Abstract

We demonstrate a 711-nm-wavelength efficient photon-pair source under the condition of non-collinear type-0 quasi-phase-matching configuration in a periodically poled MgO-doped stoichiometric lithium tantalate (PPSLT) crystal pumped by a 355.7-nm laser. Such degenerate visible photon-pairs in the wavelength region of 710 nm are practically useful for increasing the data collection rate in silicon-based single photon detectors. We confirm that the visible photon pairs in the PPSLT crystal form a bright, high-purity source of correlated photons. Our results show a coincidence counting rate per input pump power of 98,500 Hz/mW, conversion efficiency of 1.66 × 10−9, and second-order coherence function g(2)(0) of 0.087 ± 0.002/mW.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide

Go Fujii, Naoto Namekata, Masayuki Motoya, Sunao Kurimura, and Shuichiro Inoue
Opt. Express 15(20) 12769-12776 (2007)

High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide

Tian Zhong, Franco N. C. Wong, Tony D. Roberts, and Philip Battle
Opt. Express 17(14) 12019-12030 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66(5), 053805 (2002).
    [Crossref]
  2. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
    [Crossref] [PubMed]
  3. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
    [Crossref] [PubMed]
  4. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
    [Crossref]
  5. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
    [Crossref]
  6. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [Crossref] [PubMed]
  7. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773 (1999).
    [Crossref]
  8. S. Tanzilli, H. D. Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
    [Crossref]
  9. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
    [Crossref]
  10. K. Banaszek, A. B. U’ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26(17), 1367–1369 (2001).
    [Crossref] [PubMed]
  11. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15(23), 15377–15386 (2007).
    [Crossref] [PubMed]
  12. F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and V. Pruneri, “A high-brightness source of polarization-entangled photons optimized for applications in free space,” Opt. Express 20(9), 9640–9649 (2012).
    [Crossref] [PubMed]
  13. K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180 domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73(21), 3073–3075 (1998).
    [Crossref]
  14. Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niva, “Stoichiometric LiTaO3 single crystal growth by double-crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
    [Crossref]
  15. S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and non-stoichiometry in LiTaO3,” J. Appl. Phys. 90(6), 2949–2963 (2001).
    [Crossref]
  16. T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3.,” Opt. Lett. 25(9), 651–653 (2000).
    [Crossref] [PubMed]
  17. N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalite,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
    [Crossref]
  18. P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, “Proposal for a loophole-free Bell inequality experiment,” Phys. Rev. A 49(5), 3209–3220 (1994).
    [Crossref] [PubMed]
  19. R. Shimizu and K. Edamatsu, “High-flux and broadband biphoton sources with controlled frequency entanglement,” Opt. Express 17(19), 16385–16393 (2009).
    [Crossref] [PubMed]
  20. M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
    [Crossref]
  21. F. Rotermund, C. Yoon, V. Petrov, F. Noack, S. Kurimura, N. E. Yu, and K. Kitamura, “Application of periodically poled stoichiometric LiTaO3 for efficient optical parametric chirped pulse amplification at 1 kHz,” Opt. Express 12(26), 6421–6427 (2004).
    [Crossref] [PubMed]
  22. D. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, New York, 1988)
  23. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28(3), 194–196 (2003).
    [Crossref] [PubMed]
  24. http://www.perkinelmer.com/CMSResources/Images/44-12495DTS_SPCM-AQ4C.pdf
  25. M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41(Part 2, No. 4B), L465–L467 (2002).
    [Crossref]
  26. J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express 21(11), 13522–13532 (2013).
    [Crossref] [PubMed]
  27. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
    [Crossref] [PubMed]

2013 (1)

2012 (1)

2011 (1)

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

2009 (1)

2007 (2)

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15(23), 15377–15386 (2007).
[Crossref] [PubMed]

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

2004 (4)

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
[Crossref] [PubMed]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]

F. Rotermund, C. Yoon, V. Petrov, F. Noack, S. Kurimura, N. E. Yu, and K. Kitamura, “Application of periodically poled stoichiometric LiTaO3 for efficient optical parametric chirped pulse amplification at 1 kHz,” Opt. Express 12(26), 6421–6427 (2004).
[Crossref] [PubMed]

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalite,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[Crossref]

2003 (1)

2002 (2)

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41(Part 2, No. 4B), L465–L467 (2002).
[Crossref]

A. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66(5), 053805 (2002).
[Crossref]

2001 (4)

S. Tanzilli, H. D. Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

K. Banaszek, A. B. U’ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26(17), 1367–1369 (2001).
[Crossref] [PubMed]

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and non-stoichiometry in LiTaO3,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

2000 (1)

1999 (2)

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niva, “Stoichiometric LiTaO3 single crystal growth by double-crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773 (1999).
[Crossref]

1998 (1)

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180 domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73(21), 3073–3075 (1998).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

1994 (1)

P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, “Proposal for a loophole-free Bell inequality experiment,” Phys. Rev. A 49(5), 3209–3220 (1994).
[Crossref] [PubMed]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

1970 (1)

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773 (1999).
[Crossref]

Baldi, P.

S. Tanzilli, H. D. Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

Banaszek, K.

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
[Crossref] [PubMed]

K. Banaszek, A. B. U’ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26(17), 1367–1369 (2001).
[Crossref] [PubMed]

Barbieri, M.

Blau, P.

Bonneau, D.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

Booth, M. J.

Branning, D.

A. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66(5), 053805 (2002).
[Crossref]

Bruner, A.

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

Castelletto, S.

A. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66(5), 053805 (2002).
[Crossref]

Chiao, R. Y.

P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, “Proposal for a loophole-free Bell inequality experiment,” Phys. Rev. A 49(5), 3209–3220 (1994).
[Crossref] [PubMed]

Clark, A. S.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

Dorenbos, S. N.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773 (1999).
[Crossref]

P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, “Proposal for a loophole-free Bell inequality experiment,” Phys. Rev. A 49(5), 3209–3220 (1994).
[Crossref] [PubMed]

Edamatsu, K.

Eger, D.

Eggleton, B. J.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

Fedrizzi, A.

Fiorentino, M.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]

Furukawa, Y.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41(Part 2, No. 4B), L465–L467 (2002).
[Crossref]

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and non-stoichiometry in LiTaO3,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3.,” Opt. Lett. 25(9), 651–653 (2000).
[Crossref] [PubMed]

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niva, “Stoichiometric LiTaO3 single crystal growth by double-crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180 domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73(21), 3073–3075 (1998).
[Crossref]

Gisin, N.

S. Tanzilli, H. D. Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

Gopalan, V.

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and non-stoichiometry in LiTaO3,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180 domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73(21), 3073–3075 (1998).
[Crossref]

Hadfield, R. H.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

Hatanaka, T.

Herbst, T.

Higuchi, S.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41(Part 2, No. 4B), L465–L467 (2002).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Humphreys, P. C.

Ito, H.

Jennewein, T.

Jin, X.-M.

Jofre, M.

Katz, M.

Kim, S.

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and non-stoichiometry in LiTaO3,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

Kitamura, K.

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalite,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[Crossref]

F. Rotermund, C. Yoon, V. Petrov, F. Noack, S. Kurimura, N. E. Yu, and K. Kitamura, “Application of periodically poled stoichiometric LiTaO3 for efficient optical parametric chirped pulse amplification at 1 kHz,” Opt. Express 12(26), 6421–6427 (2004).
[Crossref] [PubMed]

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41(Part 2, No. 4B), L465–L467 (2002).
[Crossref]

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and non-stoichiometry in LiTaO3,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3.,” Opt. Lett. 25(9), 651–653 (2000).
[Crossref] [PubMed]

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niva, “Stoichiometric LiTaO3 single crystal growth by double-crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180 domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73(21), 3073–3075 (1998).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Kolthammer, W. S.

Kuklewicz, C. E.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]

Kurimura, S.

F. Rotermund, C. Yoon, V. Petrov, F. Noack, S. Kurimura, N. E. Yu, and K. Kitamura, “Application of periodically poled stoichiometric LiTaO3 for efficient optical parametric chirped pulse amplification at 1 kHz,” Opt. Express 12(26), 6421–6427 (2004).
[Crossref] [PubMed]

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalite,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[Crossref]

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773 (1999).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, “Proposal for a loophole-free Bell inequality experiment,” Phys. Rev. A 49(5), 3209–3220 (1994).
[Crossref] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Langford, N. K.

Lobino, M.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Marangoni, M.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

Marshall, G. D.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Messin, G.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]

Metcalf, B. J.

Micheli, M. D.

S. Tanzilli, H. D. Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

Migdall, A.

A. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66(5), 053805 (2002).
[Crossref]

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Mitchell, M. W.

Mitchell, T. E.

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180 domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73(21), 3073–3075 (1998).
[Crossref]

Moore, M.

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Nakamura, K.

Nakamura, M.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41(Part 2, No. 4B), L465–L467 (2002).
[Crossref]

Natarajan, C. M.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Niva, K.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niva, “Stoichiometric LiTaO3 single crystal growth by double-crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

Niwa, K.

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180 domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73(21), 3073–3075 (1998).
[Crossref]

Noack, F.

Nomura, Y.

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalite,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[Crossref]

O’Brien, J. L.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

Oron, M. B.

Ostrowsky, D. B.

S. Tanzilli, H. D. Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Perez, D.

Petrov, V.

Poppe, A.

Pruneri, V.

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Ramponi, R.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

Rarity, J.

Riedmatten, H. D.

S. Tanzilli, H. D. Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

Rotermund, F.

Ruschin, S.

Salter, P. S.

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Shapiro, J. H.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Shimizu, R.

Silberhorn, C.

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
[Crossref] [PubMed]

Spring, J. B.

Steinberg, A. M.

P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, “Proposal for a loophole-free Bell inequality experiment,” Phys. Rev. A 49(5), 3209–3220 (1994).
[Crossref] [PubMed]

Steinlechner, F.

Suzuki, E.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niva, “Stoichiometric LiTaO3 single crystal growth by double-crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

Takekawa, S.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41(Part 2, No. 4B), L465–L467 (2002).
[Crossref]

Taniuchi, T.

Tanner, M. G.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

Tanzilli, S.

S. Tanzilli, H. D. Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

Terabe, K.

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41(Part 2, No. 4B), L465–L467 (2002).
[Crossref]

Thomas-Peter, N.

Thompson, M. G.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

Tittel, W.

S. Tanzilli, H. D. Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

Torres, J. P.

Trojek, P.

U’Ren, A. B.

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
[Crossref] [PubMed]

K. Banaszek, A. B. U’ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26(17), 1367–1369 (2001).
[Crossref] [PubMed]

Ursin, R.

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773 (1999).
[Crossref]

Walmsley, I. A.

Weier, H.

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

Weinfurter, H.

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773 (1999).
[Crossref]

Wong, F. N. C.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]

Xiong, C.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

Yoon, C.

Yu, N. E.

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalite,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[Crossref]

F. Rotermund, C. Yoon, V. Petrov, F. Noack, S. Kurimura, N. E. Yu, and K. Kitamura, “Application of periodically poled stoichiometric LiTaO3 for efficient optical parametric chirped pulse amplification at 1 kHz,” Opt. Express 12(26), 6421–6427 (2004).
[Crossref] [PubMed]

Zbinden, H.

S. Tanzilli, H. D. Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

Zeilinger, A.

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15(23), 15377–15386 (2007).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Zijlstra, T.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

Zwiller, V.

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

Appl. Phys. Lett. (2)

K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan, and T. E. Mitchell, “Crystal growth and low coercive field 180 domain switching characteristics of stoichiometric LiTaO3,” Appl. Phys. Lett. 73(21), 3073–3075 (1998).
[Crossref]

M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tanalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99(8), 081110 (2011).
[Crossref]

Electron. Lett. (1)

S. Tanzilli, H. D. Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using a periodically poled lithium niobate waveguide,” Electron. Lett. 37(1), 26–28 (2001).
[Crossref]

J. Appl. Phys. (1)

S. Kim, V. Gopalan, K. Kitamura, and Y. Furukawa, “Domain reversal and non-stoichiometry in LiTaO3,” J. Appl. Phys. 90(6), 2949–2963 (2001).
[Crossref]

J. Cryst. Growth (1)

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niva, “Stoichiometric LiTaO3 single crystal growth by double-crucible Czochralski method using automatic powder supply system,” J. Cryst. Growth 197(4), 889–895 (1999).
[Crossref]

Jpn. J. Appl. Phys. (2)

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalite,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[Crossref]

M. Nakamura, S. Higuchi, S. Takekawa, K. Terabe, Y. Furukawa, and K. Kitamura, “Refractive indices in undoped and MgO-doped near stoichiometric LiTaO3 crystals,” Jpn. J. Appl. Phys. 41(Part 2, No. 4B), L465–L467 (2002).
[Crossref]

Nature (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. A (4)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773 (1999).
[Crossref]

A. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66(5), 053805 (2002).
[Crossref]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[Crossref]

P. G. Kwiat, P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao, “Proposal for a loophole-free Bell inequality experiment,” Phys. Rev. A 49(5), 3209–3220 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett. 93(9), 093601 (2004).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79(1), 135–174 (2007).
[Crossref]

Other (2)

http://www.perkinelmer.com/CMSResources/Images/44-12495DTS_SPCM-AQ4C.pdf

D. Klyshko, Photons and Nonlinear Optics (Gordon and Breach, New York, 1988)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Geometry of non-collinear SPDC (type-0) in x-z plane.
Fig. 2
Fig. 2 (a) Generation of correlated photon pairs under the non-collinear QPM condition. (b) Full experimental setup for measurement of single and coincidence counting; SPD: single-photon detector; BS: beam splitter. (c) Spatial intensity distribution measured at a screen placed 27.5 cm from PPSLT. (d) Calculated emission angle of signal photons as a function of temperature.
Fig. 3
Fig. 3 (a) Experimentally observed and (b) theoretically calculated non-collinear emission spectra of photon pair according to several temperatures. (c) Experimental (red squares) and theoretical (black line) of the wavelengths of photon-pairs as a function of temperature.
Fig. 4
Fig. 4 (a) Measured single counts for signal and idler photons, (b) coincidence counts, (c) coincidence-to-accidental-counts ratio, and (d) second-order coherence function as functions of pump power.
Fig. 5
Fig. 5 (a) Experimental setup for HOM interference. L1, L2: spherical lenses (f1 = 150 mm, f2 = 300 mm); SPD: single-photon detector; BS: beam splitter. (b) Measured HOM interference signal.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ω p = ω s + ω i ,
k p ( λ p , n p (T, λ p ))= k s ( λ s , n s (T, λ s ))+ k i ( λ i , n i (T, λ i ))+m 2π Λ (m : integer),
k s cos θ s + k i cos θ i = k p m 2π Λ ,
k s sin θ s = k i sin θ i ,

Metrics