Abstract

A regular domain structure consisting of parallel stripes – flexodomains – have been induced by low frequency (subHz) electric voltage in a bent core nematic liquid crystal. The wavelength of the pattern is in the range of 1–10 micrometers and thus can conveniently be observed in a polarizing microscope. It also serves as an optical grating and produces a regular system of laser diffraction spots. The pattern was found to emerge and disappear consecutively in each half period of the driving, with the wavelength of the flexodomains changing periodically as the ac voltage oscillates. Analyzing the polarization characteristics of the diffracted light, the polarization of the first order spot was found perpendicular to that of the incident light, in accordance with a recent theoretical calculation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarity-dependent bistable optical grating in chiral bent-core nematic liquid crystals

Hong-Zhen Jing, Ying Xiang, Ming-Ya Xu, Zhi-Dong Zhang, Zhengdong Cheng, Dong Shen, Zhi-Gang Zheng, Jian-Lin Li, Meng-jie Zhou, Everett Wang, Yan-Qing Wang, and Yin-Hua Cai
Opt. Mater. Express 6(8) 2584-2592 (2016)

Continuously adjustable period optical grating based on flexoelectric effect of a bent-core nematic liquid crystal in planar cells

Rui Yuan, Wen-Jiang Ye, Hong-Yu Xing, Zhen-Jie Li, Ting-Ting Sun, Yu-Bao Sun, Ji-Liang Zhu, Ying Xiang, Zhi-Yong Zhang, and Ming-Lei Cai
Opt. Express 26(4) 4288-4299 (2018)

Observation of the photorefractive effects in bent-core liquid crystals

Ying Xiang, Yi-Kun Liu, Zhi-Yong Zhang, Hong-Jun You, Tian Xia, Everett Wang, and Zheng-Dong Cheng
Opt. Express 21(3) 3434-3444 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. B. Meyer, “Piezoelectric effects in liquid crystals,” Phys. Rev. Lett. 22(18), 918–921 (1969).
    [Crossref]
  2. Flexoelectricity in Liquid Crystals. Theory, Experiments and Applications, Á. Buka and N. Éber, eds. (Imperial College, 2012).
  3. L. K. Vistin, “Electrostructural effect and optical properties of a certain class of liquid crystals and their binary mixtures,” Sov. Phys. Crystallogr. 15(3), 514–515 (1970). <other>Kristallografiya 15(3), 594–595 (1970)</other>
  4. Yu. P. Bobylev and S. A. Pikin, “Threshold piezoelectric instability in a liquid crystal,” Sov. Phys. JETP 45(1), 195–198 (1977). <other>Zh. Eksp. Teor. Fiz. 72(1), 369–374 (1977)</other>
  5. A. Krekhov, W. Pesch, and A. Buka, “Flexoelectricity and pattern formation in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051706 (2011).
    [Crossref] [PubMed]
  6. M. I. Barnik, L. M. Blinov, A. N. Trufanov, and B. A. Umanski, “Flexo-electric domains in liquid crystals,” J. Phys. France 39(4), 417–422 (1978).
    [Crossref]
  7. H. P. Hinov and L. K. Vistin, “Parallel and cross-like domains due to d.c. and low frequency (< 2 Hz) electric fields in nematic liquid crystal layers with negative dielectric anisotropy,” J. Phys. France 40(3), 269–292 (1979).
    [Crossref]
  8. P. Schiller, G. Pelzl, and D. Demus, “Analytical theory for flexo-electric domains in nematic layer,” Cryst. Res. Technol. 25(1), 111–116 (1990).
    [Crossref]
  9. V. A. Delev, A. P. Krekhov, and L. Kramer, “Crossover between flexoelectric stripe patterns and electroconvection in hybrid aligned nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 849–856 (2001).
    [Crossref]
  10. P. Kumar and K. S. Krishnamurthy, “Gradient flexoelectric switching response in a nematic phenyl benzoate,” Liq. Cryst. 34(2), 257–266 (2007).
    [Crossref]
  11. M. May, W. Schöpf, I. Rehberg, A. Krekhov, and A. Buka, “Transition from longitudinal to transversal patterns in an anisotropic system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046215 (2008).
    [Crossref] [PubMed]
  12. N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka, “Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2), 021702 (2012).
    [Crossref] [PubMed]
  13. P. Salamon, N. Éber, A. Krekhov, and Á. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
    [Crossref]
  14. L. Kramer and W. Pesch, “Electrohydrodynamic instabilities in nematic liquid crystals,” In Pattern Formation in Liquid Crystals, A. Buka and L. Kramer, eds. (Springer, 1996), pp. 221–256.
  15. Á. Buka, N. Éber, W. Pesch, and L. Kramer, “Convective patterns in liquid crystals driven by electric field,” In Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems. NATO Science Series II, Mathematica, Physics and Chemistry, Vol. 218, A. A. Golovin and A. A. Nepomnyashchy, eds. (Springer, 2006), pp. 55–82.
  16. A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and A. Buka, “Nonstandard electroconvection and flexoelectricity in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(2), 021705 (2008).
    [Crossref] [PubMed]
  17. S. Kaur, A. Belaissaoui, J. W. Goodby, V. Görtz, and H. F. Gleeson, “Nonstandard electroconvection in a bent-core oxadiazole material,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 041704 (2011).
    [Crossref] [PubMed]
  18. S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
    [Crossref]
  19. Y. Xiang, Y.-K. Liu, Z.-Y. Zhang, H.-J. You, T. Xia, E. Wang, and Z.-D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
    [PubMed]
  20. Á. Buka, T. Tóth-Katona, N. Éber, A. Krekhov, and W. Pesch, “Chapter 4: The role of flexoelectricity in pattern formation,” In Flexoelectricity in Liquid Crystals. Theory, Experiments and Applications, Á. Buka and N. Éber, eds. (Imperial College, 2012).
  21. Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
    [Crossref] [PubMed]
  22. Y. Xiang, M. J. Zhou, M.-Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
    [Crossref] [PubMed]
  23. S. Rasenat, G. Hartung, B. L. Winkler, and I. Rehberg, “The shadowgraph method in convection experiments,” Exp. Fluids 7(6), 412–420 (1989).
    [Crossref]
  24. S. Lu and D. Jones, “Light diffraction phenomena in an ac‐excited nematic liquid‐crystal sample,” J. Appl. Phys. 42(5), 2138–2140 (1971).
    [Crossref]
  25. T. O. Carroll, “Liquid-crystal diffraction grating,” J. Appl. Phys. 43(3), 767–770 (1972).
    [Crossref]
  26. S. Akahoshi, K. Miyakawa, and A. Takase, “A frequency measurement of the oscillatory motion of the Williams domain in the nematic liquid crystal,” Jpn. J. Appl. Phys. 15(9), 1839–1840 (1976).
    [Crossref]
  27. H. Miike, Y. Kuriyama, H. Hashimoto, and Y. Ebina, “Laser light scattering study on the electrohydrodynamic instability of nematic liquid crystal,” J. Phys. Soc. Jpn. 53(10), 3280–3283 (1984).
    [Crossref]
  28. P. L. Papadopoulos, H. M. Zenginoglou, and J. A. Kosmopoulos, “Optical measurement of the director relaxation time in a periodically reoriented nematic liquid crystal,” J. Appl. Phys. 86(6), 3042–3047 (1999).
    [Crossref]
  29. T. John, U. Behn, and R. Stannarius, “Fundamental scaling laws of on-off intermittency in a stochastically driven dissipative pattern-forming system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2A), 046229 (2002).
    [Crossref] [PubMed]
  30. T. John, U. Behn, and R. Stannarius, “Laser diffraction by periodic dynamic patterns in anisotropic fluids,” Eur. Phys. J. B 35(2), 267–278 (2003).
    [Crossref]
  31. T. John and R. Stannarius, “Preparation of subharmonic patterns in nematic electroconvection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(2), 025202 (2004).
    [Crossref] [PubMed]
  32. N. Éber, S. A. Rozanski, S. Németh, A. Buka, W. Pesch, and L. Kramer, “Decay of spatially periodic patterns in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 061706 (2004).
    [Crossref] [PubMed]
  33. W. Pesch, L. Kramer, N. Éber, and A. Buka, “Role of initial conditions in the decay of spatially periodic patterns in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(6), 061705 (2006).
    [Crossref] [PubMed]
  34. Z. D. Xu, Y. N. He, M. C. Guo, and X. G. Wang, “Alternating current electric-field-induced tunable microstructures and electrohydrodynamic convection properties observed in azo-dye-doped MBBA liquid crystal cells,” J. Appl. Phys. 102(2), 026101 (2007).
    [Crossref]
  35. J. Heuer, T. John, and R. Stannarius, “Time reversal of the excitation wave form in a dissipative pattern-forming system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 036218 (2008).
    [Crossref] [PubMed]
  36. P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
    [Crossref] [PubMed]
  37. J. A. Kosmopoulos and H. M. Zenginoglou, “Geometrical optics approach to the nematic liquid crystal grating: numerical results,” Appl. Opt. 26(9), 1714–1721 (1987).
    [Crossref] [PubMed]
  38. H. M. Zenginoglou and J. A. Kosmopoulos, “Geometrical optics approach to the obliquely illuminated nematic liquid crystal diffraction grating,” Appl. Opt. 27(18), 3898–3901 (1988).
    [Crossref] [PubMed]
  39. H. M. Zenginoglou and J. A. Kosmopoulos, “Geometrical optics approach to the nematic liquid crystal grating: leading term formulas,” Appl. Opt. 28(16), 3516–3519 (1989).
    [Crossref] [PubMed]
  40. H. M. Zenginoglou and J. A. Kosmopoulos, “Linearized wave-optical approach to the grating effect of a periodically distorted nematic liquid crystal layer,” J. Opt. Soc. Am. A 14(3), 669–675 (1997).
    [Crossref]
  41. W. Pesch and A. Krekhov, “Optical analysis of spatially periodic patterns in nematic liquid crystals: diffraction and shadowgraphy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052504 (2013).
    [Crossref] [PubMed]

2015 (1)

Y. Xiang, M. J. Zhou, M.-Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
[Crossref] [PubMed]

2014 (3)

P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
[Crossref] [PubMed]

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

2013 (3)

P. Salamon, N. Éber, A. Krekhov, and Á. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

W. Pesch and A. Krekhov, “Optical analysis of spatially periodic patterns in nematic liquid crystals: diffraction and shadowgraphy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052504 (2013).
[Crossref] [PubMed]

Y. Xiang, Y.-K. Liu, Z.-Y. Zhang, H.-J. You, T. Xia, E. Wang, and Z.-D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
[PubMed]

2012 (1)

N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka, “Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2), 021702 (2012).
[Crossref] [PubMed]

2011 (2)

S. Kaur, A. Belaissaoui, J. W. Goodby, V. Görtz, and H. F. Gleeson, “Nonstandard electroconvection in a bent-core oxadiazole material,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 041704 (2011).
[Crossref] [PubMed]

A. Krekhov, W. Pesch, and A. Buka, “Flexoelectricity and pattern formation in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051706 (2011).
[Crossref] [PubMed]

2008 (3)

A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and A. Buka, “Nonstandard electroconvection and flexoelectricity in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(2), 021705 (2008).
[Crossref] [PubMed]

M. May, W. Schöpf, I. Rehberg, A. Krekhov, and A. Buka, “Transition from longitudinal to transversal patterns in an anisotropic system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046215 (2008).
[Crossref] [PubMed]

J. Heuer, T. John, and R. Stannarius, “Time reversal of the excitation wave form in a dissipative pattern-forming system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 036218 (2008).
[Crossref] [PubMed]

2007 (2)

P. Kumar and K. S. Krishnamurthy, “Gradient flexoelectric switching response in a nematic phenyl benzoate,” Liq. Cryst. 34(2), 257–266 (2007).
[Crossref]

Z. D. Xu, Y. N. He, M. C. Guo, and X. G. Wang, “Alternating current electric-field-induced tunable microstructures and electrohydrodynamic convection properties observed in azo-dye-doped MBBA liquid crystal cells,” J. Appl. Phys. 102(2), 026101 (2007).
[Crossref]

2006 (1)

W. Pesch, L. Kramer, N. Éber, and A. Buka, “Role of initial conditions in the decay of spatially periodic patterns in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(6), 061705 (2006).
[Crossref] [PubMed]

2004 (2)

T. John and R. Stannarius, “Preparation of subharmonic patterns in nematic electroconvection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(2), 025202 (2004).
[Crossref] [PubMed]

N. Éber, S. A. Rozanski, S. Németh, A. Buka, W. Pesch, and L. Kramer, “Decay of spatially periodic patterns in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 061706 (2004).
[Crossref] [PubMed]

2003 (1)

T. John, U. Behn, and R. Stannarius, “Laser diffraction by periodic dynamic patterns in anisotropic fluids,” Eur. Phys. J. B 35(2), 267–278 (2003).
[Crossref]

2002 (1)

T. John, U. Behn, and R. Stannarius, “Fundamental scaling laws of on-off intermittency in a stochastically driven dissipative pattern-forming system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2A), 046229 (2002).
[Crossref] [PubMed]

2001 (1)

V. A. Delev, A. P. Krekhov, and L. Kramer, “Crossover between flexoelectric stripe patterns and electroconvection in hybrid aligned nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 849–856 (2001).
[Crossref]

1999 (1)

P. L. Papadopoulos, H. M. Zenginoglou, and J. A. Kosmopoulos, “Optical measurement of the director relaxation time in a periodically reoriented nematic liquid crystal,” J. Appl. Phys. 86(6), 3042–3047 (1999).
[Crossref]

1997 (1)

1990 (1)

P. Schiller, G. Pelzl, and D. Demus, “Analytical theory for flexo-electric domains in nematic layer,” Cryst. Res. Technol. 25(1), 111–116 (1990).
[Crossref]

1989 (2)

S. Rasenat, G. Hartung, B. L. Winkler, and I. Rehberg, “The shadowgraph method in convection experiments,” Exp. Fluids 7(6), 412–420 (1989).
[Crossref]

H. M. Zenginoglou and J. A. Kosmopoulos, “Geometrical optics approach to the nematic liquid crystal grating: leading term formulas,” Appl. Opt. 28(16), 3516–3519 (1989).
[Crossref] [PubMed]

1988 (1)

1987 (1)

1984 (1)

H. Miike, Y. Kuriyama, H. Hashimoto, and Y. Ebina, “Laser light scattering study on the electrohydrodynamic instability of nematic liquid crystal,” J. Phys. Soc. Jpn. 53(10), 3280–3283 (1984).
[Crossref]

1979 (1)

H. P. Hinov and L. K. Vistin, “Parallel and cross-like domains due to d.c. and low frequency (< 2 Hz) electric fields in nematic liquid crystal layers with negative dielectric anisotropy,” J. Phys. France 40(3), 269–292 (1979).
[Crossref]

1978 (1)

M. I. Barnik, L. M. Blinov, A. N. Trufanov, and B. A. Umanski, “Flexo-electric domains in liquid crystals,” J. Phys. France 39(4), 417–422 (1978).
[Crossref]

1977 (1)

Yu. P. Bobylev and S. A. Pikin, “Threshold piezoelectric instability in a liquid crystal,” Sov. Phys. JETP 45(1), 195–198 (1977). <other>Zh. Eksp. Teor. Fiz. 72(1), 369–374 (1977)</other>

1976 (1)

S. Akahoshi, K. Miyakawa, and A. Takase, “A frequency measurement of the oscillatory motion of the Williams domain in the nematic liquid crystal,” Jpn. J. Appl. Phys. 15(9), 1839–1840 (1976).
[Crossref]

1972 (1)

T. O. Carroll, “Liquid-crystal diffraction grating,” J. Appl. Phys. 43(3), 767–770 (1972).
[Crossref]

1971 (1)

S. Lu and D. Jones, “Light diffraction phenomena in an ac‐excited nematic liquid‐crystal sample,” J. Appl. Phys. 42(5), 2138–2140 (1971).
[Crossref]

1970 (1)

L. K. Vistin, “Electrostructural effect and optical properties of a certain class of liquid crystals and their binary mixtures,” Sov. Phys. Crystallogr. 15(3), 514–515 (1970). <other>Kristallografiya 15(3), 594–595 (1970)</other>

1969 (1)

R. B. Meyer, “Piezoelectric effects in liquid crystals,” Phys. Rev. Lett. 22(18), 918–921 (1969).
[Crossref]

Akahoshi, S.

S. Akahoshi, K. Miyakawa, and A. Takase, “A frequency measurement of the oscillatory motion of the Williams domain in the nematic liquid crystal,” Jpn. J. Appl. Phys. 15(9), 1839–1840 (1976).
[Crossref]

Barnik, M. I.

M. I. Barnik, L. M. Blinov, A. N. Trufanov, and B. A. Umanski, “Flexo-electric domains in liquid crystals,” J. Phys. France 39(4), 417–422 (1978).
[Crossref]

Behn, U.

T. John, U. Behn, and R. Stannarius, “Laser diffraction by periodic dynamic patterns in anisotropic fluids,” Eur. Phys. J. B 35(2), 267–278 (2003).
[Crossref]

T. John, U. Behn, and R. Stannarius, “Fundamental scaling laws of on-off intermittency in a stochastically driven dissipative pattern-forming system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2A), 046229 (2002).
[Crossref] [PubMed]

Belaissaoui, A.

S. Kaur, A. Belaissaoui, J. W. Goodby, V. Görtz, and H. F. Gleeson, “Nonstandard electroconvection in a bent-core oxadiazole material,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 041704 (2011).
[Crossref] [PubMed]

Blinov, L. M.

M. I. Barnik, L. M. Blinov, A. N. Trufanov, and B. A. Umanski, “Flexo-electric domains in liquid crystals,” J. Phys. France 39(4), 417–422 (1978).
[Crossref]

Bobylev, Yu. P.

Yu. P. Bobylev and S. A. Pikin, “Threshold piezoelectric instability in a liquid crystal,” Sov. Phys. JETP 45(1), 195–198 (1977). <other>Zh. Eksp. Teor. Fiz. 72(1), 369–374 (1977)</other>

Buka, A.

A. Krekhov, W. Pesch, and A. Buka, “Flexoelectricity and pattern formation in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051706 (2011).
[Crossref] [PubMed]

A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and A. Buka, “Nonstandard electroconvection and flexoelectricity in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(2), 021705 (2008).
[Crossref] [PubMed]

M. May, W. Schöpf, I. Rehberg, A. Krekhov, and A. Buka, “Transition from longitudinal to transversal patterns in an anisotropic system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046215 (2008).
[Crossref] [PubMed]

W. Pesch, L. Kramer, N. Éber, and A. Buka, “Role of initial conditions in the decay of spatially periodic patterns in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(6), 061705 (2006).
[Crossref] [PubMed]

N. Éber, S. A. Rozanski, S. Németh, A. Buka, W. Pesch, and L. Kramer, “Decay of spatially periodic patterns in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 061706 (2004).
[Crossref] [PubMed]

Buka, Á.

Y. Xiang, M. J. Zhou, M.-Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
[Crossref] [PubMed]

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
[Crossref] [PubMed]

P. Salamon, N. Éber, A. Krekhov, and Á. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka, “Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2), 021702 (2012).
[Crossref] [PubMed]

Carroll, T. O.

T. O. Carroll, “Liquid-crystal diffraction grating,” J. Appl. Phys. 43(3), 767–770 (1972).
[Crossref]

Cheng, Z.-D.

Delev, V. A.

V. A. Delev, A. P. Krekhov, and L. Kramer, “Crossover between flexoelectric stripe patterns and electroconvection in hybrid aligned nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 849–856 (2001).
[Crossref]

Demus, D.

P. Schiller, G. Pelzl, and D. Demus, “Analytical theory for flexo-electric domains in nematic layer,” Cryst. Res. Technol. 25(1), 111–116 (1990).
[Crossref]

Dölle, S.

P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
[Crossref] [PubMed]

Éber, N.

Y. Xiang, M. J. Zhou, M.-Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
[Crossref] [PubMed]

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
[Crossref] [PubMed]

P. Salamon, N. Éber, A. Krekhov, and Á. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka, “Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2), 021702 (2012).
[Crossref] [PubMed]

A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and A. Buka, “Nonstandard electroconvection and flexoelectricity in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(2), 021705 (2008).
[Crossref] [PubMed]

W. Pesch, L. Kramer, N. Éber, and A. Buka, “Role of initial conditions in the decay of spatially periodic patterns in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(6), 061705 (2006).
[Crossref] [PubMed]

N. Éber, S. A. Rozanski, S. Németh, A. Buka, W. Pesch, and L. Kramer, “Decay of spatially periodic patterns in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 061706 (2004).
[Crossref] [PubMed]

Ebina, Y.

H. Miike, Y. Kuriyama, H. Hashimoto, and Y. Ebina, “Laser light scattering study on the electrohydrodynamic instability of nematic liquid crystal,” J. Phys. Soc. Jpn. 53(10), 3280–3283 (1984).
[Crossref]

Ferrarini, A.

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

Gleeson, H. F.

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

S. Kaur, A. Belaissaoui, J. W. Goodby, V. Görtz, and H. F. Gleeson, “Nonstandard electroconvection in a bent-core oxadiazole material,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 041704 (2011).
[Crossref] [PubMed]

Goodby, J. W.

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

S. Kaur, A. Belaissaoui, J. W. Goodby, V. Görtz, and H. F. Gleeson, “Nonstandard electroconvection in a bent-core oxadiazole material,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 041704 (2011).
[Crossref] [PubMed]

Görtz, V.

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

S. Kaur, A. Belaissaoui, J. W. Goodby, V. Görtz, and H. F. Gleeson, “Nonstandard electroconvection in a bent-core oxadiazole material,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 041704 (2011).
[Crossref] [PubMed]

Greco, C.

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

Guo, M. C.

Z. D. Xu, Y. N. He, M. C. Guo, and X. G. Wang, “Alternating current electric-field-induced tunable microstructures and electrohydrodynamic convection properties observed in azo-dye-doped MBBA liquid crystal cells,” J. Appl. Phys. 102(2), 026101 (2007).
[Crossref]

Hartung, G.

S. Rasenat, G. Hartung, B. L. Winkler, and I. Rehberg, “The shadowgraph method in convection experiments,” Exp. Fluids 7(6), 412–420 (1989).
[Crossref]

Hashimoto, H.

H. Miike, Y. Kuriyama, H. Hashimoto, and Y. Ebina, “Laser light scattering study on the electrohydrodynamic instability of nematic liquid crystal,” J. Phys. Soc. Jpn. 53(10), 3280–3283 (1984).
[Crossref]

He, Y. N.

Z. D. Xu, Y. N. He, M. C. Guo, and X. G. Wang, “Alternating current electric-field-induced tunable microstructures and electrohydrodynamic convection properties observed in azo-dye-doped MBBA liquid crystal cells,” J. Appl. Phys. 102(2), 026101 (2007).
[Crossref]

Heuer, J.

J. Heuer, T. John, and R. Stannarius, “Time reversal of the excitation wave form in a dissipative pattern-forming system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 036218 (2008).
[Crossref] [PubMed]

Hinov, H. P.

H. P. Hinov and L. K. Vistin, “Parallel and cross-like domains due to d.c. and low frequency (< 2 Hz) electric fields in nematic liquid crystal layers with negative dielectric anisotropy,” J. Phys. France 40(3), 269–292 (1979).
[Crossref]

John, T.

J. Heuer, T. John, and R. Stannarius, “Time reversal of the excitation wave form in a dissipative pattern-forming system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 036218 (2008).
[Crossref] [PubMed]

T. John and R. Stannarius, “Preparation of subharmonic patterns in nematic electroconvection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(2), 025202 (2004).
[Crossref] [PubMed]

T. John, U. Behn, and R. Stannarius, “Laser diffraction by periodic dynamic patterns in anisotropic fluids,” Eur. Phys. J. B 35(2), 267–278 (2003).
[Crossref]

T. John, U. Behn, and R. Stannarius, “Fundamental scaling laws of on-off intermittency in a stochastically driven dissipative pattern-forming system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2A), 046229 (2002).
[Crossref] [PubMed]

Jones, D.

S. Lu and D. Jones, “Light diffraction phenomena in an ac‐excited nematic liquid‐crystal sample,” J. Appl. Phys. 42(5), 2138–2140 (1971).
[Crossref]

Kaur, S.

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

S. Kaur, A. Belaissaoui, J. W. Goodby, V. Görtz, and H. F. Gleeson, “Nonstandard electroconvection in a bent-core oxadiazole material,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 041704 (2011).
[Crossref] [PubMed]

Kosmopoulos, J. A.

Kramer, L.

W. Pesch, L. Kramer, N. Éber, and A. Buka, “Role of initial conditions in the decay of spatially periodic patterns in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(6), 061705 (2006).
[Crossref] [PubMed]

N. Éber, S. A. Rozanski, S. Németh, A. Buka, W. Pesch, and L. Kramer, “Decay of spatially periodic patterns in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 061706 (2004).
[Crossref] [PubMed]

V. A. Delev, A. P. Krekhov, and L. Kramer, “Crossover between flexoelectric stripe patterns and electroconvection in hybrid aligned nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 849–856 (2001).
[Crossref]

Krekhov, A.

P. Salamon, N. Éber, A. Krekhov, and Á. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

W. Pesch and A. Krekhov, “Optical analysis of spatially periodic patterns in nematic liquid crystals: diffraction and shadowgraphy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052504 (2013).
[Crossref] [PubMed]

N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka, “Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2), 021702 (2012).
[Crossref] [PubMed]

A. Krekhov, W. Pesch, and A. Buka, “Flexoelectricity and pattern formation in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051706 (2011).
[Crossref] [PubMed]

M. May, W. Schöpf, I. Rehberg, A. Krekhov, and A. Buka, “Transition from longitudinal to transversal patterns in an anisotropic system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046215 (2008).
[Crossref] [PubMed]

A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and A. Buka, “Nonstandard electroconvection and flexoelectricity in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(2), 021705 (2008).
[Crossref] [PubMed]

Krekhov, A. P.

V. A. Delev, A. P. Krekhov, and L. Kramer, “Crossover between flexoelectric stripe patterns and electroconvection in hybrid aligned nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 849–856 (2001).
[Crossref]

Krishnamurthy, K. S.

P. Kumar and K. S. Krishnamurthy, “Gradient flexoelectric switching response in a nematic phenyl benzoate,” Liq. Cryst. 34(2), 257–266 (2007).
[Crossref]

Kumar, P.

P. Kumar and K. S. Krishnamurthy, “Gradient flexoelectric switching response in a nematic phenyl benzoate,” Liq. Cryst. 34(2), 257–266 (2007).
[Crossref]

Kuriyama, Y.

H. Miike, Y. Kuriyama, H. Hashimoto, and Y. Ebina, “Laser light scattering study on the electrohydrodynamic instability of nematic liquid crystal,” J. Phys. Soc. Jpn. 53(10), 3280–3283 (1984).
[Crossref]

Liu, Y.-K.

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

Y. Xiang, Y.-K. Liu, Z.-Y. Zhang, H.-J. You, T. Xia, E. Wang, and Z.-D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
[PubMed]

Lu, S.

S. Lu and D. Jones, “Light diffraction phenomena in an ac‐excited nematic liquid‐crystal sample,” J. Appl. Phys. 42(5), 2138–2140 (1971).
[Crossref]

May, M.

M. May, W. Schöpf, I. Rehberg, A. Krekhov, and A. Buka, “Transition from longitudinal to transversal patterns in an anisotropic system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046215 (2008).
[Crossref] [PubMed]

Meyer, R. B.

R. B. Meyer, “Piezoelectric effects in liquid crystals,” Phys. Rev. Lett. 22(18), 918–921 (1969).
[Crossref]

Miike, H.

H. Miike, Y. Kuriyama, H. Hashimoto, and Y. Ebina, “Laser light scattering study on the electrohydrodynamic instability of nematic liquid crystal,” J. Phys. Soc. Jpn. 53(10), 3280–3283 (1984).
[Crossref]

Miyakawa, K.

S. Akahoshi, K. Miyakawa, and A. Takase, “A frequency measurement of the oscillatory motion of the Williams domain in the nematic liquid crystal,” Jpn. J. Appl. Phys. 15(9), 1839–1840 (1976).
[Crossref]

Németh, S.

N. Éber, S. A. Rozanski, S. Németh, A. Buka, W. Pesch, and L. Kramer, “Decay of spatially periodic patterns in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 061706 (2004).
[Crossref] [PubMed]

Ostapenko, T.

P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
[Crossref] [PubMed]

Palomares, L. O.

N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka, “Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2), 021702 (2012).
[Crossref] [PubMed]

Panov, V. P.

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

Papadopoulos, P. L.

P. L. Papadopoulos, H. M. Zenginoglou, and J. A. Kosmopoulos, “Optical measurement of the director relaxation time in a periodically reoriented nematic liquid crystal,” J. Appl. Phys. 86(6), 3042–3047 (1999).
[Crossref]

Pelzl, G.

P. Schiller, G. Pelzl, and D. Demus, “Analytical theory for flexo-electric domains in nematic layer,” Cryst. Res. Technol. 25(1), 111–116 (1990).
[Crossref]

Pesch, W.

W. Pesch and A. Krekhov, “Optical analysis of spatially periodic patterns in nematic liquid crystals: diffraction and shadowgraphy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052504 (2013).
[Crossref] [PubMed]

A. Krekhov, W. Pesch, and A. Buka, “Flexoelectricity and pattern formation in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051706 (2011).
[Crossref] [PubMed]

A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and A. Buka, “Nonstandard electroconvection and flexoelectricity in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(2), 021705 (2008).
[Crossref] [PubMed]

W. Pesch, L. Kramer, N. Éber, and A. Buka, “Role of initial conditions in the decay of spatially periodic patterns in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(6), 061705 (2006).
[Crossref] [PubMed]

N. Éber, S. A. Rozanski, S. Németh, A. Buka, W. Pesch, and L. Kramer, “Decay of spatially periodic patterns in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 061706 (2004).
[Crossref] [PubMed]

Pikin, S. A.

Yu. P. Bobylev and S. A. Pikin, “Threshold piezoelectric instability in a liquid crystal,” Sov. Phys. JETP 45(1), 195–198 (1977). <other>Zh. Eksp. Teor. Fiz. 72(1), 369–374 (1977)</other>

Rasenat, S.

S. Rasenat, G. Hartung, B. L. Winkler, and I. Rehberg, “The shadowgraph method in convection experiments,” Exp. Fluids 7(6), 412–420 (1989).
[Crossref]

Rehberg, I.

M. May, W. Schöpf, I. Rehberg, A. Krekhov, and A. Buka, “Transition from longitudinal to transversal patterns in an anisotropic system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046215 (2008).
[Crossref] [PubMed]

S. Rasenat, G. Hartung, B. L. Winkler, and I. Rehberg, “The shadowgraph method in convection experiments,” Exp. Fluids 7(6), 412–420 (1989).
[Crossref]

Rozanski, S. A.

N. Éber, S. A. Rozanski, S. Németh, A. Buka, W. Pesch, and L. Kramer, “Decay of spatially periodic patterns in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 061706 (2004).
[Crossref] [PubMed]

Salamon, P.

Y. Xiang, M. J. Zhou, M.-Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
[Crossref] [PubMed]

P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
[Crossref] [PubMed]

P. Salamon, N. Éber, A. Krekhov, and Á. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka, “Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2), 021702 (2012).
[Crossref] [PubMed]

Schiller, P.

P. Schiller, G. Pelzl, and D. Demus, “Analytical theory for flexo-electric domains in nematic layer,” Cryst. Res. Technol. 25(1), 111–116 (1990).
[Crossref]

Schöpf, W.

M. May, W. Schöpf, I. Rehberg, A. Krekhov, and A. Buka, “Transition from longitudinal to transversal patterns in an anisotropic system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046215 (2008).
[Crossref] [PubMed]

Stannarius, R.

P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
[Crossref] [PubMed]

J. Heuer, T. John, and R. Stannarius, “Time reversal of the excitation wave form in a dissipative pattern-forming system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 036218 (2008).
[Crossref] [PubMed]

T. John and R. Stannarius, “Preparation of subharmonic patterns in nematic electroconvection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(2), 025202 (2004).
[Crossref] [PubMed]

T. John, U. Behn, and R. Stannarius, “Laser diffraction by periodic dynamic patterns in anisotropic fluids,” Eur. Phys. J. B 35(2), 267–278 (2003).
[Crossref]

T. John, U. Behn, and R. Stannarius, “Fundamental scaling laws of on-off intermittency in a stochastically driven dissipative pattern-forming system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2A), 046229 (2002).
[Crossref] [PubMed]

Takase, A.

S. Akahoshi, K. Miyakawa, and A. Takase, “A frequency measurement of the oscillatory motion of the Williams domain in the nematic liquid crystal,” Jpn. J. Appl. Phys. 15(9), 1839–1840 (1976).
[Crossref]

Tóth-Katona, T.

A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and A. Buka, “Nonstandard electroconvection and flexoelectricity in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(2), 021705 (2008).
[Crossref] [PubMed]

Trufanov, A. N.

M. I. Barnik, L. M. Blinov, A. N. Trufanov, and B. A. Umanski, “Flexo-electric domains in liquid crystals,” J. Phys. France 39(4), 417–422 (1978).
[Crossref]

Umanski, B. A.

M. I. Barnik, L. M. Blinov, A. N. Trufanov, and B. A. Umanski, “Flexo-electric domains in liquid crystals,” J. Phys. France 39(4), 417–422 (1978).
[Crossref]

Vistin, L. K.

H. P. Hinov and L. K. Vistin, “Parallel and cross-like domains due to d.c. and low frequency (< 2 Hz) electric fields in nematic liquid crystal layers with negative dielectric anisotropy,” J. Phys. France 40(3), 269–292 (1979).
[Crossref]

L. K. Vistin, “Electrostructural effect and optical properties of a certain class of liquid crystals and their binary mixtures,” Sov. Phys. Crystallogr. 15(3), 514–515 (1970). <other>Kristallografiya 15(3), 594–595 (1970)</other>

Wang, E.

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

Y. Xiang, Y.-K. Liu, Z.-Y. Zhang, H.-J. You, T. Xia, E. Wang, and Z.-D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
[PubMed]

Wang, X. G.

Z. D. Xu, Y. N. He, M. C. Guo, and X. G. Wang, “Alternating current electric-field-induced tunable microstructures and electrohydrodynamic convection properties observed in azo-dye-doped MBBA liquid crystal cells,” J. Appl. Phys. 102(2), 026101 (2007).
[Crossref]

Winkler, B. L.

S. Rasenat, G. Hartung, B. L. Winkler, and I. Rehberg, “The shadowgraph method in convection experiments,” Exp. Fluids 7(6), 412–420 (1989).
[Crossref]

Xia, T.

Xiang, Y.

Y. Xiang, M. J. Zhou, M.-Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
[Crossref] [PubMed]

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

Y. Xiang, Y.-K. Liu, Z.-Y. Zhang, H.-J. You, T. Xia, E. Wang, and Z.-D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
[PubMed]

Xu, M.-Y.

Y. Xiang, M. J. Zhou, M.-Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
[Crossref] [PubMed]

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

Xu, Z. D.

Z. D. Xu, Y. N. He, M. C. Guo, and X. G. Wang, “Alternating current electric-field-induced tunable microstructures and electrohydrodynamic convection properties observed in azo-dye-doped MBBA liquid crystal cells,” J. Appl. Phys. 102(2), 026101 (2007).
[Crossref]

You, H.-J.

Zenginoglou, H. M.

Zhang, Z.-Y.

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

Y. Xiang, Y.-K. Liu, Z.-Y. Zhang, H.-J. You, T. Xia, E. Wang, and Z.-D. Cheng, “Observation of the photorefractive effects in bent-core liquid crystals,” Opt. Express 21(3), 3434–3444 (2013).
[PubMed]

Zhou, M. J.

Y. Xiang, M. J. Zhou, M.-Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. Kaur, V. P. Panov, C. Greco, A. Ferrarini, V. Görtz, J. W. Goodby, and H. F. Gleeson, “Flexoelectricity in an oxadiazole bent-core nematic liquid crystal,” Appl. Phys. Lett. 105(22), 223505 (2014).
[Crossref]

Cryst. Res. Technol. (1)

P. Schiller, G. Pelzl, and D. Demus, “Analytical theory for flexo-electric domains in nematic layer,” Cryst. Res. Technol. 25(1), 111–116 (1990).
[Crossref]

Eur. Phys. J. B (1)

T. John, U. Behn, and R. Stannarius, “Laser diffraction by periodic dynamic patterns in anisotropic fluids,” Eur. Phys. J. B 35(2), 267–278 (2003).
[Crossref]

Exp. Fluids (1)

S. Rasenat, G. Hartung, B. L. Winkler, and I. Rehberg, “The shadowgraph method in convection experiments,” Exp. Fluids 7(6), 412–420 (1989).
[Crossref]

J. Appl. Phys. (4)

S. Lu and D. Jones, “Light diffraction phenomena in an ac‐excited nematic liquid‐crystal sample,” J. Appl. Phys. 42(5), 2138–2140 (1971).
[Crossref]

T. O. Carroll, “Liquid-crystal diffraction grating,” J. Appl. Phys. 43(3), 767–770 (1972).
[Crossref]

P. L. Papadopoulos, H. M. Zenginoglou, and J. A. Kosmopoulos, “Optical measurement of the director relaxation time in a periodically reoriented nematic liquid crystal,” J. Appl. Phys. 86(6), 3042–3047 (1999).
[Crossref]

Z. D. Xu, Y. N. He, M. C. Guo, and X. G. Wang, “Alternating current electric-field-induced tunable microstructures and electrohydrodynamic convection properties observed in azo-dye-doped MBBA liquid crystal cells,” J. Appl. Phys. 102(2), 026101 (2007).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. France (2)

M. I. Barnik, L. M. Blinov, A. N. Trufanov, and B. A. Umanski, “Flexo-electric domains in liquid crystals,” J. Phys. France 39(4), 417–422 (1978).
[Crossref]

H. P. Hinov and L. K. Vistin, “Parallel and cross-like domains due to d.c. and low frequency (< 2 Hz) electric fields in nematic liquid crystal layers with negative dielectric anisotropy,” J. Phys. France 40(3), 269–292 (1979).
[Crossref]

J. Phys. Soc. Jpn. (1)

H. Miike, Y. Kuriyama, H. Hashimoto, and Y. Ebina, “Laser light scattering study on the electrohydrodynamic instability of nematic liquid crystal,” J. Phys. Soc. Jpn. 53(10), 3280–3283 (1984).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Akahoshi, K. Miyakawa, and A. Takase, “A frequency measurement of the oscillatory motion of the Williams domain in the nematic liquid crystal,” Jpn. J. Appl. Phys. 15(9), 1839–1840 (1976).
[Crossref]

Liq. Cryst. (1)

P. Kumar and K. S. Krishnamurthy, “Gradient flexoelectric switching response in a nematic phenyl benzoate,” Liq. Cryst. 34(2), 257–266 (2007).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

V. A. Delev, A. P. Krekhov, and L. Kramer, “Crossover between flexoelectric stripe patterns and electroconvection in hybrid aligned nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 366(1), 849–856 (2001).
[Crossref]

Opt. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (14)

A. Krekhov, W. Pesch, N. Éber, T. Tóth-Katona, and A. Buka, “Nonstandard electroconvection and flexoelectricity in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77(2), 021705 (2008).
[Crossref] [PubMed]

S. Kaur, A. Belaissaoui, J. W. Goodby, V. Görtz, and H. F. Gleeson, “Nonstandard electroconvection in a bent-core oxadiazole material,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(4), 041704 (2011).
[Crossref] [PubMed]

M. May, W. Schöpf, I. Rehberg, A. Krekhov, and A. Buka, “Transition from longitudinal to transversal patterns in an anisotropic system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 046215 (2008).
[Crossref] [PubMed]

N. Éber, L. O. Palomares, P. Salamon, A. Krekhov, and Á. Buka, “Temporal evolution and alternation of mechanisms of electric-field-induced patterns at ultralow-frequency driving,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 86(2), 021702 (2012).
[Crossref] [PubMed]

P. Salamon, N. Éber, A. Krekhov, and Á. Buka, “Flashing flexodomains and electroconvection rolls in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(3), 032505 (2013).
[Crossref]

A. Krekhov, W. Pesch, and A. Buka, “Flexoelectricity and pattern formation in nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83(5), 051706 (2011).
[Crossref] [PubMed]

Y. Xiang, Y.-K. Liu, Á. Buka, N. Éber, Z.-Y. Zhang, M.-Y. Xu, and E. Wang, “Electric-field-induced patterns and their temperature dependence in a bent-core liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(1), 012502 (2014).
[Crossref] [PubMed]

Y. Xiang, M. J. Zhou, M.-Y. Xu, P. Salamon, N. Éber, and Á. Buka, “Unusual polarity-dependent patterns in a bent-core nematic liquid crystal under low-frequency ac field,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042501 (2015).
[Crossref] [PubMed]

J. Heuer, T. John, and R. Stannarius, “Time reversal of the excitation wave form in a dissipative pattern-forming system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(3), 036218 (2008).
[Crossref] [PubMed]

T. John, U. Behn, and R. Stannarius, “Fundamental scaling laws of on-off intermittency in a stochastically driven dissipative pattern-forming system,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2A), 046229 (2002).
[Crossref] [PubMed]

T. John and R. Stannarius, “Preparation of subharmonic patterns in nematic electroconvection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(2), 025202 (2004).
[Crossref] [PubMed]

N. Éber, S. A. Rozanski, S. Németh, A. Buka, W. Pesch, and L. Kramer, “Decay of spatially periodic patterns in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 061706 (2004).
[Crossref] [PubMed]

W. Pesch, L. Kramer, N. Éber, and A. Buka, “Role of initial conditions in the decay of spatially periodic patterns in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(6), 061705 (2006).
[Crossref] [PubMed]

W. Pesch and A. Krekhov, “Optical analysis of spatially periodic patterns in nematic liquid crystals: diffraction and shadowgraphy,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052504 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

R. B. Meyer, “Piezoelectric effects in liquid crystals,” Phys. Rev. Lett. 22(18), 918–921 (1969).
[Crossref]

Soft Matter (1)

P. Salamon, N. Éber, Á. Buka, T. Ostapenko, S. Dölle, and R. Stannarius, “Magnetic control of flexoelectric domains in a nematic fluid,” Soft Matter 10(25), 4487–4497 (2014).
[Crossref] [PubMed]

Sov. Phys. Crystallogr. (1)

L. K. Vistin, “Electrostructural effect and optical properties of a certain class of liquid crystals and their binary mixtures,” Sov. Phys. Crystallogr. 15(3), 514–515 (1970). <other>Kristallografiya 15(3), 594–595 (1970)</other>

Sov. Phys. JETP (1)

Yu. P. Bobylev and S. A. Pikin, “Threshold piezoelectric instability in a liquid crystal,” Sov. Phys. JETP 45(1), 195–198 (1977). <other>Zh. Eksp. Teor. Fiz. 72(1), 369–374 (1977)</other>

Other (4)

Flexoelectricity in Liquid Crystals. Theory, Experiments and Applications, Á. Buka and N. Éber, eds. (Imperial College, 2012).

L. Kramer and W. Pesch, “Electrohydrodynamic instabilities in nematic liquid crystals,” In Pattern Formation in Liquid Crystals, A. Buka and L. Kramer, eds. (Springer, 1996), pp. 221–256.

Á. Buka, N. Éber, W. Pesch, and L. Kramer, “Convective patterns in liquid crystals driven by electric field,” In Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems. NATO Science Series II, Mathematica, Physics and Chemistry, Vol. 218, A. A. Golovin and A. A. Nepomnyashchy, eds. (Springer, 2006), pp. 55–82.

Á. Buka, T. Tóth-Katona, N. Éber, A. Krekhov, and W. Pesch, “Chapter 4: The role of flexoelectricity in pattern formation,” In Flexoelectricity in Liquid Crystals. Theory, Experiments and Applications, Á. Buka and N. Éber, eds. (Imperial College, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Structural formula of the BCN compound 2,5-bis (4-(difluoro (4-heptylphenyl) methoxy) phenyl)-1,3,4-oxadiazole (7P-CF2O-ODBP).
Fig. 2
Fig. 2 Variation of pattern morphology with the frequency (f = 0.01 Hz, 0.1 Hz and 1.0 Hz) and the applied voltage (Vp = 36 V, 43 V and 50 V). The arrows indicate the directions of the initial director n0 and of the analyzer. The size of the POM snapshots is 67 μm × 67 μm.
Fig. 3
Fig. 3 Morphological changes within a half period. (a)–(g): POM snapshots of flexodomains (FDs) at f = 0.1 Hz, Vp = 36 V; (h)–(n): snapshots of diffraction spots of FDs at f = 0.1 Hz, Vp = 50 V (the direct beam is almost completely blocked); (o)–(u): POM snapshots of EC patterns at f = 1.0 Hz, Vp = 36 V. The size of the POM snapshots is 67 μm × 67 μm.
Fig. 4
Fig. 4 Temporal evolution of the applied voltage (dash-dotted line) and (a) the pattern contrast C within one period of driving for f = 0.01 Hz, 0.1 Hz and 1.0 Hz at Vp = 50 V; (b) the dimensionless wavenumber q*(t/τ) of the FD pattern within a single driving period (τ) for f = 0.01 Hz, Vp = 50 V and for f = 0.1 Hz, Vp = 50 V.
Fig. 5
Fig. 5 Smoothed contrast of the diffraction spots (defined as the average intensity of the framed region of the inset picture) vs. time in one driving period at f = 0.1 Hz, Vp = 35 V. The applied voltage is also shown by dash-dotted line.
Fig. 6
Fig. 6 The set-up for monitoring the dynamics of the diffracted light, and an example of the time dependent intensity signal from the mth detector.
Fig. 7
Fig. 7 (a) Temporal evolution of the applied voltage and the 1st order diffraction intensity Im at selected detector positions (m = 1, 5, 9) for f = 0.01 Hz, Vp = 55 V. As the wavelength varies within a driving period, the diffracted light passes these detector positions at different moments and with different intensity. (b) Dependence of the moment (t/τ) of the pulse center on the diffraction angle ϕm (the position of the mth detector) within one half period at f = 0.01 Hz for two different Vp.
Fig. 8
Fig. 8 Visibility of the diffraction spots at different polarizer/analyzer settings: (a) without any polarizer (P) or analyzer (A); (b) with a single polarizer at (P) || n0; (c) with crossed polarizers at (P) ⊥ n0 and (A) || n0; (d) at parallel polarizer and analyzer at (P) ⊥ n0 and (A) ⊥ n0.

Metrics