matveeva, E.

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic technology: novel approach to ultrasensitive immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

Matveeva, E. G.

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

Ming, H.

Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett. 38(5), 736–738 (2013).
[Crossref] [PubMed]

D. Zhang, X. Wang, Y. Chen, L. Han, P. Wang, and H. Ming, “Polymer based plasmonic elements with dye molecules,” in Photonics Asia (International Society for Optics and Photonics, 2012), pp. 855504–855510.

Moh, K. J.

Muthu, P.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

Ning, J.

Padgett, M.

M. Padgett, J. Courtial, and L. Allen, “Light's orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Rong, Z.

Rui, G.

Sheppard, C. J.

So, P. T.

Tang, W. T.

Tarara, J. E.

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90(12), 4662–4671 (2006).
[Crossref] [PubMed]

Terakado, G.

Wang, N.

Wang, P.

Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett. 38(5), 736–738 (2013).
[Crossref] [PubMed]

D. Zhang, X. Wang, Y. Chen, L. Han, P. Wang, and H. Ming, “Polymer based plasmonic elements with dye molecules,” in Photonics Asia (International Society for Optics and Photonics, 2012), pp. 855504–855510.

Wang, X.

Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett. 38(5), 736–738 (2013).
[Crossref] [PubMed]

D. Zhang, X. Wang, Y. Chen, L. Han, P. Wang, and H. Ming, “Polymer based plasmonic elements with dye molecules,” in Photonics Asia (International Society for Optics and Photonics, 2012), pp. 855504–855510.

Wang, Y.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
[Crossref]

Watanabe, K.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

You, S.

Yuan, X.-C.

Zhang, D.

Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett. 38(5), 736–738 (2013).
[Crossref] [PubMed]

D. Zhang, X. Wang, Y. Chen, L. Han, P. Wang, and H. Ming, “Polymer based plasmonic elements with dye molecules,” in Photonics Asia (International Society for Optics and Photonics, 2012), pp. 855504–855510.

Zhang, D. G.

Anal. Chem. (1)

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[Crossref] [PubMed]

Annu. Rev. Anal. Chem. (2)

E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of aptamers as sensors,” Annu. Rev. Anal. Chem. 2(1), 241–264 (2009).
[Crossref] [PubMed]

S.-H. Cao, W.-P. Cai, Q. Liu, and Y.-Q. Li, “Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?” Annu. Rev. Anal. Chem. 5(1), 317–336 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Biochem. Biophys. Res. Commun. (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

Biophys. J. (2)

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90(12), 4662–4671 (2006).
[Crossref] [PubMed]

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

Clin. Chem. (1)

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic technology: novel approach to ultrasensitive immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

J. Fluoresc. (1)

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

J. Opt. (1)

S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
[Crossref]

J. Phys. Chem. B (1)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Phys. Today (1)

M. Padgett, J. Courtial, and L. Allen, “Light's orbital angular momentum,” Phys. Today 57(5), 35–40 (2004).
[Crossref]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Sci. Rep. (1)

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Other (3)

D. Zhang, X. Wang, Y. Chen, L. Han, P. Wang, and H. Ming, “Polymer based plasmonic elements with dye molecules,” in Photonics Asia (International Society for Optics and Photonics, 2012), pp. 855504–855510.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (CUP Archive, 1999).

N. Bourg, C. Mayet, G. Dupuis, T. Barroca, P. Bon, S. Lécart, E. Fort, and S. Lévêque-Fort, “Direct optical nanoscopy with axially localized detection,” arXiv preprint arXiv:1410.1563 (2014)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Orientation of a single dipole. (b) Diagram of the imaging process in SPCEM.
Fig. 2
Fig. 2 PSFs in SPCEM without and with vortex phase modulation. The intensity contribution of (a) the transverse components, and (b) the longitudinal components of the electrical field on the image plane without vortex phase modulation. (c) The PSF in SPCEM without a VPP. The intensity contribution of (d) the transverse components and (e) the longitudinal components of the electrical field on the image plane with vortex phase modulation. (f) The PSF in SPCEM when the VPP is introduced. The full size of each figure is 1μm × 1μm.
Fig. 3
Fig. 3 Schematic diagram of the proposed system.
Fig. 4
Fig. 4 (a) The integral range to calculate Var. The upper limit of the integral is shown as the position of the red dashed line which is also the boundary of the main side-lobe after subtraction. (b) The relationship between Var and the aperture index with different subtractive factors. When the subtractive factor is given, an optimal value of the aperture index exists which can make the size of the extended solid PSF matches that of the hollow PSF to the greatest extent.
Fig. 5
Fig. 5 (a) Variances of the peak value of positive side-lobes and the valley value of negative side-lobes as functions of the subtractive factor when the aperture index is set to be 0.6. (b) Relationship between the FWHM and the subtractive factor.
Fig. 6
Fig. 6 (a) The effective PSF by using the FED technique with the aperture index of 0.6 and the subtractive factor of 0.5. (b) The transvers cross section of the extended solid PSF (black dashed line), the hollow PSF (red dashed line), and the effective PSF by using the FED technique (blue solid line).
Fig. 7
Fig. 7 Simulation results of a sample with a spoke-like pattern. (a) Spoke-like sample. (b) Imaging result by using a conventional wide-field microscope. (c) Imaging result in SPCEM with a 0-2π VPP. (d)-(f) Imaging result in SPCEM by using the FED technique when the aperture index is 0.6 and subtractive factor is selected as 0.5, 0.7 and 0.8, (which are denoted as FED1, FED2 and FED3), respectively. The full size of the sample is 4μm × 4μm.
Fig. 8
Fig. 8 Simulation results of a sample with nine points. The clearance between the nearest points is 200 nm, and the intensity of each point is set to be equal. (a) The nine-point sample. (b) Imaging result obtained by using a conventional wide-field microscope. (c) Imaging result in SPCEM with a 0-2π VPP. (e) Resulting image by applying the FED technique in SPCEM with the aperture index being 0.6 and the subtractive factor being 0.8. The full size of the sample is 1μm × 1μm.
Fig. 9
Fig. 9 Simulation results of a grating consisting of five lines. (a) The geometrical image of the sample. The clearance between the adjacent lines is 200 nm. (b) The image of a conventional wide-field microscope. (c) The image using SPCEM with 0-2π VPP’s modulation. (d) The image using SPCEM with the FED technique. The aperture index is chosen as 0.6 and the subtraction factor is set to be 0.8.
Fig. 10
Fig. 10 Simulation results of a microtubule sample. (a) Microtubule sample. (b) Imaging result by using the conventional SPCEM. (c) Imaging result by using the SPCEM with a 0-2π VPP. (d) Imaging result by using the FED technique in SPCEM with the aperture index of 0.6 and the subtractive factor of 0.7. The full size of the sample is 3μm × 3μm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E r ' = cos θ 4 cos θ 3 { μ 2 sin θ d cos( ϕ d φ)[(cos θ 1 cos θ 4 τ p + τ s )+(cos θ 1 cos θ 4 τ p τ s ), ×exp(2i(φϕ))]μ τ p cos θ d sin θ 1 cos θ 4 exp(i(φϕ))}
E φ ' = cos θ 4 cos θ 3 { μ 2 sin θ d sin( ϕ d φ)[(cos θ 1 cos θ 4 τ p + τ s )(cos θ 1 cos θ 4 τ p τ s ), ×exp(2i(φϕ))]}
E z ' = cos θ 4 cos θ 3 [μsin θ d cos( ϕ d φ)cos θ 1 sin θ 4 τ p exp(i(φϕ))μcos θ d sin θ 1 sin θ 4 τ p ].
E= i k 4 2π 0 2π 0 σ E ' sin θ 4 exp(i k 4 rsin θ 4 cos(ϕφ))×exp(i k 4 zcos θ 4 )d θ 4 dϕ
NA n 4 sinσ =mag,
I i (x,y)= I o (x,y)×PSF(x,y).
I Solid (x,y)= I o (x,y)×PS F Solid (x,y),
I Hollow (x,y)= I o (x,y)×PS F Hollow (x,y),
I FED = I Solid s× I Hollow ,
PS F FED =PS F Solid s×PS F Hollow .
Var= max | PS F Solid+ (r)s×PS F Hollow (r) | 2 dr.

Metrics