Abstract

We propose a versatile design approach of engineered diffuser based on freeform optics that can tailor the light distribution of a liquid crystal display (LCD) to meet different applications. The proposed LCD system consists of a quasi-directional backlight, liquid crystal panel, and an engineered diffuser. It offers high efficiency, wide view, high contrast, as well as low ambient light reflection. For large size LCDs, we design a wide view diffuser to match the light distribution with state-of-the-art organic light emitting diode (OLED) TV. For mobile displays, we design a diffuser to replicate current LCD performance. Our design can also provide flattop light intensity distribution for privacy protection. These exemplary designs prove that our engineered diffuser is versatile for different applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device

Jiun-Haw Lee, Xinyu Zhu, Yi-Hsin Lin, Wing Kit Choi, Tien-Chun Lin, Sheng-Chih Hsu, Hoang-Yan Lin, and Shin-Tson Wu
Opt. Express 13(23) 9431-9438 (2005)

Ambient contrast ratio of LCDs and OLED displays

Haiwei Chen, Guanjun Tan, and Shin-Tson Wu
Opt. Express 25(26) 33643-33656 (2017)

Tilted light coupling structure for the thickness reduction of a liquid crystal display backlight

Sheng Xu, Tao Yang, Huanghui Miao, Yuzhen Xu, Qiongxin Shen, Tailiang Guo, Zhengxing Cui, Enguo Chen, and Yun Ye
Appl. Opt. 58(10) 2567-2574 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Zimmerman, K. Beeson, M. McFarland, J. Wilson, T. J. Credelle, K. Bingaman, P. Ferm, and J. T. Yardley, “Viewing-angle-enhancement system for LCDs,” J. Soc. Inf. Disp. 3(4), 173–176 (1995).
    [Crossref]
  2. G. H. Kim, “A PMMA composite as an optical diffuser in a liquid crystal display backlight unit (BLU),” Eur. Polym. J. 41(8), 1729–1737 (2005).
    [Crossref]
  3. J. Zhuang, D. Wu, Y. Zhang, H. Xu, Z. Zhao, and X. He, “Investigation on optical property of diffuser with 3D microstructures,” Optik (Stuttg.) 125(24), 7186–7190 (2014).
    [Crossref]
  4. A. Shibukawa, A. Okamoto, M. Takabayashi, and A. Tomita, “Spatial cross modulation method using a random diffuser and phase-only spatial light modulator for constructing arbitrary complex fields,” Opt. Express 22(4), 3968–3982 (2014).
    [Crossref] [PubMed]
  5. S. Wadle, D. Wuest, J. Cantalupo, and R. S. Lakes, “Holographic diffusers,” Opt. Eng. 33(1), 213–218 (1994).
    [Crossref]
  6. A. A. Maradudin, T. A. Leskova, and E. R. Méndez, “Two-dimensional random surfaces that act as circular diffusers,” Opt. Lett. 28(2), 72–74 (2003).
    [Crossref] [PubMed]
  7. E. R. Méndez, T. A. Leskova, A. A. Maradudin, and J. Muñoz-Lopez, “Design of two-dimensional random surfaces with specified scattering properties,” Opt. Lett. 29(24), 2917–2919 (2004).
    [Crossref] [PubMed]
  8. T. R. M. Sales, “Structured microlens arrays for beam shaping,” Opt. Eng. 42(11), 3084–3085 (2003).
    [Crossref]
  9. M. Nishizawa, K. Kusama, K. Sekiya, B. Katagiri, T. Kawakami, and T. Uchida, “Investigation of novel diffuser films for 2D light-distribution control,” in Proceedings of the IDW, 1385–1388 (2011).
  10. I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, “Designing light-emitting diode arrays for uniform near-field irradiance,” Appl. Opt. 45(10), 2265–2272 (2006).
    [Crossref] [PubMed]
  11. K. Wang, D. Wu, Z. Qin, F. Chen, X. Luo, and S. Liu, “New reversing design method for LED uniform illumination,” Opt. Express 19(S4Suppl 4), A830–A840 (2011).
    [Crossref] [PubMed]
  12. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express 18(5), 5295–5304 (2010).
    [Crossref] [PubMed]
  13. S. Li, F. Chen, K. Wang, S. Zhao, Z. Zhao, and S. Liu, “Design of a compact modified total internal reflection lens for high angular color uniformity,” Appl. Opt. 51(36), 8557–8562 (2012).
    [Crossref] [PubMed]
  14. R. Wu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “A mathematical model of the single freeform surface design for collimated beam shaping,” Opt. Express 21(18), 20974–20989 (2013).
    [Crossref] [PubMed]
  15. C. Canavesi, W. J. Cassarly, and J. P. Rolland, “Observations on the linear programming formulation of the single reflector design problem,” Opt. Express 20(4), 4050–4055 (2012).
    [Crossref] [PubMed]
  16. J. C. Miñano, P. Benítez, P. Zamora, M. Buljan, R. Mohedano, and A. Santamaría, “Free-form optics for Fresnel-lens-based photovoltaic concentrators,” Opt. Express 21(S3Suppl 3), A494–A502 (2013).
    [Crossref] [PubMed]
  17. J.-H. Lee, X. Zhu, Y.-H. Lin, W. Choi, T.-C. Lin, S.-C. Hsu, H.-Y. Lin, and S.-T. Wu, “High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device,” Opt. Express 13(23), 9431–9438 (2005).
    [Crossref] [PubMed]
  18. J.-K. Yoon, E.-M. Park, J.-S. Son, H.-W. Shin, H.-E. Kim, M. Yee, H.-G. Kim, C.-H. Oh, and B.-C. Ahn, “27.2: The study of picture quality of OLED TV with WRGB OLEDs structure,” SID Symp. Dig. Tech. Pap. 44(1), 326–329 (2013).
    [Crossref]
  19. E. Chen, R. Wu, and T. Guo, “Design a freeform microlens array module for any arbitrary-shape collimated beam shaping and color mixing,” Opt. Commun. 321, 78–85 (2014).
    [Crossref]
  20. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  21. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  22. A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767 (1990).
    [Crossref]
  23. K. Käläntär, “A directional backlight with narrow angular luminance distribution for widening the viewing angle for an LCD with a front-surface light-scattering film,” J. Soc. Inf. Disp. 20(3), 133–142 (2012).
    [Crossref]
  24. Y. Gao, Z. Luo, R. Zhu, Q. Hong, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “A high performance single-domain LCD with wide luminance distribution,” J. Disp. Technol. 11(4), 315–324 (2015).
    [Crossref]
  25. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended sources,” Proc. SPIE 7423, 742302 (2009).
    [Crossref]
  26. R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
    [Crossref]
  27. R. C. Allen, L. W. Carlson, A. J. Ouderkirk, M. F. Weber, A. L. Kotz, T. J. Nevitt, C. A. Stover, and B. Majumdar, “Brightness enhancement film,” US Patent US6111696 A (August 29, 2000).
  28. H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
    [Crossref] [PubMed]
  29. R. J. Koshel, Illumination Engineering: Design with Nonimaging Optics (Wiley, 2012).

2015 (1)

Y. Gao, Z. Luo, R. Zhu, Q. Hong, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “A high performance single-domain LCD with wide luminance distribution,” J. Disp. Technol. 11(4), 315–324 (2015).
[Crossref]

2014 (3)

J. Zhuang, D. Wu, Y. Zhang, H. Xu, Z. Zhao, and X. He, “Investigation on optical property of diffuser with 3D microstructures,” Optik (Stuttg.) 125(24), 7186–7190 (2014).
[Crossref]

E. Chen, R. Wu, and T. Guo, “Design a freeform microlens array module for any arbitrary-shape collimated beam shaping and color mixing,” Opt. Commun. 321, 78–85 (2014).
[Crossref]

A. Shibukawa, A. Okamoto, M. Takabayashi, and A. Tomita, “Spatial cross modulation method using a random diffuser and phase-only spatial light modulator for constructing arbitrary complex fields,” Opt. Express 22(4), 3968–3982 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (4)

C. Canavesi, W. J. Cassarly, and J. P. Rolland, “Observations on the linear programming formulation of the single reflector design problem,” Opt. Express 20(4), 4050–4055 (2012).
[Crossref] [PubMed]

S. Li, F. Chen, K. Wang, S. Zhao, Z. Zhao, and S. Liu, “Design of a compact modified total internal reflection lens for high angular color uniformity,” Appl. Opt. 51(36), 8557–8562 (2012).
[Crossref] [PubMed]

K. Käläntär, “A directional backlight with narrow angular luminance distribution for widening the viewing angle for an LCD with a front-surface light-scattering film,” J. Soc. Inf. Disp. 20(3), 133–142 (2012).
[Crossref]

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

2011 (2)

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

K. Wang, D. Wu, Z. Qin, F. Chen, X. Luo, and S. Liu, “New reversing design method for LED uniform illumination,” Opt. Express 19(S4Suppl 4), A830–A840 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended sources,” Proc. SPIE 7423, 742302 (2009).
[Crossref]

2006 (1)

2005 (2)

2004 (1)

2003 (2)

1995 (1)

S. Zimmerman, K. Beeson, M. McFarland, J. Wilson, T. J. Credelle, K. Bingaman, P. Ferm, and J. T. Yardley, “Viewing-angle-enhancement system for LCDs,” J. Soc. Inf. Disp. 3(4), 173–176 (1995).
[Crossref]

1994 (1)

S. Wadle, D. Wuest, J. Cantalupo, and R. S. Lakes, “Holographic diffusers,” Opt. Eng. 33(1), 213–218 (1994).
[Crossref]

1990 (1)

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767 (1990).
[Crossref]

Avendaño-Alejo, M.

Beeson, K.

S. Zimmerman, K. Beeson, M. McFarland, J. Wilson, T. J. Credelle, K. Bingaman, P. Ferm, and J. T. Yardley, “Viewing-angle-enhancement system for LCDs,” J. Soc. Inf. Disp. 3(4), 173–176 (1995).
[Crossref]

Benítez, P.

Bingaman, K.

S. Zimmerman, K. Beeson, M. McFarland, J. Wilson, T. J. Credelle, K. Bingaman, P. Ferm, and J. T. Yardley, “Viewing-angle-enhancement system for LCDs,” J. Soc. Inf. Disp. 3(4), 173–176 (1995).
[Crossref]

Buljan, M.

Canavesi, C.

Cantalupo, J.

S. Wadle, D. Wuest, J. Cantalupo, and R. S. Lakes, “Holographic diffusers,” Opt. Eng. 33(1), 213–218 (1994).
[Crossref]

Cassarly, W. J.

Char, K.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Chen, E.

E. Chen, R. Wu, and T. Guo, “Design a freeform microlens array module for any arbitrary-shape collimated beam shaping and color mixing,” Opt. Commun. 321, 78–85 (2014).
[Crossref]

Chen, F.

Choi, S. J.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Choi, W.

Credelle, T. J.

S. Zimmerman, K. Beeson, M. McFarland, J. Wilson, T. J. Credelle, K. Bingaman, P. Ferm, and J. T. Yardley, “Viewing-angle-enhancement system for LCDs,” J. Soc. Inf. Disp. 3(4), 173–176 (1995).
[Crossref]

Deepak,

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Ferm, P.

S. Zimmerman, K. Beeson, M. McFarland, J. Wilson, T. J. Credelle, K. Bingaman, P. Ferm, and J. T. Yardley, “Viewing-angle-enhancement system for LCDs,” J. Soc. Inf. Disp. 3(4), 173–176 (1995).
[Crossref]

Fournier, F. R.

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express 18(5), 5295–5304 (2010).
[Crossref] [PubMed]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended sources,” Proc. SPIE 7423, 742302 (2009).
[Crossref]

Gao, Y.

Y. Gao, Z. Luo, R. Zhu, Q. Hong, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “A high performance single-domain LCD with wide luminance distribution,” J. Disp. Technol. 11(4), 315–324 (2015).
[Crossref]

Guo, T.

E. Chen, R. Wu, and T. Guo, “Design a freeform microlens array module for any arbitrary-shape collimated beam shaping and color mixing,” Opt. Commun. 321, 78–85 (2014).
[Crossref]

He, X.

J. Zhuang, D. Wu, Y. Zhang, H. Xu, Z. Zhao, and X. He, “Investigation on optical property of diffuser with 3D microstructures,” Optik (Stuttg.) 125(24), 7186–7190 (2014).
[Crossref]

Hong, Q.

Y. Gao, Z. Luo, R. Zhu, Q. Hong, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “A high performance single-domain LCD with wide luminance distribution,” J. Disp. Technol. 11(4), 315–324 (2015).
[Crossref]

Hsu, S.-C.

Käläntär, K.

K. Käläntär, “A directional backlight with narrow angular luminance distribution for widening the viewing angle for an LCD with a front-surface light-scattering film,” J. Soc. Inf. Disp. 20(3), 133–142 (2012).
[Crossref]

Kang, D. S.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Katagiri, B.

M. Nishizawa, K. Kusama, K. Sekiya, B. Katagiri, T. Kawakami, and T. Uchida, “Investigation of novel diffuser films for 2D light-distribution control,” in Proceedings of the IDW, 1385–1388 (2011).

Kawakami, T.

M. Nishizawa, K. Kusama, K. Sekiya, B. Katagiri, T. Kawakami, and T. Uchida, “Investigation of novel diffuser films for 2D light-distribution control,” in Proceedings of the IDW, 1385–1388 (2011).

Kim, G. H.

G. H. Kim, “A PMMA composite as an optical diffuser in a liquid crystal display backlight unit (BLU),” Eur. Polym. J. 41(8), 1729–1737 (2005).
[Crossref]

Kusama, K.

M. Nishizawa, K. Kusama, K. Sekiya, B. Katagiri, T. Kawakami, and T. Uchida, “Investigation of novel diffuser films for 2D light-distribution control,” in Proceedings of the IDW, 1385–1388 (2011).

Lakes, R. S.

S. Wadle, D. Wuest, J. Cantalupo, and R. S. Lakes, “Holographic diffusers,” Opt. Eng. 33(1), 213–218 (1994).
[Crossref]

Lee, H. H.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Lee, J.-H.

Lee, S.-L.

Y. Gao, Z. Luo, R. Zhu, Q. Hong, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “A high performance single-domain LCD with wide luminance distribution,” J. Disp. Technol. 11(4), 315–324 (2015).
[Crossref]

Leskova, T. A.

Li, H.

Li, M.-C.

Y. Gao, Z. Luo, R. Zhu, Q. Hong, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “A high performance single-domain LCD with wide luminance distribution,” J. Disp. Technol. 11(4), 315–324 (2015).
[Crossref]

Li, S.

Lien, A.

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767 (1990).
[Crossref]

Lin, H.-Y.

Lin, T.-C.

Lin, Y.-H.

Liu, P.

Liu, S.

Liu, X.

Luo, X.

Luo, Z.

Y. Gao, Z. Luo, R. Zhu, Q. Hong, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “A high performance single-domain LCD with wide luminance distribution,” J. Disp. Technol. 11(4), 315–324 (2015).
[Crossref]

Maradudin, A. A.

McFarland, M.

S. Zimmerman, K. Beeson, M. McFarland, J. Wilson, T. J. Credelle, K. Bingaman, P. Ferm, and J. T. Yardley, “Viewing-angle-enhancement system for LCDs,” J. Soc. Inf. Disp. 3(4), 173–176 (1995).
[Crossref]

Méndez, E. R.

Miñano, J. C.

Mohedano, R.

Moreno, I.

Muñoz-Lopez, J.

Narayanan Unni, K. N.

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Nishizawa, M.

M. Nishizawa, K. Kusama, K. Sekiya, B. Katagiri, T. Kawakami, and T. Uchida, “Investigation of novel diffuser films for 2D light-distribution control,” in Proceedings of the IDW, 1385–1388 (2011).

Oh, S.-G.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Okamoto, A.

Park, J. M.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Qin, Z.

Rolland, J. P.

Sales, T. R. M.

T. R. M. Sales, “Structured microlens arrays for beam shaping,” Opt. Eng. 42(11), 3084–3085 (2003).
[Crossref]

Santamaría, A.

Sekiya, K.

M. Nishizawa, K. Kusama, K. Sekiya, B. Katagiri, T. Kawakami, and T. Uchida, “Investigation of novel diffuser films for 2D light-distribution control,” in Proceedings of the IDW, 1385–1388 (2011).

Shibukawa, A.

Singh, R.

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Solanki, A.

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Suh, K. Y.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Takabayashi, M.

Tomita, A.

Tsai, W.-C.

Y. Gao, Z. Luo, R. Zhu, Q. Hong, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “A high performance single-domain LCD with wide luminance distribution,” J. Disp. Technol. 11(4), 315–324 (2015).
[Crossref]

Tzonchev, R. I.

Uchida, T.

M. Nishizawa, K. Kusama, K. Sekiya, B. Katagiri, T. Kawakami, and T. Uchida, “Investigation of novel diffuser films for 2D light-distribution control,” in Proceedings of the IDW, 1385–1388 (2011).

Wadle, S.

S. Wadle, D. Wuest, J. Cantalupo, and R. S. Lakes, “Holographic diffusers,” Opt. Eng. 33(1), 213–218 (1994).
[Crossref]

Wang, K.

Wilson, J.

S. Zimmerman, K. Beeson, M. McFarland, J. Wilson, T. J. Credelle, K. Bingaman, P. Ferm, and J. T. Yardley, “Viewing-angle-enhancement system for LCDs,” J. Soc. Inf. Disp. 3(4), 173–176 (1995).
[Crossref]

Wu, D.

J. Zhuang, D. Wu, Y. Zhang, H. Xu, Z. Zhao, and X. He, “Investigation on optical property of diffuser with 3D microstructures,” Optik (Stuttg.) 125(24), 7186–7190 (2014).
[Crossref]

K. Wang, D. Wu, Z. Qin, F. Chen, X. Luo, and S. Liu, “New reversing design method for LED uniform illumination,” Opt. Express 19(S4Suppl 4), A830–A840 (2011).
[Crossref] [PubMed]

Wu, R.

E. Chen, R. Wu, and T. Guo, “Design a freeform microlens array module for any arbitrary-shape collimated beam shaping and color mixing,” Opt. Commun. 321, 78–85 (2014).
[Crossref]

R. Wu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “A mathematical model of the single freeform surface design for collimated beam shaping,” Opt. Express 21(18), 20974–20989 (2013).
[Crossref] [PubMed]

Wu, S.-T.

Y. Gao, Z. Luo, R. Zhu, Q. Hong, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “A high performance single-domain LCD with wide luminance distribution,” J. Disp. Technol. 11(4), 315–324 (2015).
[Crossref]

J.-H. Lee, X. Zhu, Y.-H. Lin, W. Choi, T.-C. Lin, S.-C. Hsu, H.-Y. Lin, and S.-T. Wu, “High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device,” Opt. Express 13(23), 9431–9438 (2005).
[Crossref] [PubMed]

Wuest, D.

S. Wadle, D. Wuest, J. Cantalupo, and R. S. Lakes, “Holographic diffusers,” Opt. Eng. 33(1), 213–218 (1994).
[Crossref]

Xu, H.

J. Zhuang, D. Wu, Y. Zhang, H. Xu, Z. Zhao, and X. He, “Investigation on optical property of diffuser with 3D microstructures,” Optik (Stuttg.) 125(24), 7186–7190 (2014).
[Crossref]

Yardley, J. T.

S. Zimmerman, K. Beeson, M. McFarland, J. Wilson, T. J. Credelle, K. Bingaman, P. Ferm, and J. T. Yardley, “Viewing-angle-enhancement system for LCDs,” J. Soc. Inf. Disp. 3(4), 173–176 (1995).
[Crossref]

Yoon, H.

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Zamora, P.

Zhang, Y.

J. Zhuang, D. Wu, Y. Zhang, H. Xu, Z. Zhao, and X. He, “Investigation on optical property of diffuser with 3D microstructures,” Optik (Stuttg.) 125(24), 7186–7190 (2014).
[Crossref]

R. Wu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “A mathematical model of the single freeform surface design for collimated beam shaping,” Opt. Express 21(18), 20974–20989 (2013).
[Crossref] [PubMed]

Zhao, S.

Zhao, Z.

J. Zhuang, D. Wu, Y. Zhang, H. Xu, Z. Zhao, and X. He, “Investigation on optical property of diffuser with 3D microstructures,” Optik (Stuttg.) 125(24), 7186–7190 (2014).
[Crossref]

S. Li, F. Chen, K. Wang, S. Zhao, Z. Zhao, and S. Liu, “Design of a compact modified total internal reflection lens for high angular color uniformity,” Appl. Opt. 51(36), 8557–8562 (2012).
[Crossref] [PubMed]

Zheng, Z.

Zhu, R.

Y. Gao, Z. Luo, R. Zhu, Q. Hong, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “A high performance single-domain LCD with wide luminance distribution,” J. Disp. Technol. 11(4), 315–324 (2015).
[Crossref]

Zhu, X.

Zhuang, J.

J. Zhuang, D. Wu, Y. Zhang, H. Xu, Z. Zhao, and X. He, “Investigation on optical property of diffuser with 3D microstructures,” Optik (Stuttg.) 125(24), 7186–7190 (2014).
[Crossref]

Zimmerman, S.

S. Zimmerman, K. Beeson, M. McFarland, J. Wilson, T. J. Credelle, K. Bingaman, P. Ferm, and J. T. Yardley, “Viewing-angle-enhancement system for LCDs,” J. Soc. Inf. Disp. 3(4), 173–176 (1995).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767 (1990).
[Crossref]

Eur. Polym. J. (1)

G. H. Kim, “A PMMA composite as an optical diffuser in a liquid crystal display backlight unit (BLU),” Eur. Polym. J. 41(8), 1729–1737 (2005).
[Crossref]

J. Disp. Technol. (1)

Y. Gao, Z. Luo, R. Zhu, Q. Hong, S.-T. Wu, M.-C. Li, S.-L. Lee, and W.-C. Tsai, “A high performance single-domain LCD with wide luminance distribution,” J. Disp. Technol. 11(4), 315–324 (2015).
[Crossref]

J. Soc. Inf. Disp. (2)

K. Käläntär, “A directional backlight with narrow angular luminance distribution for widening the viewing angle for an LCD with a front-surface light-scattering film,” J. Soc. Inf. Disp. 20(3), 133–142 (2012).
[Crossref]

S. Zimmerman, K. Beeson, M. McFarland, J. Wilson, T. J. Credelle, K. Bingaman, P. Ferm, and J. T. Yardley, “Viewing-angle-enhancement system for LCDs,” J. Soc. Inf. Disp. 3(4), 173–176 (1995).
[Crossref]

Nat. Commun. (1)

H. Yoon, S.-G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

E. Chen, R. Wu, and T. Guo, “Design a freeform microlens array module for any arbitrary-shape collimated beam shaping and color mixing,” Opt. Commun. 321, 78–85 (2014).
[Crossref]

Opt. Eng. (2)

S. Wadle, D. Wuest, J. Cantalupo, and R. S. Lakes, “Holographic diffusers,” Opt. Eng. 33(1), 213–218 (1994).
[Crossref]

T. R. M. Sales, “Structured microlens arrays for beam shaping,” Opt. Eng. 42(11), 3084–3085 (2003).
[Crossref]

Opt. Express (7)

A. Shibukawa, A. Okamoto, M. Takabayashi, and A. Tomita, “Spatial cross modulation method using a random diffuser and phase-only spatial light modulator for constructing arbitrary complex fields,” Opt. Express 22(4), 3968–3982 (2014).
[Crossref] [PubMed]

K. Wang, D. Wu, Z. Qin, F. Chen, X. Luo, and S. Liu, “New reversing design method for LED uniform illumination,” Opt. Express 19(S4Suppl 4), A830–A840 (2011).
[Crossref] [PubMed]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express 18(5), 5295–5304 (2010).
[Crossref] [PubMed]

R. Wu, P. Liu, Y. Zhang, Z. Zheng, H. Li, and X. Liu, “A mathematical model of the single freeform surface design for collimated beam shaping,” Opt. Express 21(18), 20974–20989 (2013).
[Crossref] [PubMed]

C. Canavesi, W. J. Cassarly, and J. P. Rolland, “Observations on the linear programming formulation of the single reflector design problem,” Opt. Express 20(4), 4050–4055 (2012).
[Crossref] [PubMed]

J. C. Miñano, P. Benítez, P. Zamora, M. Buljan, R. Mohedano, and A. Santamaría, “Free-form optics for Fresnel-lens-based photovoltaic concentrators,” Opt. Express 21(S3Suppl 3), A494–A502 (2013).
[Crossref] [PubMed]

J.-H. Lee, X. Zhu, Y.-H. Lin, W. Choi, T.-C. Lin, S.-C. Hsu, H.-Y. Lin, and S.-T. Wu, “High ambient-contrast-ratio display using tandem reflective liquid crystal display and organic light-emitting device,” Opt. Express 13(23), 9431–9438 (2005).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. (1)

R. Singh, K. N. Narayanan Unni, A. Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Optik (Stuttg.) (1)

J. Zhuang, D. Wu, Y. Zhang, H. Xu, Z. Zhao, and X. He, “Investigation on optical property of diffuser with 3D microstructures,” Optik (Stuttg.) 125(24), 7186–7190 (2014).
[Crossref]

Proc. SPIE (1)

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended sources,” Proc. SPIE 7423, 742302 (2009).
[Crossref]

Other (6)

R. C. Allen, L. W. Carlson, A. J. Ouderkirk, M. F. Weber, A. L. Kotz, T. J. Nevitt, C. A. Stover, and B. Majumdar, “Brightness enhancement film,” US Patent US6111696 A (August 29, 2000).

R. J. Koshel, Illumination Engineering: Design with Nonimaging Optics (Wiley, 2012).

M. Nishizawa, K. Kusama, K. Sekiya, B. Katagiri, T. Kawakami, and T. Uchida, “Investigation of novel diffuser films for 2D light-distribution control,” in Proceedings of the IDW, 1385–1388 (2011).

J.-K. Yoon, E.-M. Park, J.-S. Son, H.-W. Shin, H.-E. Kim, M. Yee, H.-G. Kim, C.-H. Oh, and B.-C. Ahn, “27.2: The study of picture quality of OLED TV with WRGB OLEDs structure,” SID Symp. Dig. Tech. Pap. 44(1), 326–329 (2013).
[Crossref]

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Configuration of a single diffusing unit, (b) bottom configuration of the engineered diffuser, and (c) top configuration of the engineered diffuser.
Fig. 2
Fig. 2 Effect of substrate thickness on the light distribution of the diffuser. For the bottom configuration when the substrate thickness increases from (a) 30µm to (b) 60µm, the light distribution remains unchanged. For the top configuration, as the substrate thickness increases from (c) 30µm to (d) 60µm, not all the light transmitted by the diffusing element can transmit through the corresponding pupil. For demonstration purpose, the light reflected back by the elements is ignored.
Fig. 3
Fig. 3 Schematic setup of the display system.
Fig. 4
Fig. 4 (a) Normalized light illuminance distribution of the directional backlight, (b) light intensity distribution of the directional backlight at different polar and azimuthal directions, and (c) normalized average light intensity at different polar angle.
Fig. 5
Fig. 5 Diffusing element structure in the rOz plane
Fig. 6
Fig. 6 (a) Normalized profile of a single diffusing element and (b) Normalized light intensity of the display system.
Fig. 7
Fig. 7 (a) 2D light intensity distribution with the real directional backlight and the engineered diffuser designed based on collimated light assumption and (b) the corresponding 1D light intensity distribution.
Fig. 8
Fig. 8 (a) Structure of the spherical-beads based diffuser, (b) normalized profile of the preliminary and real diffusive elements, and (c) normalized light luminance of LG’s LCD and OLED, LCD with spherical-beads based diffuser and LCD with our engineered diffuser.
Fig. 9
Fig. 9 Effects of the radius of pupil on the ambient light reflectivity (AR) and optical efficiency of the engineered diffuser.
Fig. 10
Fig. 10 (a) Measured intensity distribution of a 10-inch LCD tablet in the (1) horizontal direction (blue solid curve) and (2) vertical direction (blue dashed lines), a 6-inch LCD tablet in the (3) horizontal direction (red solid line) and (4) vertical direction (red dashed lines). The normalized intensity distribution of the engineered diffuser-based LCD is also plotted (black solid line). (b) Normalized profile of the diffusive element.
Fig. 11
Fig. 11 (a) Normalized diffusing element’s profiles for three different engineered diffusers, and (b) normalized intensity distribution with these three engineered diffusers.
Fig. 12
Fig. 12 (a) System error: the center of the light transmitting pupil (green circle) does not coincide with the center of the diffusing element (pink circle). (b) Misalignment effects of decentering on the efficiency of the diffuser, and (c) on the light intensity distribution.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

T(x,y,z)·E(x,y,z)ds= I(θ,φ)dΩ ,
I(θ,ϕ)={ I 0 (Isotropic distribution) I 0 cosθ (Lambertian distribution) I 0 cos 1.5 θ (LG OLED TV) .
n'rni=Γ n 0 Γ= n 2 n 2 + n 2 (i· n 0 ) 2 n(i· n 0 ),
n 0 = 1 z x 2 + z y 2 +1 ( z x , z y ,1).
r s = ncos θ i n'cos θ t ncos θ i n'cos θ t , r p = ncos θ t n'cos θ i ncos θ t n'cos θ i , T s =1 | r s | 2 , T p =1 | r p | 2 .
T(x,y,z)·E(x,y,z)ds= 2π I(θ)sinθdθ .
LDE= 1 N i=1 N ( I a ( θ i ) I t ( θ i ) 1) 2 .
AR= P r / P t .
T d = P t / P 0 .
L d =1 T d .
η= T b T LC T P T CF T d .
M F 2 = i=1 3 W i ( V i T i ) 2 / i=1 3 W i .
sin( θ i )=nsin( θ 1 ) nsin( θ 2 )=sin(θ). θ i = θ 1 + θ 2
θ i arcsin( sin θ i n )=arcsin( sinθ n ).
E 0 ds=2π I(θ) T(θ) sinθdθ .
ds=2πr'dr' 2π E 0 0 r r'dr' =2π 0 θ I(θ) T(θ) sinθdθ .
dz dr =tan θ i .
I= cos 1.522 θ,
I= cos 1.207 θ,

Metrics