Abstract

Super-channel transmission is a promising solution to increase the capacity of a channel beyond 100 Gb/s in next-generation optical networks. The performance of a super-channel comprising multiple subcarriers, however, degrades if optical filtering distortions occur in particular subcarriers. In this paper, we propose a method that improves super-channel performance by dispersing the distortions over all subcarriers. We also numerically demonstrate that the method effectively mitigates the filtering-induced penalty suffered by super-channels.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced resilience towards ROADM-induced optical filtering using subcarrier multiplexing and optimized bit and power loading

A. M. Rosa Brusin, F. P. Guiomar, A. Lorences-Riesgo, P. P. Monteiro, and A. Carena
Opt. Express 27(21) 30710-30725 (2019)

Transmission of 8 × 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs

Jianjun Yu, Junwen Zhang, Ze Dong, Zhensheng Jia, Hung-Chang Chien, Yi Cai, Xin Xiao, and Xinying Li
Opt. Express 21(13) 15686-15691 (2013)

On the Filter Narrowing Issues in Elastic Optical Networks

J. M. Fabrega, M. Svaluto Moreolo, L. Martín, A. Chiadò Piat, E. Riccardi, D. Roccato, N. Sambo, F. Cugini, L. Potì, S. Yan, E. Hugues-Salas, D. Simeonidou, M. Gunkel, R. Palmer, S. Fedderwitz, D. Rafique, T. Rahman, Huug de Waardt, and A. Napoli
J. Opt. Commun. Netw. 8(7) A23-A33 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
    [Crossref]
  2. Y. Aoki, X. Wang, P. Palacharla, K. Sone, S. Oda, T. Hoshida, and J. C. Rasmussen, “Dynamic and flexible photonic node architecture with shared universal transceivers supporting hitless defragmentation,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.3.D.2.
    [Crossref]
  3. S. Yamanaka, T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, M. Nagatani, and H. Nosaka, “Nyquist-WDM transmission of 7 × 192 Gb/s PDM 16-QAM signals using high-speed DACs operating at 42 GS/s,” Proc. SPIE 8646, 86460O (2012).
    [Crossref]
  4. Yu, X. Zhou, and M. Huang, “8 × 114 Gbit/s, 25 GHz-spaced, PolMux-RZ-8QAM straight-line transmission over 800 km of SSMF,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2009), paper P4.02.
  5. A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photonics Technol. Lett. 22(11), 829–831 (2010).
    [Crossref]
  6. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
    [Crossref]
  7. J. T. Rahn, S. Kumar, M. Mitchell, R. Malendevich, H. Sun, K. T. Wu, and D. Welch, “250 Gb/s real-time PIC-based super-channel transmission over a gridless 6000km terrestrial link,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5D.5.
  8. T. Xia, G. Wellbrock, Y. K. Huang, E. Ip, M. F. Huang, Y. Shao, and M. Cvijetic, “Field experiment with mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3,560 km of installed fiber using filterless coherent receiver and EDFAs only,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA3.
    [Crossref]
  9. F. Buchali, K. Schuh, D. Roesener, E. Lach, R. Dischler, W. Idler, and L. Schuerer, “512-Gb/s DP-16-QAM field trial over 734 km installed SSMF with co-propagating 10 Gb/s NRZ neighbors incorporating soft-FEC decoding,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW4C.4.
    [Crossref]
  10. E. Torrengo, R. Cigliutti, G. Bosco, G. Gaviol, A. Alaimo, A. Carena, and P. Poggiolini, “Transoceanic PM-QPSK terabit superchannel transmission experiments at baud-rate subcarrier spacing,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2010) We.7.C.2.
    [Crossref]
  11. Y. K. Huang, D. Qian, F. Yaman, T. Wang, E. Mateo, T. Inoue, and T. Tajima, “Real-time 400G superchannel transmission using 100-GbE based 37.5-GHz spaced subcarriers with optical Nyquist shaping over 3,600-km DMF link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper NW4E.1.
    [Crossref]
  12. F. Heismann, “System requirements for WSS filter shape in cascaded ROADM networks,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThR1.
    [Crossref]
  13. Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, and T. Kataoka, “Evaluation of optical filtering penalty in digital coherent detection system,” IEICE Commun. Express 1(2), 54–59 (2012).
    [Crossref]
  14. S. Mumtaz, G. Rekaya-Ben Othman, and Y. Jaoun, “PDL Mitigation in PolMux OFDM Systems Using Golden and Silver Polarization-Time Codes,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThA7.
  15. S. Mumtaz, G. Rekaya-Ben, and J. Yves, “Space-Time codes for optical fiber communication with polarization multiplexing,” in IEEE International Conference on Communications (IEEE, 2010), pp. 1–5.
  16. E. Meron, A. Andrusier, M. Feder, and M. Shtaif, “Use of space-time coding in coherent polarization-multiplexed systems suffering from polarization-dependent loss,” Opt. Lett. 35(21), 3547–3549 (2010).
    [Crossref] [PubMed]
  17. A. Andrusier, E. Meron, M. Feder, and M. Shtaif, “Optical implementation of a space-time-trellis code for enhancing the tolerance of systems to polarization-dependent loss,” Opt. Lett. 38(2), 118–120 (2013).
    [Crossref] [PubMed]
  18. K. Kikuchi, “Principle of adaptive-filter-based signal processing in digital coherent receivers,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.1.A.3.
    [Crossref]
  19. E. N. OnggosanusiA, G. Dabak, T. Schmidl, and T. Muharemovict, “Capacity analysis of frequency-selective MIMO channels with sub-optimal detectors,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2002), pp. III2369–III2372.
  20. P. V. Rooyen and F. Solms, “Maximum entropy investigation of the inter user interference distribution in a DS/SSMA system,” in Proc. 1995 Symp. Personal, Indoor and Mobile Radio Communications (PIMRC, 1995), pp. 1308–1312.
  21. R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, and Y. Miyamoto, “Coherent optical single carrier transmission using overlap frequency domain equalization for long-haul optical systems,” J. Lightwave Technol. 27(16), 3721–3728 (2009).
    [Crossref]
  22. K. Shibahara and K. Yonenaga, “Experimental demonstration of PDL penalty reduction by wavelength-interleaving transmission,” Opt. Express 20(26), B479–B484 (2012).
    [Crossref] [PubMed]
  23. M. Shahmohammadi and M.H. Kahaei, “A new dual-mode approach to blind equalization of QAM signals,” in Eighth IEEE International Symposium on Computers and Communication (IEEE, 2003), pp. 277–281.
  24. A. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [Crossref]
  25. Optical Internetworking Forum, “Integratable Tunable Laser Assembly Multi Source Agreement (OIF-ITLA-MSA-01.0)” (Optical Internetworking Forum, 2004). http://www.oiforum.com/public/documents/OIF-ITLA-MSA-01.0.pdf

2013 (1)

2012 (3)

Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, and T. Kataoka, “Evaluation of optical filtering penalty in digital coherent detection system,” IEICE Commun. Express 1(2), 54–59 (2012).
[Crossref]

S. Yamanaka, T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, M. Nagatani, and H. Nosaka, “Nyquist-WDM transmission of 7 × 192 Gb/s PDM 16-QAM signals using high-speed DACs operating at 42 GS/s,” Proc. SPIE 8646, 86460O (2012).
[Crossref]

K. Shibahara and K. Yonenaga, “Experimental demonstration of PDL penalty reduction by wavelength-interleaving transmission,” Opt. Express 20(26), B479–B484 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[Crossref]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photonics Technol. Lett. 22(11), 829–831 (2010).
[Crossref]

E. Meron, A. Andrusier, M. Feder, and M. Shtaif, “Use of space-time coding in coherent polarization-multiplexed systems suffering from polarization-dependent loss,” Opt. Lett. 35(21), 3547–3549 (2010).
[Crossref] [PubMed]

2009 (1)

1983 (1)

A. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Alaimo, A.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gaviol, A. Alaimo, A. Carena, and P. Poggiolini, “Transoceanic PM-QPSK terabit superchannel transmission experiments at baud-rate subcarrier spacing,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2010) We.7.C.2.
[Crossref]

Andrusier, A.

Aoki, Y.

Y. Aoki, X. Wang, P. Palacharla, K. Sone, S. Oda, T. Hoshida, and J. C. Rasmussen, “Dynamic and flexible photonic node architecture with shared universal transceivers supporting hitless defragmentation,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.3.D.2.
[Crossref]

Basch, B.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[Crossref]

Bosco, G.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photonics Technol. Lett. 22(11), 829–831 (2010).
[Crossref]

E. Torrengo, R. Cigliutti, G. Bosco, G. Gaviol, A. Alaimo, A. Carena, and P. Poggiolini, “Transoceanic PM-QPSK terabit superchannel transmission experiments at baud-rate subcarrier spacing,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2010) We.7.C.2.
[Crossref]

Buchali, F.

F. Buchali, K. Schuh, D. Roesener, E. Lach, R. Dischler, W. Idler, and L. Schuerer, “512-Gb/s DP-16-QAM field trial over 734 km installed SSMF with co-propagating 10 Gb/s NRZ neighbors incorporating soft-FEC decoding,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW4C.4.
[Crossref]

Carena, A.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photonics Technol. Lett. 22(11), 829–831 (2010).
[Crossref]

E. Torrengo, R. Cigliutti, G. Bosco, G. Gaviol, A. Alaimo, A. Carena, and P. Poggiolini, “Transoceanic PM-QPSK terabit superchannel transmission experiments at baud-rate subcarrier spacing,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2010) We.7.C.2.
[Crossref]

Cigliutti, R.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gaviol, A. Alaimo, A. Carena, and P. Poggiolini, “Transoceanic PM-QPSK terabit superchannel transmission experiments at baud-rate subcarrier spacing,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2010) We.7.C.2.
[Crossref]

Curri, V.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photonics Technol. Lett. 22(11), 829–831 (2010).
[Crossref]

Cvijetic, M.

T. Xia, G. Wellbrock, Y. K. Huang, E. Ip, M. F. Huang, Y. Shao, and M. Cvijetic, “Field experiment with mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3,560 km of installed fiber using filterless coherent receiver and EDFAs only,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA3.
[Crossref]

Dabak, G.

E. N. OnggosanusiA, G. Dabak, T. Schmidl, and T. Muharemovict, “Capacity analysis of frequency-selective MIMO channels with sub-optimal detectors,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2002), pp. III2369–III2372.

Dischler, R.

F. Buchali, K. Schuh, D. Roesener, E. Lach, R. Dischler, W. Idler, and L. Schuerer, “512-Gb/s DP-16-QAM field trial over 734 km installed SSMF with co-propagating 10 Gb/s NRZ neighbors incorporating soft-FEC decoding,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW4C.4.
[Crossref]

Egorov, R.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[Crossref]

Feder, M.

Forghieri, F.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photonics Technol. Lett. 22(11), 829–831 (2010).
[Crossref]

Fukutoku, M.

Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, and T. Kataoka, “Evaluation of optical filtering penalty in digital coherent detection system,” IEICE Commun. Express 1(2), 54–59 (2012).
[Crossref]

Gaviol, G.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gaviol, A. Alaimo, A. Carena, and P. Poggiolini, “Transoceanic PM-QPSK terabit superchannel transmission experiments at baud-rate subcarrier spacing,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2010) We.7.C.2.
[Crossref]

Gringeri, S.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[Crossref]

Heismann, F.

F. Heismann, “System requirements for WSS filter shape in cascaded ROADM networks,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThR1.
[Crossref]

Hoshida, T.

Y. Aoki, X. Wang, P. Palacharla, K. Sone, S. Oda, T. Hoshida, and J. C. Rasmussen, “Dynamic and flexible photonic node architecture with shared universal transceivers supporting hitless defragmentation,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.3.D.2.
[Crossref]

Huang, M.

Yu, X. Zhou, and M. Huang, “8 × 114 Gbit/s, 25 GHz-spaced, PolMux-RZ-8QAM straight-line transmission over 800 km of SSMF,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2009), paper P4.02.

Huang, M. F.

T. Xia, G. Wellbrock, Y. K. Huang, E. Ip, M. F. Huang, Y. Shao, and M. Cvijetic, “Field experiment with mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3,560 km of installed fiber using filterless coherent receiver and EDFAs only,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA3.
[Crossref]

Huang, Y. K.

T. Xia, G. Wellbrock, Y. K. Huang, E. Ip, M. F. Huang, Y. Shao, and M. Cvijetic, “Field experiment with mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3,560 km of installed fiber using filterless coherent receiver and EDFAs only,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA3.
[Crossref]

Y. K. Huang, D. Qian, F. Yaman, T. Wang, E. Mateo, T. Inoue, and T. Tajima, “Real-time 400G superchannel transmission using 100-GbE based 37.5-GHz spaced subcarriers with optical Nyquist shaping over 3,600-km DMF link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper NW4E.1.
[Crossref]

Idler, W.

F. Buchali, K. Schuh, D. Roesener, E. Lach, R. Dischler, W. Idler, and L. Schuerer, “512-Gb/s DP-16-QAM field trial over 734 km installed SSMF with co-propagating 10 Gb/s NRZ neighbors incorporating soft-FEC decoding,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW4C.4.
[Crossref]

Inoue, T.

Y. K. Huang, D. Qian, F. Yaman, T. Wang, E. Mateo, T. Inoue, and T. Tajima, “Real-time 400G superchannel transmission using 100-GbE based 37.5-GHz spaced subcarriers with optical Nyquist shaping over 3,600-km DMF link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper NW4E.1.
[Crossref]

Ip, E.

T. Xia, G. Wellbrock, Y. K. Huang, E. Ip, M. F. Huang, Y. Shao, and M. Cvijetic, “Field experiment with mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3,560 km of installed fiber using filterless coherent receiver and EDFAs only,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA3.
[Crossref]

Ishihara, K.

Jaoun, Y.

S. Mumtaz, G. Rekaya-Ben Othman, and Y. Jaoun, “PDL Mitigation in PolMux OFDM Systems Using Golden and Silver Polarization-Time Codes,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThA7.

Kahaei, M.H.

M. Shahmohammadi and M.H. Kahaei, “A new dual-mode approach to blind equalization of QAM signals,” in Eighth IEEE International Symposium on Computers and Communication (IEEE, 2003), pp. 277–281.

Kataoka, T.

Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, and T. Kataoka, “Evaluation of optical filtering penalty in digital coherent detection system,” IEICE Commun. Express 1(2), 54–59 (2012).
[Crossref]

Kawai, T.

Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, and T. Kataoka, “Evaluation of optical filtering penalty in digital coherent detection system,” IEICE Commun. Express 1(2), 54–59 (2012).
[Crossref]

Kikuchi, K.

K. Kikuchi, “Principle of adaptive-filter-based signal processing in digital coherent receivers,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.1.A.3.
[Crossref]

Kobayashi, T.

S. Yamanaka, T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, M. Nagatani, and H. Nosaka, “Nyquist-WDM transmission of 7 × 192 Gb/s PDM 16-QAM signals using high-speed DACs operating at 42 GS/s,” Proc. SPIE 8646, 86460O (2012).
[Crossref]

R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, and Y. Miyamoto, “Coherent optical single carrier transmission using overlap frequency domain equalization for long-haul optical systems,” J. Lightwave Technol. 27(16), 3721–3728 (2009).
[Crossref]

Komukai, T.

Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, and T. Kataoka, “Evaluation of optical filtering penalty in digital coherent detection system,” IEICE Commun. Express 1(2), 54–59 (2012).
[Crossref]

Kudo, R.

Kumar, S.

J. T. Rahn, S. Kumar, M. Mitchell, R. Malendevich, H. Sun, K. T. Wu, and D. Welch, “250 Gb/s real-time PIC-based super-channel transmission over a gridless 6000km terrestrial link,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5D.5.

Lach, E.

F. Buchali, K. Schuh, D. Roesener, E. Lach, R. Dischler, W. Idler, and L. Schuerer, “512-Gb/s DP-16-QAM field trial over 734 km installed SSMF with co-propagating 10 Gb/s NRZ neighbors incorporating soft-FEC decoding,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW4C.4.
[Crossref]

Malendevich, R.

J. T. Rahn, S. Kumar, M. Mitchell, R. Malendevich, H. Sun, K. T. Wu, and D. Welch, “250 Gb/s real-time PIC-based super-channel transmission over a gridless 6000km terrestrial link,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5D.5.

Mateo, E.

Y. K. Huang, D. Qian, F. Yaman, T. Wang, E. Mateo, T. Inoue, and T. Tajima, “Real-time 400G superchannel transmission using 100-GbE based 37.5-GHz spaced subcarriers with optical Nyquist shaping over 3,600-km DMF link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper NW4E.1.
[Crossref]

Matsuura, A.

S. Yamanaka, T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, M. Nagatani, and H. Nosaka, “Nyquist-WDM transmission of 7 × 192 Gb/s PDM 16-QAM signals using high-speed DACs operating at 42 GS/s,” Proc. SPIE 8646, 86460O (2012).
[Crossref]

Meron, E.

Mitchell, M.

J. T. Rahn, S. Kumar, M. Mitchell, R. Malendevich, H. Sun, K. T. Wu, and D. Welch, “250 Gb/s real-time PIC-based super-channel transmission over a gridless 6000km terrestrial link,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5D.5.

Miyamoto, Y.

S. Yamanaka, T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, M. Nagatani, and H. Nosaka, “Nyquist-WDM transmission of 7 × 192 Gb/s PDM 16-QAM signals using high-speed DACs operating at 42 GS/s,” Proc. SPIE 8646, 86460O (2012).
[Crossref]

R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, and Y. Miyamoto, “Coherent optical single carrier transmission using overlap frequency domain equalization for long-haul optical systems,” J. Lightwave Technol. 27(16), 3721–3728 (2009).
[Crossref]

Muharemovict, T.

E. N. OnggosanusiA, G. Dabak, T. Schmidl, and T. Muharemovict, “Capacity analysis of frequency-selective MIMO channels with sub-optimal detectors,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2002), pp. III2369–III2372.

Mumtaz, S.

S. Mumtaz, G. Rekaya-Ben Othman, and Y. Jaoun, “PDL Mitigation in PolMux OFDM Systems Using Golden and Silver Polarization-Time Codes,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThA7.

S. Mumtaz, G. Rekaya-Ben, and J. Yves, “Space-Time codes for optical fiber communication with polarization multiplexing,” in IEEE International Conference on Communications (IEEE, 2010), pp. 1–5.

Nagatani, M.

S. Yamanaka, T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, M. Nagatani, and H. Nosaka, “Nyquist-WDM transmission of 7 × 192 Gb/s PDM 16-QAM signals using high-speed DACs operating at 42 GS/s,” Proc. SPIE 8646, 86460O (2012).
[Crossref]

Nosaka, H.

S. Yamanaka, T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, M. Nagatani, and H. Nosaka, “Nyquist-WDM transmission of 7 × 192 Gb/s PDM 16-QAM signals using high-speed DACs operating at 42 GS/s,” Proc. SPIE 8646, 86460O (2012).
[Crossref]

Oda, S.

Y. Aoki, X. Wang, P. Palacharla, K. Sone, S. Oda, T. Hoshida, and J. C. Rasmussen, “Dynamic and flexible photonic node architecture with shared universal transceivers supporting hitless defragmentation,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.3.D.2.
[Crossref]

OnggosanusiA, E. N.

E. N. OnggosanusiA, G. Dabak, T. Schmidl, and T. Muharemovict, “Capacity analysis of frequency-selective MIMO channels with sub-optimal detectors,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2002), pp. III2369–III2372.

Palacharla, P.

Y. Aoki, X. Wang, P. Palacharla, K. Sone, S. Oda, T. Hoshida, and J. C. Rasmussen, “Dynamic and flexible photonic node architecture with shared universal transceivers supporting hitless defragmentation,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.3.D.2.
[Crossref]

Poggiolini, P.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photonics Technol. Lett. 22(11), 829–831 (2010).
[Crossref]

E. Torrengo, R. Cigliutti, G. Bosco, G. Gaviol, A. Alaimo, A. Carena, and P. Poggiolini, “Transoceanic PM-QPSK terabit superchannel transmission experiments at baud-rate subcarrier spacing,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2010) We.7.C.2.
[Crossref]

Qian, D.

Y. K. Huang, D. Qian, F. Yaman, T. Wang, E. Mateo, T. Inoue, and T. Tajima, “Real-time 400G superchannel transmission using 100-GbE based 37.5-GHz spaced subcarriers with optical Nyquist shaping over 3,600-km DMF link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper NW4E.1.
[Crossref]

Rahn, J. T.

J. T. Rahn, S. Kumar, M. Mitchell, R. Malendevich, H. Sun, K. T. Wu, and D. Welch, “250 Gb/s real-time PIC-based super-channel transmission over a gridless 6000km terrestrial link,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5D.5.

Rasmussen, J. C.

Y. Aoki, X. Wang, P. Palacharla, K. Sone, S. Oda, T. Hoshida, and J. C. Rasmussen, “Dynamic and flexible photonic node architecture with shared universal transceivers supporting hitless defragmentation,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.3.D.2.
[Crossref]

Rekaya-Ben, G.

S. Mumtaz, G. Rekaya-Ben, and J. Yves, “Space-Time codes for optical fiber communication with polarization multiplexing,” in IEEE International Conference on Communications (IEEE, 2010), pp. 1–5.

Rekaya-Ben Othman, G.

S. Mumtaz, G. Rekaya-Ben Othman, and Y. Jaoun, “PDL Mitigation in PolMux OFDM Systems Using Golden and Silver Polarization-Time Codes,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThA7.

Roesener, D.

F. Buchali, K. Schuh, D. Roesener, E. Lach, R. Dischler, W. Idler, and L. Schuerer, “512-Gb/s DP-16-QAM field trial over 734 km installed SSMF with co-propagating 10 Gb/s NRZ neighbors incorporating soft-FEC decoding,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW4C.4.
[Crossref]

Rooyen, P. V.

P. V. Rooyen and F. Solms, “Maximum entropy investigation of the inter user interference distribution in a DS/SSMA system,” in Proc. 1995 Symp. Personal, Indoor and Mobile Radio Communications (PIMRC, 1995), pp. 1308–1312.

Sakamaki, Y.

Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, and T. Kataoka, “Evaluation of optical filtering penalty in digital coherent detection system,” IEICE Commun. Express 1(2), 54–59 (2012).
[Crossref]

Sano, A.

S. Yamanaka, T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, M. Nagatani, and H. Nosaka, “Nyquist-WDM transmission of 7 × 192 Gb/s PDM 16-QAM signals using high-speed DACs operating at 42 GS/s,” Proc. SPIE 8646, 86460O (2012).
[Crossref]

R. Kudo, T. Kobayashi, K. Ishihara, Y. Takatori, A. Sano, and Y. Miyamoto, “Coherent optical single carrier transmission using overlap frequency domain equalization for long-haul optical systems,” J. Lightwave Technol. 27(16), 3721–3728 (2009).
[Crossref]

Schmidl, T.

E. N. OnggosanusiA, G. Dabak, T. Schmidl, and T. Muharemovict, “Capacity analysis of frequency-selective MIMO channels with sub-optimal detectors,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2002), pp. III2369–III2372.

Schuerer, L.

F. Buchali, K. Schuh, D. Roesener, E. Lach, R. Dischler, W. Idler, and L. Schuerer, “512-Gb/s DP-16-QAM field trial over 734 km installed SSMF with co-propagating 10 Gb/s NRZ neighbors incorporating soft-FEC decoding,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW4C.4.
[Crossref]

Schuh, K.

F. Buchali, K. Schuh, D. Roesener, E. Lach, R. Dischler, W. Idler, and L. Schuerer, “512-Gb/s DP-16-QAM field trial over 734 km installed SSMF with co-propagating 10 Gb/s NRZ neighbors incorporating soft-FEC decoding,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW4C.4.
[Crossref]

Shahmohammadi, M.

M. Shahmohammadi and M.H. Kahaei, “A new dual-mode approach to blind equalization of QAM signals,” in Eighth IEEE International Symposium on Computers and Communication (IEEE, 2003), pp. 277–281.

Shao, Y.

T. Xia, G. Wellbrock, Y. K. Huang, E. Ip, M. F. Huang, Y. Shao, and M. Cvijetic, “Field experiment with mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3,560 km of installed fiber using filterless coherent receiver and EDFAs only,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA3.
[Crossref]

Shibahara, K.

Shtaif, M.

Shukla, V.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[Crossref]

Solms, F.

P. V. Rooyen and F. Solms, “Maximum entropy investigation of the inter user interference distribution in a DS/SSMA system,” in Proc. 1995 Symp. Personal, Indoor and Mobile Radio Communications (PIMRC, 1995), pp. 1308–1312.

Sone, K.

Y. Aoki, X. Wang, P. Palacharla, K. Sone, S. Oda, T. Hoshida, and J. C. Rasmussen, “Dynamic and flexible photonic node architecture with shared universal transceivers supporting hitless defragmentation,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.3.D.2.
[Crossref]

Sun, H.

J. T. Rahn, S. Kumar, M. Mitchell, R. Malendevich, H. Sun, K. T. Wu, and D. Welch, “250 Gb/s real-time PIC-based super-channel transmission over a gridless 6000km terrestrial link,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5D.5.

Tajima, T.

Y. K. Huang, D. Qian, F. Yaman, T. Wang, E. Mateo, T. Inoue, and T. Tajima, “Real-time 400G superchannel transmission using 100-GbE based 37.5-GHz spaced subcarriers with optical Nyquist shaping over 3,600-km DMF link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper NW4E.1.
[Crossref]

Takatori, Y.

Torrengo, E.

E. Torrengo, R. Cigliutti, G. Bosco, G. Gaviol, A. Alaimo, A. Carena, and P. Poggiolini, “Transoceanic PM-QPSK terabit superchannel transmission experiments at baud-rate subcarrier spacing,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2010) We.7.C.2.
[Crossref]

Viterbi, A.

A. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

Wang, T.

Y. K. Huang, D. Qian, F. Yaman, T. Wang, E. Mateo, T. Inoue, and T. Tajima, “Real-time 400G superchannel transmission using 100-GbE based 37.5-GHz spaced subcarriers with optical Nyquist shaping over 3,600-km DMF link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper NW4E.1.
[Crossref]

Wang, X.

Y. Aoki, X. Wang, P. Palacharla, K. Sone, S. Oda, T. Hoshida, and J. C. Rasmussen, “Dynamic and flexible photonic node architecture with shared universal transceivers supporting hitless defragmentation,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.3.D.2.
[Crossref]

Welch, D.

J. T. Rahn, S. Kumar, M. Mitchell, R. Malendevich, H. Sun, K. T. Wu, and D. Welch, “250 Gb/s real-time PIC-based super-channel transmission over a gridless 6000km terrestrial link,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5D.5.

Wellbrock, G.

T. Xia, G. Wellbrock, Y. K. Huang, E. Ip, M. F. Huang, Y. Shao, and M. Cvijetic, “Field experiment with mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3,560 km of installed fiber using filterless coherent receiver and EDFAs only,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA3.
[Crossref]

Wu, K. T.

J. T. Rahn, S. Kumar, M. Mitchell, R. Malendevich, H. Sun, K. T. Wu, and D. Welch, “250 Gb/s real-time PIC-based super-channel transmission over a gridless 6000km terrestrial link,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5D.5.

Xia, T.

T. Xia, G. Wellbrock, Y. K. Huang, E. Ip, M. F. Huang, Y. Shao, and M. Cvijetic, “Field experiment with mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3,560 km of installed fiber using filterless coherent receiver and EDFAs only,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA3.
[Crossref]

Xia, T. J.

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[Crossref]

Yaman, F.

Y. K. Huang, D. Qian, F. Yaman, T. Wang, E. Mateo, T. Inoue, and T. Tajima, “Real-time 400G superchannel transmission using 100-GbE based 37.5-GHz spaced subcarriers with optical Nyquist shaping over 3,600-km DMF link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper NW4E.1.
[Crossref]

Yamanaka, S.

S. Yamanaka, T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, M. Nagatani, and H. Nosaka, “Nyquist-WDM transmission of 7 × 192 Gb/s PDM 16-QAM signals using high-speed DACs operating at 42 GS/s,” Proc. SPIE 8646, 86460O (2012).
[Crossref]

Yonenaga, K.

Yu,

Yu, X. Zhou, and M. Huang, “8 × 114 Gbit/s, 25 GHz-spaced, PolMux-RZ-8QAM straight-line transmission over 800 km of SSMF,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2009), paper P4.02.

Yves, J.

S. Mumtaz, G. Rekaya-Ben, and J. Yves, “Space-Time codes for optical fiber communication with polarization multiplexing,” in IEEE International Conference on Communications (IEEE, 2010), pp. 1–5.

Zhou, X.

Yu, X. Zhou, and M. Huang, “8 × 114 Gbit/s, 25 GHz-spaced, PolMux-RZ-8QAM straight-line transmission over 800 km of SSMF,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2009), paper P4.02.

IEEE Commun. Mag. (1)

S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag. 48(7), 40–50 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, “Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM,” IEEE Photonics Technol. Lett. 22(11), 829–831 (2010).
[Crossref]

IEEE Trans. Inf. Theory (1)

A. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[Crossref]

IEICE Commun. Express (1)

Y. Sakamaki, T. Kawai, T. Komukai, M. Fukutoku, and T. Kataoka, “Evaluation of optical filtering penalty in digital coherent detection system,” IEICE Commun. Express 1(2), 54–59 (2012).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

S. Yamanaka, T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, M. Nagatani, and H. Nosaka, “Nyquist-WDM transmission of 7 × 192 Gb/s PDM 16-QAM signals using high-speed DACs operating at 42 GS/s,” Proc. SPIE 8646, 86460O (2012).
[Crossref]

Other (15)

Yu, X. Zhou, and M. Huang, “8 × 114 Gbit/s, 25 GHz-spaced, PolMux-RZ-8QAM straight-line transmission over 800 km of SSMF,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2009), paper P4.02.

Y. Aoki, X. Wang, P. Palacharla, K. Sone, S. Oda, T. Hoshida, and J. C. Rasmussen, “Dynamic and flexible photonic node architecture with shared universal transceivers supporting hitless defragmentation,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.3.D.2.
[Crossref]

J. T. Rahn, S. Kumar, M. Mitchell, R. Malendevich, H. Sun, K. T. Wu, and D. Welch, “250 Gb/s real-time PIC-based super-channel transmission over a gridless 6000km terrestrial link,” in National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2012), paper PDP5D.5.

T. Xia, G. Wellbrock, Y. K. Huang, E. Ip, M. F. Huang, Y. Shao, and M. Cvijetic, “Field experiment with mixed line-rate transmission (112-Gb/s, 450-Gb/s, and 1.15-Tb/s) over 3,560 km of installed fiber using filterless coherent receiver and EDFAs only,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA3.
[Crossref]

F. Buchali, K. Schuh, D. Roesener, E. Lach, R. Dischler, W. Idler, and L. Schuerer, “512-Gb/s DP-16-QAM field trial over 734 km installed SSMF with co-propagating 10 Gb/s NRZ neighbors incorporating soft-FEC decoding,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OW4C.4.
[Crossref]

E. Torrengo, R. Cigliutti, G. Bosco, G. Gaviol, A. Alaimo, A. Carena, and P. Poggiolini, “Transoceanic PM-QPSK terabit superchannel transmission experiments at baud-rate subcarrier spacing,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2010) We.7.C.2.
[Crossref]

Y. K. Huang, D. Qian, F. Yaman, T. Wang, E. Mateo, T. Inoue, and T. Tajima, “Real-time 400G superchannel transmission using 100-GbE based 37.5-GHz spaced subcarriers with optical Nyquist shaping over 3,600-km DMF link,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper NW4E.1.
[Crossref]

F. Heismann, “System requirements for WSS filter shape in cascaded ROADM networks,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThR1.
[Crossref]

S. Mumtaz, G. Rekaya-Ben Othman, and Y. Jaoun, “PDL Mitigation in PolMux OFDM Systems Using Golden and Silver Polarization-Time Codes,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThA7.

S. Mumtaz, G. Rekaya-Ben, and J. Yves, “Space-Time codes for optical fiber communication with polarization multiplexing,” in IEEE International Conference on Communications (IEEE, 2010), pp. 1–5.

K. Kikuchi, “Principle of adaptive-filter-based signal processing in digital coherent receivers,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.1.A.3.
[Crossref]

E. N. OnggosanusiA, G. Dabak, T. Schmidl, and T. Muharemovict, “Capacity analysis of frequency-selective MIMO channels with sub-optimal detectors,” in IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE, 2002), pp. III2369–III2372.

P. V. Rooyen and F. Solms, “Maximum entropy investigation of the inter user interference distribution in a DS/SSMA system,” in Proc. 1995 Symp. Personal, Indoor and Mobile Radio Communications (PIMRC, 1995), pp. 1308–1312.

M. Shahmohammadi and M.H. Kahaei, “A new dual-mode approach to blind equalization of QAM signals,” in Eighth IEEE International Symposium on Computers and Communication (IEEE, 2003), pp. 277–281.

Optical Internetworking Forum, “Integratable Tunable Laser Assembly Multi Source Agreement (OIF-ITLA-MSA-01.0)” (Optical Internetworking Forum, 2004). http://www.oiforum.com/public/documents/OIF-ITLA-MSA-01.0.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A transmitter implementation of the WHT method for 2SC-DP-16QAM format. WHT: the Walsh-Hadamard transform, LD: laser diode PBS: polarization beam splitter, PBC: polarization beam combiner, IQ-mod.: IQ-modulator.
Fig. 2
Fig. 2 Q-factor as a function of the number of SCs. The “worst SC” corresponds to the one that is attenuated by a factor of 0.5.
Fig. 3
Fig. 3 Q-factor as a function of ρ. The “worst SC” corresponds to the attenuated one.
Fig. 4
Fig. 4 (a). Simulation setup. SC: subcarrier, WSS: wavelentgth selective switch, OBPF: optical bandpass filter, OFE: optical frontend., ADC: analog-to-digital converter, DSP: digital signal processing. (b). The implementation example of the butterfly-structured MMA.
Fig. 5
Fig. 5 Q-factor penalty as a function of the number of cascaded WSSs for case-i.
Fig. 6
Fig. 6 Constellation diagrams after demodulation with and without the WHT method. The red (top) and blue (bottom) ones represent the best and worst performance SCs, respectively.
Fig. 7
Fig. 7 Q-factor penalty as a function of center-frequency shift for both super-channel signal formats.
Fig. 8
Fig. 8 Q-factor penalty as a function of the number of cascaded 3.75G-shifted WSSs for both super-channel signal formats.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

x = 1 N H N s ,
[ x 1 x 2 ] = 1 2 H 2 [ s 1 s 2 ] = 1 2 [ 1 1 1 1 ] [ s 1 s 1 ] .
H 2 N = 1 2 [ H N H N H N H N ] .
y = T x + z = 1 N T H N s + z = J s + z ,
W = ( J H J + 1 γ 0 I N ) 1 J H ,
γ i = 1 ( I N + γ 0 J H J ) i 1 1 ,
s i = j = 1 N w i j y j ,
e i = ( s i ) ( ( s i ) 2 a Re 2 ) + j ( s i ) ( ( s i ) 2 a Im 2 ) ,
w i j w i j μ e i y j * .

Metrics