Abstract

The unique characteristics of speckle correlation techniques including simple setup and fast, non-contact, high resolution measurement capability offer great potential for industrial applications. Robustness is an important requirement for industrial applications, which limits the application of many common techniques such as interferometric or photographic measurements, especially in mechanical workshops. This paper introduces an innovative technique for displacement measurement using speckle photography that is robust to disturbances, imaging errors, and does not require a large number of database patterns for calibration. It uses the relative correlation of the speckle patterns generated by two parallel, overlapping laser beams with an identical spot size and different wavelengths for relative displacement measurement in sub-micrometer order, and requires only one reference pattern that is updated frequently during the measurement process. The method is demonstrated over 200 µm range and is extendable to longer ranges.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compensation method for obtaining accurate, sub-micrometer displacement measurements of immersed specimens using electronic speckle interferometry

Massimo A. Fazio, Luigi Bruno, Juan F. Reynaud, Andrea Poggialini, and J. Crawford Downs
Biomed. Opt. Express 3(3) 407-417 (2012)

Three-dimensional deformation field measurement with digital speckle correlation

Thomas Fricke-Begemann
Appl. Opt. 42(34) 6783-6796 (2003)

Improved digital image correlation for in-plane displacement measurement

Asloob Ahmad Mudassar and Saira Butt
Appl. Opt. 53(5) 960-970 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect,” J. Phys. E Sci. Instrum. 3(3), 214–218 (1970).
    [Crossref]
  2. W. Peters and W. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21(3), 213427 (1982).
    [Crossref]
  3. T. O. Charrett and R. P. Tatam, “Objective speckle displacement: an extended theory for the small deformation of shaped objects,” Opt. Express 22(21), 25466–25480 (2014).
    [Crossref] [PubMed]
  4. Y. Matsumoto, Y. Oshida, and Y. Iwatashi, “Strain distribution measuring system using speckle shearing interferometer,” in International Conference on Experimental Mechanics 2013 and the Twelfth Asian Conference on Experimental Mechanics (International Society for Optics and Photonics, 2014), 923413–923417.
  5. B. Wiesner, O. Hybl, and G. Häusler, “Improved white-light interferometry on rough surfaces by statistically independent speckle patterns,” Appl. Opt. 51(6), 751–757 (2012).
    [Crossref] [PubMed]
  6. P. Smíd, P. Horváth, and M. Hrabovský, “Speckle correlation method used to measure object’s in-plane velocity,” Appl. Opt. 46(18), 3709–3715 (2007).
    [Crossref] [PubMed]
  7. N. Petrov, V. Bespalov, A. Zhevlakov, and Y. I. Soldatov, “Determining the velocity of an object in water, using digital speckle-photography,” J. Opt. Technol. 74(11), 779–782 (2007).
    [Crossref]
  8. S. Bianchi, “Vibration detection by observation of speckle patterns,” Appl. Opt. 53(5), 931–936 (2014).
    [Crossref] [PubMed]
  9. I. Yamaguchi, “Automatic measurement of in-plane translation by speckle correlation using a linear image sensor,” J. Phys. E Sci. Instrum. 19(11), 944–948 (1986).
    [Crossref]
  10. M. Sjödahl and L. R. Benckert, “Electronic speckle photography: analysis of an algorithm giving the displacement with subpixel accuracy,” Appl. Opt. 32(13), 2278–2284 (1993).
    [Crossref] [PubMed]
  11. H. Lu, C. Huang, C. Wang, X. Wang, H. Fu, and Z. Chen, “Fast and noninterpolating method for subpixel displacement analysis of digital speckle images using phase shifts of spatial frequency spectra,” Appl. Opt. 53(13), 2806–2814 (2014).
    [Crossref] [PubMed]
  12. P. Synnergren and M. Sjödahl, “A stereoscopic digital speckle photography system for 3-D displacement field measurements,” Opt. Lasers Eng. 31(6), 425–443 (1999).
    [Crossref]
  13. T. Fricke-Begemann, “Three-dimensional deformation field measurement with digital speckle correlation,” Appl. Opt. 42(34), 6783–6796 (2003).
    [Crossref] [PubMed]
  14. C. Franck, S. Hong, S. Maskarinec, D. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech. 47(3), 427–438 (2007).
    [Crossref]
  15. M. Sutton, N. Li, D. Joy, A. Reynolds, and X. Li, “Scanning electron microscopy for quantitative small and large deformation measurements part I: SEM imaging at magnifications from 200 to 10,000,” Exp. Mech. 47(6), 775–787 (2007).
    [Crossref]
  16. X. Li, W. Xu, M. A. Sutton, and M. Mello, “In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques,” IEEE Trans. NanoTechnol. January 6(1), 4–12 (2007).
    [Crossref]
  17. B. Pan, K. Qian, H. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20(6), 062001 (2009).
    [Crossref]
  18. D. Francis, T. O. Charrett, L. Waugh, and R. P. Tatam, “Objective speckle velocimetry for autonomous vehicle odometry,” Appl. Opt. 51(16), 3478–3490 (2012).
    [PubMed]
  19. G. Goch, H. Prekel, S. Patzelt, M. Faravashi, and F. Horn, “Precise alignment of workpieces using speckle patterns as optical fingerprints,” CIRP Ann. Manuf. Technol. 54(1), 523–526 (2005).
    [Crossref]
  20. S. Patzelt, K. Pils, A. Tausendfreund, and G. Goch, “Optical absolute position measurement on rough and unprepared technical surfaces,” in Euspen, 2012)
  21. P. Lehmann, S. Patzelt, and A. Schöne, “Surface roughness measurement by means of polychromatic speckle elongation,” Appl. Opt. 36(10), 2188–2197 (1997).
    [Crossref] [PubMed]
  22. P. Ahlgren, B. Jarneving, and R. Rousseau, “Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient,” J. Assoc. Inf. Sci. Technol. 54(6), 550–560 (2003).
    [Crossref]
  23. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
    [Crossref] [PubMed]
  24. Q. B. Li and F. P. Chiang, “Three-dimensional dimension of laser speckle,” Appl. Opt. 31(29), 6287–6291 (1992).
    [Crossref] [PubMed]
  25. J. Dainty, “The statistics of speckle patterns,” Prog. Opt. 14, 1–46 (1977).

2014 (3)

2012 (2)

2009 (1)

B. Pan, K. Qian, H. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20(6), 062001 (2009).
[Crossref]

2008 (1)

2007 (5)

C. Franck, S. Hong, S. Maskarinec, D. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech. 47(3), 427–438 (2007).
[Crossref]

M. Sutton, N. Li, D. Joy, A. Reynolds, and X. Li, “Scanning electron microscopy for quantitative small and large deformation measurements part I: SEM imaging at magnifications from 200 to 10,000,” Exp. Mech. 47(6), 775–787 (2007).
[Crossref]

X. Li, W. Xu, M. A. Sutton, and M. Mello, “In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques,” IEEE Trans. NanoTechnol. January 6(1), 4–12 (2007).
[Crossref]

P. Smíd, P. Horváth, and M. Hrabovský, “Speckle correlation method used to measure object’s in-plane velocity,” Appl. Opt. 46(18), 3709–3715 (2007).
[Crossref] [PubMed]

N. Petrov, V. Bespalov, A. Zhevlakov, and Y. I. Soldatov, “Determining the velocity of an object in water, using digital speckle-photography,” J. Opt. Technol. 74(11), 779–782 (2007).
[Crossref]

2005 (1)

G. Goch, H. Prekel, S. Patzelt, M. Faravashi, and F. Horn, “Precise alignment of workpieces using speckle patterns as optical fingerprints,” CIRP Ann. Manuf. Technol. 54(1), 523–526 (2005).
[Crossref]

2003 (2)

P. Ahlgren, B. Jarneving, and R. Rousseau, “Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient,” J. Assoc. Inf. Sci. Technol. 54(6), 550–560 (2003).
[Crossref]

T. Fricke-Begemann, “Three-dimensional deformation field measurement with digital speckle correlation,” Appl. Opt. 42(34), 6783–6796 (2003).
[Crossref] [PubMed]

1999 (1)

P. Synnergren and M. Sjödahl, “A stereoscopic digital speckle photography system for 3-D displacement field measurements,” Opt. Lasers Eng. 31(6), 425–443 (1999).
[Crossref]

1997 (1)

1993 (1)

1992 (1)

1986 (1)

I. Yamaguchi, “Automatic measurement of in-plane translation by speckle correlation using a linear image sensor,” J. Phys. E Sci. Instrum. 19(11), 944–948 (1986).
[Crossref]

1982 (1)

W. Peters and W. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21(3), 213427 (1982).
[Crossref]

1977 (1)

J. Dainty, “The statistics of speckle patterns,” Prog. Opt. 14, 1–46 (1977).

1970 (1)

J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect,” J. Phys. E Sci. Instrum. 3(3), 214–218 (1970).
[Crossref]

Ahlgren, P.

P. Ahlgren, B. Jarneving, and R. Rousseau, “Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient,” J. Assoc. Inf. Sci. Technol. 54(6), 550–560 (2003).
[Crossref]

Asundi, A.

B. Pan, K. Qian, H. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20(6), 062001 (2009).
[Crossref]

Benckert, L. R.

Bespalov, V.

Bianchi, S.

Charrett, T. O.

Chen, Z.

Chiang, F. P.

Dainty, J.

J. Dainty, “The statistics of speckle patterns,” Prog. Opt. 14, 1–46 (1977).

Faravashi, M.

G. Goch, H. Prekel, S. Patzelt, M. Faravashi, and F. Horn, “Precise alignment of workpieces using speckle patterns as optical fingerprints,” CIRP Ann. Manuf. Technol. 54(1), 523–526 (2005).
[Crossref]

Fienup, J. R.

Francis, D.

Franck, C.

C. Franck, S. Hong, S. Maskarinec, D. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech. 47(3), 427–438 (2007).
[Crossref]

Fricke-Begemann, T.

Fu, H.

Goch, G.

G. Goch, H. Prekel, S. Patzelt, M. Faravashi, and F. Horn, “Precise alignment of workpieces using speckle patterns as optical fingerprints,” CIRP Ann. Manuf. Technol. 54(1), 523–526 (2005).
[Crossref]

Guizar-Sicairos, M.

Häusler, G.

Hong, S.

C. Franck, S. Hong, S. Maskarinec, D. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech. 47(3), 427–438 (2007).
[Crossref]

Horn, F.

G. Goch, H. Prekel, S. Patzelt, M. Faravashi, and F. Horn, “Precise alignment of workpieces using speckle patterns as optical fingerprints,” CIRP Ann. Manuf. Technol. 54(1), 523–526 (2005).
[Crossref]

Horváth, P.

Hrabovský, M.

Huang, C.

Hybl, O.

Jarneving, B.

P. Ahlgren, B. Jarneving, and R. Rousseau, “Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient,” J. Assoc. Inf. Sci. Technol. 54(6), 550–560 (2003).
[Crossref]

Joy, D.

M. Sutton, N. Li, D. Joy, A. Reynolds, and X. Li, “Scanning electron microscopy for quantitative small and large deformation measurements part I: SEM imaging at magnifications from 200 to 10,000,” Exp. Mech. 47(6), 775–787 (2007).
[Crossref]

Leendertz, J. A.

J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect,” J. Phys. E Sci. Instrum. 3(3), 214–218 (1970).
[Crossref]

Lehmann, P.

Li, N.

M. Sutton, N. Li, D. Joy, A. Reynolds, and X. Li, “Scanning electron microscopy for quantitative small and large deformation measurements part I: SEM imaging at magnifications from 200 to 10,000,” Exp. Mech. 47(6), 775–787 (2007).
[Crossref]

Li, Q. B.

Li, X.

M. Sutton, N. Li, D. Joy, A. Reynolds, and X. Li, “Scanning electron microscopy for quantitative small and large deformation measurements part I: SEM imaging at magnifications from 200 to 10,000,” Exp. Mech. 47(6), 775–787 (2007).
[Crossref]

X. Li, W. Xu, M. A. Sutton, and M. Mello, “In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques,” IEEE Trans. NanoTechnol. January 6(1), 4–12 (2007).
[Crossref]

Lu, H.

Maskarinec, S.

C. Franck, S. Hong, S. Maskarinec, D. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech. 47(3), 427–438 (2007).
[Crossref]

Mello, M.

X. Li, W. Xu, M. A. Sutton, and M. Mello, “In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques,” IEEE Trans. NanoTechnol. January 6(1), 4–12 (2007).
[Crossref]

Pan, B.

B. Pan, K. Qian, H. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20(6), 062001 (2009).
[Crossref]

Patzelt, S.

G. Goch, H. Prekel, S. Patzelt, M. Faravashi, and F. Horn, “Precise alignment of workpieces using speckle patterns as optical fingerprints,” CIRP Ann. Manuf. Technol. 54(1), 523–526 (2005).
[Crossref]

P. Lehmann, S. Patzelt, and A. Schöne, “Surface roughness measurement by means of polychromatic speckle elongation,” Appl. Opt. 36(10), 2188–2197 (1997).
[Crossref] [PubMed]

Peters, W.

W. Peters and W. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21(3), 213427 (1982).
[Crossref]

Petrov, N.

Prekel, H.

G. Goch, H. Prekel, S. Patzelt, M. Faravashi, and F. Horn, “Precise alignment of workpieces using speckle patterns as optical fingerprints,” CIRP Ann. Manuf. Technol. 54(1), 523–526 (2005).
[Crossref]

Qian, K.

B. Pan, K. Qian, H. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20(6), 062001 (2009).
[Crossref]

Ranson, W.

W. Peters and W. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21(3), 213427 (1982).
[Crossref]

Ravichandran, G.

C. Franck, S. Hong, S. Maskarinec, D. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech. 47(3), 427–438 (2007).
[Crossref]

Reynolds, A.

M. Sutton, N. Li, D. Joy, A. Reynolds, and X. Li, “Scanning electron microscopy for quantitative small and large deformation measurements part I: SEM imaging at magnifications from 200 to 10,000,” Exp. Mech. 47(6), 775–787 (2007).
[Crossref]

Rousseau, R.

P. Ahlgren, B. Jarneving, and R. Rousseau, “Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient,” J. Assoc. Inf. Sci. Technol. 54(6), 550–560 (2003).
[Crossref]

Schöne, A.

Sjödahl, M.

P. Synnergren and M. Sjödahl, “A stereoscopic digital speckle photography system for 3-D displacement field measurements,” Opt. Lasers Eng. 31(6), 425–443 (1999).
[Crossref]

M. Sjödahl and L. R. Benckert, “Electronic speckle photography: analysis of an algorithm giving the displacement with subpixel accuracy,” Appl. Opt. 32(13), 2278–2284 (1993).
[Crossref] [PubMed]

Smíd, P.

Soldatov, Y. I.

Sutton, M.

M. Sutton, N. Li, D. Joy, A. Reynolds, and X. Li, “Scanning electron microscopy for quantitative small and large deformation measurements part I: SEM imaging at magnifications from 200 to 10,000,” Exp. Mech. 47(6), 775–787 (2007).
[Crossref]

Sutton, M. A.

X. Li, W. Xu, M. A. Sutton, and M. Mello, “In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques,” IEEE Trans. NanoTechnol. January 6(1), 4–12 (2007).
[Crossref]

Synnergren, P.

P. Synnergren and M. Sjödahl, “A stereoscopic digital speckle photography system for 3-D displacement field measurements,” Opt. Lasers Eng. 31(6), 425–443 (1999).
[Crossref]

Tatam, R. P.

Thurman, S. T.

Tirrell, D.

C. Franck, S. Hong, S. Maskarinec, D. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech. 47(3), 427–438 (2007).
[Crossref]

Wang, C.

Wang, X.

Waugh, L.

Wiesner, B.

Xie, H.

B. Pan, K. Qian, H. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20(6), 062001 (2009).
[Crossref]

Xu, W.

X. Li, W. Xu, M. A. Sutton, and M. Mello, “In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques,” IEEE Trans. NanoTechnol. January 6(1), 4–12 (2007).
[Crossref]

Yamaguchi, I.

I. Yamaguchi, “Automatic measurement of in-plane translation by speckle correlation using a linear image sensor,” J. Phys. E Sci. Instrum. 19(11), 944–948 (1986).
[Crossref]

Zhevlakov, A.

Appl. Opt. (9)

Q. B. Li and F. P. Chiang, “Three-dimensional dimension of laser speckle,” Appl. Opt. 31(29), 6287–6291 (1992).
[Crossref] [PubMed]

P. Lehmann, S. Patzelt, and A. Schöne, “Surface roughness measurement by means of polychromatic speckle elongation,” Appl. Opt. 36(10), 2188–2197 (1997).
[Crossref] [PubMed]

M. Sjödahl and L. R. Benckert, “Electronic speckle photography: analysis of an algorithm giving the displacement with subpixel accuracy,” Appl. Opt. 32(13), 2278–2284 (1993).
[Crossref] [PubMed]

T. Fricke-Begemann, “Three-dimensional deformation field measurement with digital speckle correlation,” Appl. Opt. 42(34), 6783–6796 (2003).
[Crossref] [PubMed]

P. Smíd, P. Horváth, and M. Hrabovský, “Speckle correlation method used to measure object’s in-plane velocity,” Appl. Opt. 46(18), 3709–3715 (2007).
[Crossref] [PubMed]

B. Wiesner, O. Hybl, and G. Häusler, “Improved white-light interferometry on rough surfaces by statistically independent speckle patterns,” Appl. Opt. 51(6), 751–757 (2012).
[Crossref] [PubMed]

D. Francis, T. O. Charrett, L. Waugh, and R. P. Tatam, “Objective speckle velocimetry for autonomous vehicle odometry,” Appl. Opt. 51(16), 3478–3490 (2012).
[PubMed]

S. Bianchi, “Vibration detection by observation of speckle patterns,” Appl. Opt. 53(5), 931–936 (2014).
[Crossref] [PubMed]

H. Lu, C. Huang, C. Wang, X. Wang, H. Fu, and Z. Chen, “Fast and noninterpolating method for subpixel displacement analysis of digital speckle images using phase shifts of spatial frequency spectra,” Appl. Opt. 53(13), 2806–2814 (2014).
[Crossref] [PubMed]

CIRP Ann. Manuf. Technol. (1)

G. Goch, H. Prekel, S. Patzelt, M. Faravashi, and F. Horn, “Precise alignment of workpieces using speckle patterns as optical fingerprints,” CIRP Ann. Manuf. Technol. 54(1), 523–526 (2005).
[Crossref]

Exp. Mech. (2)

C. Franck, S. Hong, S. Maskarinec, D. Tirrell, and G. Ravichandran, “Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation,” Exp. Mech. 47(3), 427–438 (2007).
[Crossref]

M. Sutton, N. Li, D. Joy, A. Reynolds, and X. Li, “Scanning electron microscopy for quantitative small and large deformation measurements part I: SEM imaging at magnifications from 200 to 10,000,” Exp. Mech. 47(6), 775–787 (2007).
[Crossref]

IEEE Trans. NanoTechnol. January (1)

X. Li, W. Xu, M. A. Sutton, and M. Mello, “In situ nanoscale in-plane deformation studies of ultrathin polymeric films during tensile deformation using atomic force microscopy and digital image correlation techniques,” IEEE Trans. NanoTechnol. January 6(1), 4–12 (2007).
[Crossref]

J. Assoc. Inf. Sci. Technol. (1)

P. Ahlgren, B. Jarneving, and R. Rousseau, “Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient,” J. Assoc. Inf. Sci. Technol. 54(6), 550–560 (2003).
[Crossref]

J. Opt. Technol. (1)

J. Phys. E Sci. Instrum. (2)

J. A. Leendertz, “Interferometric displacement measurement on scattering surfaces utilizing speckle effect,” J. Phys. E Sci. Instrum. 3(3), 214–218 (1970).
[Crossref]

I. Yamaguchi, “Automatic measurement of in-plane translation by speckle correlation using a linear image sensor,” J. Phys. E Sci. Instrum. 19(11), 944–948 (1986).
[Crossref]

Meas. Sci. Technol. (1)

B. Pan, K. Qian, H. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20(6), 062001 (2009).
[Crossref]

Opt. Eng. (1)

W. Peters and W. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21(3), 213427 (1982).
[Crossref]

Opt. Express (1)

Opt. Lasers Eng. (1)

P. Synnergren and M. Sjödahl, “A stereoscopic digital speckle photography system for 3-D displacement field measurements,” Opt. Lasers Eng. 31(6), 425–443 (1999).
[Crossref]

Opt. Lett. (1)

Prog. Opt. (1)

J. Dainty, “The statistics of speckle patterns,” Prog. Opt. 14, 1–46 (1977).

Other (2)

Y. Matsumoto, Y. Oshida, and Y. Iwatashi, “Strain distribution measuring system using speckle shearing interferometer,” in International Conference on Experimental Mechanics 2013 and the Twelfth Asian Conference on Experimental Mechanics (International Society for Optics and Photonics, 2014), 923413–923417.

S. Patzelt, K. Pils, A. Tausendfreund, and G. Goch, “Optical absolute position measurement on rough and unprepared technical surfaces,” in Euspen, 2012)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Location of the red and the green spot at different sample positions.
Fig. 2
Fig. 2 Expected correlation behavior for dual wavelength speckle correlation.
Fig. 3
Fig. 3 The shift of the speckle pattern in the image plane of the camera due to the sample shift. a) The position of a specific speckle pattern before the sample shift. b) The position of the same speckle pattern after the sample shift.
Fig. 4
Fig. 4 Expected correlation behavior, cc(red0,green_i), for dual wavelength speckle scale.
Fig. 5
Fig. 5 Displacement measurement using curve fitting in between the correlation peaks.
Fig. 6
Fig. 6 The flowchart of the dual wavelength method.
Fig. 7
Fig. 7 Schematic setup that helps to verify the correlation between a red and a green speckle pattern.
Fig. 8
Fig. 8 Experimental setup to verify the correlation between a red and a green speckle pattern.
Fig. 9
Fig. 9 Schematic setup for displacement measurement using dual wavelength speckle correlation.
Fig. 10
Fig. 10 Experimental setup for displacement measurement using dual wavelength speckle correlation.
Fig. 11
Fig. 11 Estimating the beams' offset using cc(shifted red0,green_i).
Fig. 12
Fig. 12 Identifying a uniform region of the surface for evaluating the dual wavelength method. a) cc(red_i,green_i) at every 10 µm over 2000 µm range. b) cc(red_i,green_i) at every 10 µm from 930 to 1130 µm.
Fig. 13
Fig. 13 Comparing the red and the green correlation distribution. The red distribution is cc(red0,red_i) and the green distribution is cc(green0,green_i) every 1 µm over 32 µm.
Fig. 14
Fig. 14 Correlation results of the dual wavelength method.
Fig. 15
Fig. 15 Stage position vs. sample position determined using the dual wavelength method.
Fig. 16
Fig. 16 Arrangement of beam spots for two dimensional relative displacement measurement

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δx= x cc (avg_dist)×Δcc

Metrics